Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
JCI Insight ; 9(17)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088268

RESUMO

Cantú syndrome is a multisystem disorder caused by gain-of-function (GOF) mutations in KCNJ8 and ABCC9, the genes encoding the pore-forming inward rectifier Kir6.1 and regulatory sulfonylurea receptor SUR2B subunits, respectively, of vascular ATP-sensitive K+ (KATP) channels. In this study, we investigated changes in the vascular endothelium in mice in which Cantú syndrome-associated Kcnj8 or Abcc9 mutations were knocked in to the endogenous loci. We found that endothelium-dependent dilation was impaired in small mesenteric arteries from Cantú mice. Loss of endothelium-dependent vasodilation led to increased vasoconstriction in response to intraluminal pressure or treatment with the adrenergic receptor agonist phenylephrine. We also found that either KATP GOF or acute activation of KATP channels with pinacidil increased the amplitude and frequency of wave-like Ca2+ events generated in the endothelium in response to the vasodilator agonist carbachol. Increased cytosolic Ca2+ signaling activity in arterial endothelial cells from Cantú mice was associated with elevated mitochondrial [Ca2+] and enhanced reactive oxygen species (ROS) and peroxynitrite levels. Scavenging intracellular or mitochondrial ROS restored endothelium-dependent vasodilation in the arteries of mice with KATP GOF mutations. We conclude that mitochondrial Ca2+ overload and ROS generation, which subsequently leads to nitric oxide consumption and peroxynitrite formation, cause endothelial dysfunction in mice with Cantú syndrome.


Assuntos
Endotélio Vascular , Hipertricose , Mitocôndrias , Osteocondrodisplasias , Ácido Peroxinitroso , Espécies Reativas de Oxigênio , Vasodilatação , Animais , Camundongos , Hipertricose/genética , Hipertricose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Ácido Peroxinitroso/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Mitocôndrias/metabolismo , Vasodilatação/genética , Receptores de Sulfonilureias/metabolismo , Receptores de Sulfonilureias/genética , Cálcio/metabolismo , Masculino , Vasoconstrição , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Canais KATP/metabolismo , Canais KATP/genética , Humanos , Modelos Animais de Doenças , Mutação com Ganho de Função , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/genética
2.
JCI Insight ; 9(18)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163136

RESUMO

Some endothelial cells in the tumor vasculature express a system L amino acid transporter, LAT1. To elucidate the role of LAT1 in tumor-related endothelial cells, tumor cells were injected into endothelial cell-specific LAT1 conditional knockout mice (Slc7a5flox/flox; Cdh5-Cre-ERT2), and we found that the shape of the tumor vasculature was normalized and the size and numbers of lung metastasis was reduced. TNF-α-induced expression of VCAM1 and E-selectin at the surface of HUVEC, both of which are responsible for enhanced monocyte attachment and premetastatic niche formation, was reduced in the presence of LAT1 inhibitor, nanvuranlat. Deprivation of tryptophan, a LAT1 substrate, mimicked LAT1 inhibition, which led to activation of MEK1/2-ERK1/2 pathway and subsequent cystathionine γ lyase (CTH) induction. Increased production of hydrogen sulfide (H2S) by CTH was at least partially responsible for tumor vascular normalization, leading to decreased leakiness and enhanced delivery of chemotherapeutic agents to the tumor.


Assuntos
Transportador 1 de Aminoácidos Neutros Grandes , Camundongos Knockout , Animais , Camundongos , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Células Endoteliais/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/genética , Células Endoteliais da Veia Umbilical Humana , Linhagem Celular Tumoral
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167479, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39181516

RESUMO

Intracellular cholesterol metabolism is regulated by the SREBP-2 and LXR signaling pathways. The effects of inflammation on these molecular mechanisms remain poorly studied, especially at the blood-brain barrier (BBB) level. Tumor necrosis factor α (TNFα) is a proinflammatory cytokine associated with BBB dysfunction. Therefore, the aim of our study was to investigate the effects of TNFα on BBB cholesterol metabolism, focusing on its underlying signaling pathways. Using a human in vitro BBB model composed of human brain-like endothelial cells (hBLECs) and brain pericytes (HBPs), we observed that TNFα increases BBB permeability by degrading the tight junction protein CLAUDIN-5 and activating stress signaling pathways in both cell types. TNFα also promotes cholesterol release and decreases cholesterol accumulation and APOE secretion. In hBLECs, the expression of SREBP-2 targets (LDLR and HMGCR) is increased, while ABCA1 expression is decreased. In HBPs, only LDLR and ABCA1 expression is increased. TNFα treatment also induces 25-hydroxycholesterol (25-HC) production, a cholesterol metabolite involved in the immune response and intracellular cholesterol metabolism. 25-HC pretreatment attenuates TNFα-induced BBB leakage and partially alleviates the effects of TNFα on ABCA1, LDLR, and HMGCR expression. Overall, our results suggest that TNFα favors cholesterol efflux via an LXR/ABCA1-independent mechanism at the BBB, while it activates the SREBP-2 pathway. Treatment with 25-HC partially reversed the effect of TNFα on the LXR/SREBP-2 pathways. Our study provides novel perspectives for better understanding cerebrovascular signaling events linked to BBB dysfunction and cholesterol metabolism in neuroinflammatory diseases.


Assuntos
Barreira Hematoencefálica , Colesterol , Células Endoteliais , Hidroxicolesteróis , Proteína de Ligação a Elemento Regulador de Esterol 2 , Fator de Necrose Tumoral alfa , Hidroxicolesteróis/farmacologia , Hidroxicolesteróis/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Colesterol/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética , Transdução de Sinais/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Pericitos/metabolismo , Pericitos/efeitos dos fármacos , Pericitos/patologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Células Cultivadas
4.
JCI Insight ; 9(16)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024553

RESUMO

To determine whether hyperlipidemia and chronic kidney disease (CKD) have a synergy in accelerating vascular inflammation via trained immunity (TI), we performed aortic pathological analysis and RNA-Seq of high-fat diet-fed (HFD-fed) 5/6 nephrectomy CKD (HFD+CKD) mice. We made the following findings: (a) HFD+CKD increased aortic cytosolic LPS levels, caspase-11 (CASP11) activation, and 998 gene expressions of TI pathways in the aorta (first-tier TI mechanism); (b) CASP11-/- decreased aortic neointima hyperplasia, aortic recruitment of macrophages, and casp11-gasdermin D-mediated cytokine secretion; (c) CASP11-/- decreased N-terminal gasdermin D (N-GSDMD) membrane expression on aortic endothelial cells and aortic IL-1B levels; (d) LPS transfection into human aortic endothelial cells resulted in CASP4 (human)/CASP11 (mouse) activation and increased N-GSDMD membrane expression; and (e) IL-1B served as the second-tier mechanism underlying HFD+CKD-promoted TI. Taken together, hyperlipidemia and CKD accelerated vascular inflammation by promoting 2-tier trained immunity.


Assuntos
Caspases Iniciadoras , Caspases , Dieta Hiperlipídica , Hiperlipidemias , Insuficiência Renal Crônica , Imunidade Treinada , Animais , Humanos , Masculino , Camundongos , Aorta/patologia , Aorta/imunologia , Aorta/metabolismo , Caspases/metabolismo , Caspases/genética , Caspases Iniciadoras/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Gasderminas , Hiperlipidemias/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/metabolismo
5.
JCI Insight ; 9(16)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024551

RESUMO

Abdominal aortic aneurysm (AAA) is one of the most life-threatening cardiovascular diseases; however, effective drug treatments are still lacking. The formation of neutrophil extracellular traps (NETs) has been shown to be a crucial trigger of AAA, and identifying upstream regulatory targets is thus key to discovering therapeutic agents for AAA. We revealed that phosphoinositide-3-kinase γ (PI3Kγ) acted as an upstream regulatory molecule and that PI3Kγ inhibition reduced NET formation and aortic wall inflammation, thereby markedly ameliorating AAA. However, the mechanism of NET formation regulated by PI3Kγ remains unclear. In this study, we showed that PI3Kγ deficiency inactivated the noncanonical pyroptosis pathway, which suppressed downstream NET formation. In addition, PI3Kγ regulation of noncanonical pyroptosis was dependent on cyclic AMP/protein kinase A signaling. These results clarify the molecular mechanism and crosstalk between PI3Kγ and NETosis in the development of AAA, potentially facilitating the discovery of therapeutic options for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Classe Ib de Fosfatidilinositol 3-Quinase , Armadilhas Extracelulares , Neutrófilos , Piroptose , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Armadilhas Extracelulares/metabolismo , Animais , Camundongos , Neutrófilos/metabolismo , Humanos , Masculino , Transdução de Sinais , Modelos Animais de Doenças , Camundongos Knockout , Camundongos Endogâmicos C57BL
6.
Antioxidants (Basel) ; 13(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929187

RESUMO

The indolamine hormone melatonin, also known as N-acetyl-5-methoxytrypamine, is frequently associated with circadian rhythm regulation. Light can suppress melatonin secretion, and photoperiod regulates melatonin levels by promoting its production and secretion at night in response to darkness. This hormone is becoming more and more understood for its functions as an immune-modulatory, anti-inflammatory, and antioxidant hormone. Melatonin may have a major effect on several diabetes-related disturbances, such as hormonal imbalances, oxidative stress, sleep disturbances, and mood disorders, according to recent research. This has raised interest in investigating the possible therapeutic advantages of melatonin in the treatment of diabetic complications. In addition, several studies have described that melatonin has been linked to the development of diabetes, cancer, Alzheimer's disease, immune system disorders, and heart diseases. In this review, we will highlight some of the functions of melatonin regarding vascular biology.

7.
J Clin Invest ; 134(15)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900572

RESUMO

Androgen has long been recognized for its pivotal role in the sexual dimorphism of cardiovascular diseases, including aortic aneurysms (AAs), a devastating vascular disease with a higher prevalence and fatality rate in men than in women. However, the mechanism by which androgen mediates AAs is largely unknown. Here, we found that male, not female, mice developed AAs when exposed to aldosterone and high salt (Aldo-salt). We revealed that androgen and androgen receptors (ARs) were crucial for this sexually dimorphic response to Aldo-salt. We identified programmed cell death protein 1 (PD-1), an immune checkpoint, as a key link between androgen and AAs. Furthermore, we demonstrated that administration of anti-PD-1 Ab and adoptive PD-1-deficient T cell transfer reinstated Aldo-salt-induced AAs in orchiectomized mice and that genetic deletion of PD-1 exacerbated AAs induced by a high-fat diet and angiotensin II (Ang II) in nonorchiectomized mice. Mechanistically, we discovered that the AR bound to the PD-1 promoter to suppress the expression of PD-1 in the spleen. Thus, our study unveils a mechanism by which androgen aggravates AAs by suppressing PD-1 expression in T cells. Moreover, our study suggests that some patients with cancer might benefit from screenings for AAs during immune checkpoint therapy.


Assuntos
Androgênios , Aneurisma Aórtico , Receptor de Morte Celular Programada 1 , Receptores Androgênicos , Animais , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Camundongos , Masculino , Feminino , Androgênios/farmacologia , Androgênios/metabolismo , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/genética , Aneurisma Aórtico/patologia , Aldosterona/metabolismo , Camundongos Knockout , Humanos , Angiotensina II/farmacologia
8.
J Clin Invest ; 134(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747287

RESUMO

Lymphedema is a debilitating disease with no effective cure and affects an estimated 250 million individuals worldwide. Prior studies have identified mutations in piezo-type mechanosensitive ion channel component 1 (PIEZO1), angiopoietin 2 (ANGPT2), and tyrosine kinase with Ig-like and EGF-like domains 1 (TIE1) in patients with primary lymphedema. Here, we identified crosstalk between these molecules and showed that activation of the mechanosensory channel PIEZO1 in lymphatic endothelial cells (LECs) caused rapid exocytosis of the TIE ligand ANGPT2, ectodomain shedding of TIE1 by disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), and increased TIE/PI3K/AKT signaling, followed by nuclear export of the transcription factor FOXO1. These data establish a functional network between lymphedema-associated genes and provide what we believe to be the first molecular mechanism bridging channel function with vascular signaling and intracellular events culminating in transcriptional regulation of genes expressed in LECs. Our study provides insights into the regulation of lymphatic function and molecular pathways involved in human disease.


Assuntos
Angiopoietina-2 , Proteína Forkhead Box O1 , Canais Iônicos , Linfangiogênese , Linfedema , Receptor de TIE-1 , Transdução de Sinais , Animais , Humanos , Camundongos , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Angiopoietina-2/metabolismo , Angiopoietina-2/genética , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Linfangiogênese/genética , Linfedema/metabolismo , Linfedema/genética , Linfedema/patologia , Mecanotransdução Celular , Receptor de TIE-1/metabolismo , Receptor de TIE-1/genética
9.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587072

RESUMO

The roles of fibronectin leucine-rich transmembrane protein 2 (FLRT2) in physiological and pathological processes are not well known. Here, we identify a potentially novel function of FLRT2 in preventing endothelial cell senescence and vascular aging. We found that FLRT2 expression was lower in cultured senescent endothelial cells as well as in aged rat and human vascular tissues. FLRT2 mediated endothelial cell senescence via the mTOR complex 2, AKT, and p53 signaling pathway in human endothelial cells. We uncovered that FLRT2 directly associated with integrin subunit beta 4 (ITGB4) and thereby promoted ITGB4 phosphorylation, while inhibition of ITGB4 substantially mitigated the induction of senescence triggered by FLRT2 depletion. Importantly, FLRT2 silencing in mice promoted vascular aging, and overexpression of FLRT2 rescued a premature vascular aging phenotype. Therefore, we propose that FLRT2 could be targeted therapeutically to prevent senescence-associated vascular aging.


Assuntos
Células Endoteliais , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Ratos , Envelhecimento , Células Endoteliais/metabolismo , Integrina beta4/genética , Integrina beta4/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
JCI Insight ; 9(9)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592807

RESUMO

BACKGROUNDDisease of the aorta varies from atherosclerosis to aneurysms, with complications including rupture, dissection, and poorly characterized limited tears. We studied limited tears without any mural hematoma, termed intimomedial tears, to gain insight into aortic vulnerability to excessive wall stresses. Our premise is that minimal injuries in aortas with sufficient medial resilience to prevent tear progression correspond to initial mechanisms leading to complete structural failure in aortas with significantly compromised medial resilience.METHODSIntimomedial tears were macroscopically identified in 9 of 108 ascending aortas after surgery and analyzed by histology and immunofluorescence confocal microscopy.RESULTSNonhemorrhagic, nonatheromatous tears correlated with advanced aneurysmal disease and most lacked distinctive symptoms or radiological signs. Tears traversed the intima and part of the subjacent media, while the resultant defects were partially or completely filled with neointima characterized by differentiated smooth muscle cells, scattered leukocytes, dense fibrosis, and absent elastic laminae despite tropoelastin synthesis. Healed lesions contained organized fibrin at tear edges without evidence of plasma and erythrocyte extravasation or lipid accumulation.CONCLUSIONThese findings suggest a multiphasic model of aortic wall failure in which primary lesions of intimomedial tears either heal if the media is sufficiently resilient or progress as dissection or rupture by medial delamination and tear completion, respectively. Moreover, mural incorporation of thrombus and cellular responses to injury, two historically important concepts in atheroma pathogenesis, contribute to vessel wall repair with adequate conduit function, but even together are not sufficient to induce atherosclerosis.FUNDINGNIH (R01-HL146723, R01-HL168473) and Yale Department of Surgery.


Assuntos
Aorta , Aterosclerose , Fibrose , Miócitos de Músculo Liso , Humanos , Masculino , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Aterosclerose/patologia , Feminino , Aorta/patologia , Idoso , Pessoa de Meia-Idade , Neointima/patologia , Túnica Íntima/patologia , Túnica Média/patologia , Túnica Média/metabolismo
11.
JCI Insight ; 9(10)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652543

RESUMO

Mechanisms underlying maintenance of pathological vascular hypermuscularization are poorly delineated. Herein, we investigated retention of smooth muscle cells (SMCs) coating normally unmuscularized distal pulmonary arterioles in pulmonary hypertension (PH) mediated by chronic hypoxia with or without Sugen 5416, and reversal of this pathology. With hypoxia in mice or culture, lung endothelial cells (ECs) upregulated hypoxia-inducible factor 1α (HIF1-α) and HIF2-α, which induce platelet-derived growth factor B (PDGF-B), and these factors were reduced to normoxic levels with re-normoxia. Re-normoxia reversed hypoxia-induced pulmonary vascular remodeling, but with EC HIFα overexpression during re-normoxia, pathological changes persisted. Conversely, after establishment of distal muscularization and PH, EC-specific deletion of Hif1a, Hif2a, or Pdgfb induced reversal. In human idiopathic pulmonary artery hypertension, HIF1-α, HIF2-α, PDGF-B, and autophagy-mediating gene products, including Beclin1, were upregulated in pulmonary artery SMCs and/or lung lysates. Furthermore, in mice, hypoxia-induced EC-derived PDGF-B upregulated Beclin1 in distal arteriole SMCs, and after distal muscularization was established, re-normoxia, EC Pdgfb deletion, or treatment with STI571 (which inhibits PDGF receptors) downregulated SMC Beclin1 and other autophagy products. Finally, SMC-specific Becn1 deletion induced apoptosis, reversing distal muscularization and PH mediated by hypoxia with or without Sugen 5416. Thus, chronic hypoxia induction of the HIFα/PDGF-B axis in ECs is required for non-cell-autonomous Beclin1-mediated survival of pathological distal arteriole SMCs.


Assuntos
Células Endoteliais , Hipertensão Pulmonar , Miócitos de Músculo Liso , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Arteríolas/metabolismo , Arteríolas/patologia , Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Indóis , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Proteínas Proto-Oncogênicas c-sis/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Pirróis , Remodelação Vascular
12.
JCI Insight ; 9(7)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441970

RESUMO

Compromised vascular integrity facilitates extravasation of cancer cells and promotes metastatic dissemination. CD93 has emerged as a target for antiangiogenic therapy, but its importance for vascular integrity in metastatic cancers has not been evaluated. Here, we demonstrate that CD93 participates in maintaining the endothelial barrier and reducing metastatic dissemination. Primary melanoma growth was hampered in CD93-/- mice, but metastatic dissemination was increased and associated with disruption of adherens and tight junctions in tumor endothelial cells and elevated expression of matrix metalloprotease 9 at the metastatic site. CD93 directly interacted with vascular endothelial growth factor receptor 2 (VEGFR2) and its absence led to VEGF-induced hyperphosphorylation of VEGFR2 in endothelial cells. Antagonistic anti-VEGFR2 antibody therapy rescued endothelial barrier function and reduced the metastatic burden in CD93-/- mice to wild-type levels. These findings reveal a key role of CD93 in maintaining vascular integrity, which has implications for pathological angiogenesis and endothelial barrier function in metastatic cancer.


Assuntos
Células Endoteliais , Neoplasias , Animais , Camundongos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
J Clin Invest ; 134(10)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502192

RESUMO

Clarkson disease, or monoclonal gammopathy-associated idiopathic systemic capillary leak syndrome (ISCLS), is a rare, relapsing-remitting disorder featuring the abrupt extravasation of fluids and proteins into peripheral tissues, which in turn leads to hypotensive shock, severe hemoconcentration, and hypoalbuminemia. The specific leakage factor(s) and pathways in ISCLS are unknown, and there is no effective treatment for acute flares. Here, we characterize an autonomous vascular endothelial defect in ISCLS that was recapitulated in patient-derived endothelial cells (ECs) in culture and in a mouse model of disease. ISCLS-derived ECs were functionally hyperresponsive to permeability-inducing factors like VEGF and histamine, in part due to increased endothelial nitric oxide synthase (eNOS) activity. eNOS blockade by administration of N(γ)-nitro-l-arginine methyl ester (l-NAME) ameliorated vascular leakage in an SJL/J mouse model of ISCLS induced by histamine or VEGF challenge. eNOS mislocalization and decreased protein phosphatase 2A (PP2A) expression may contribute to eNOS hyperactivation in ISCLS-derived ECs. Our findings provide mechanistic insights into microvascular barrier dysfunction in ISCLS and highlight a potential therapeutic approach.


Assuntos
Síndrome de Vazamento Capilar , Modelos Animais de Doenças , Óxido Nítrico Sintase Tipo III , Fator A de Crescimento do Endotélio Vascular , Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Camundongos , Síndrome de Vazamento Capilar/metabolismo , Síndrome de Vazamento Capilar/patologia , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Histamina/metabolismo , Mediadores da Inflamação/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Masculino
14.
JCI Insight ; 9(3)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175709

RESUMO

Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease characterized by the expansion of the aortic wall. One of the most significant features is the infiltration of macrophages in the adventitia, which drives vasculature remodeling. The role of macrophage-derived interferon regulatory factor 5 (IRF5) in macrophage infiltration and AAA formation remains unknown. RNA sequencing of AAA adventitia identified Irf5 as the top significantly increased transcription factor that is predominantly expressed in macrophages. Global and myeloid cell-specific deficiency of Irf5 reduced AAA progression, with a marked reduction in macrophage infiltration. Further cellular investigations indicated that IRF5 promotes macrophage migration by direct regulation of downstream phosphoinositide 3-kinase γ (PI3Kγ, Pik3cg). Pik3cg ablation hindered AAA progression, and myeloid cell-specific salvage of Pik3cg restored AAA progression and macrophage infiltration derived from Irf5 deficiency. Finally, we found that IRF5 and PI3Kγ expression in the adventitia is significantly increased in patients with AAA. These findings reveal that the IRF5-dependent regulation of PI3Kγ is essential for AAA formation.


Assuntos
Túnica Adventícia , Aneurisma da Aorta Abdominal , Humanos , Túnica Adventícia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Macrófagos/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo
15.
J Lipid Res ; 65(2): 100504, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246237

RESUMO

Coronary atherosclerosis is caused by plaque build-up, with lipids playing a pivotal role in its progression. However, lipid composition and distribution within coronary atherosclerosis remain unknown. This study aims to characterize lipids and investigate differences in lipid composition across disease stages to aid in the understanding of disease progression. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to visualize lipid distributions in coronary artery sections (n = 17) from hypercholesterolemic swine. We performed histology on consecutive sections to classify the artery segments and to investigate colocalization between lipids and histological regions of interest in advanced plaque, including necrotic core and inflammatory cells. Segments were classified as healthy (n = 6), mild (n = 6), and advanced disease (n = 5) artery segments. Multivariate data analysis was employed to find differences in lipid composition between the segment types, and the lipids' spatial distribution was investigated using non-negative matrix factorization (NMF). Through this process, MALDI-MSI detected 473 lipid-related features. NMF clustering described three components in positive ionization mode: triacylglycerides (TAG), phosphatidylcholines (PC), and cholesterol species. In negative ionization mode, two components were identified: one driven by phosphatidylinositol(PI)(38:4), and one driven by ceramide-phosphoethanolamine(36:1). Multivariate data analysis showed the association between advanced disease and specific lipid signatures like PC(O-40:5) and cholesterylester(CE)(18:2). Ether-linked phospholipids and LysoPC species were found to colocalize with necrotic core, and mostly CE, ceramide, and PI species colocalized with inflammatory cells. This study, therefore, uncovers distinct lipid signatures correlated with plaque development and their colocalization with necrotic core and inflammatory cells, enhancing our understanding of coronary atherosclerosis progression.


Assuntos
Doença da Artéria Coronariana , Hiperlipoproteinemia Tipo II , Placa Aterosclerótica , Animais , Suínos , Lipidômica , Ceramidas , Necrose , Fosfatidilcolinas , Éteres Fosfolipídicos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
J Biol Chem ; 300(1): 105526, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043797

RESUMO

Despite antiretroviral therapy (ART), chronic forms of HIV-associated neurocognitive disorders (HAND) affect an estimated 50% of individuals living with HIV, greatly impacting their quality of life. The prevailing theory of HAND progression posits that chronic inflammation arising from the activation of latent viral reservoirs leads to progressive damage in the central nervous system (CNS). Recent evidence indicates that blood-brain barrier (BBB) pericytes are capable of active HIV-1 infection; however, their latent infection has not been defined. Given their location and function, BBB pericytes are poised to be a key viral reservoir in the development of HAND. We present the first transcriptional analysis of uninfected, active, and latent human BBB pericytes, revealing distinct transcriptional phenotypes. In addition, we demonstrate that latent infection of BBB pericytes relies on AKT signaling for reservoir survival. These findings provide insight into the state of reservoir maintenance in the CNS during HIV-1 infection and provide novel targets for reservoir clearance.


Assuntos
Barreira Hematoencefálica , Reservatórios de Doenças , Infecções por HIV , HIV-1 , Infecção Latente , Pericitos , Humanos , Barreira Hematoencefálica/virologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/transmissão , Infecções por HIV/virologia , Infecção Latente/virologia , Pericitos/virologia , Proteínas Proto-Oncogênicas c-akt/genética , Qualidade de Vida , Latência Viral , Reservatórios de Doenças/virologia
17.
JCI Insight ; 9(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37971881

RESUMO

The lymphatic vasculature is the natural pathway for the resolution of inflammation, yet the role of pulmonary lymphatic drainage function in sepsis-induced acute respiratory distress syndrome (ARDS) remains poorly characterized. In this study, indocyanine green-near infrared lymphatic living imaging was performed to examine pulmonary lymphatic drainage function in septic mouse models. We found that the pulmonary lymphatic drainage was impaired owing to the damaged lymphatic structure in sepsis-induced ARDS. Moreover, prior lymphatic defects by blocking vascular endothelial growth factor receptor-3 (VEGFR-3) worsened sepsis-induced lymphatic dysfunction and inflammation. Posttreatment with vascular endothelial growth factor-C (Cys156Ser) (VEGF-C156S), a ligand of VEGFR-3, ameliorated lymphatic drainage by rejuvenating lymphatics to reduce the pulmonary edema and promote draining of pulmonary macrophages and neutrophils to pretracheal lymph nodes. Meanwhile, VEGF-C156S posttreatment reversed sepsis-inhibited CC chemokine ligand 21 (CCL21), which colocalizes with pulmonary lymphatic vessels. Furthermore, the advantages of VEGF-C156S on the drainage of inflammatory cells and edema fluid were abolished by blocking VEGFR-3 or CCL21. These results suggest that efficient pulmonary lymphatic drainage is necessary for inflammation resolution in ARDS. Our findings offer a therapeutic approach to sepsis-induced ARDS by promoting lymphatic drainage function.


Assuntos
Vasos Linfáticos , Síndrome do Desconforto Respiratório , Sepse , Camundongos , Animais , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ligantes , Vasos Linfáticos/patologia , Inflamação/metabolismo , Síndrome do Desconforto Respiratório/patologia , Sepse/metabolismo
18.
JCI Insight ; 9(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37971882

RESUMO

Despite strong indications that interactions between melanoma and lymphatic vessels actively promote melanoma progression, the molecular mechanisms are not yet completely understood. To characterize molecular factors of this crosstalk, we established human primary lymphatic endothelial cell (LEC) cocultures with human melanoma cell lines. Here, we show that coculture with melanoma cells induced transcriptomic changes in LECs and led to multiple changes in their function. WNT5B, a paracrine signaling molecule upregulated in melanoma cells upon LEC interaction, was found to contribute to the functional changes in LECs. Moreover, WNT5B transcription was regulated by Notch3 in melanoma cells following the coculture with LECs, and Notch3 and WNT5B were coexpressed in melanoma patient primary tumor and metastasis samples. Moreover, melanoma cells derived from LEC coculture escaped efficiently from the primary site to the proximal tumor-draining lymph nodes, which was impaired upon WNT5B depletion. This supported the role of WNT5B in promoting the metastatic potential of melanoma cells through its effects on LECs. Finally, DLL4, a Notch ligand expressed in LECs, was identified as an upstream inducer of the Notch3/WNT5B axis in melanoma. This study elucidated WNT5B as a key molecular factor mediating bidirectional crosstalk between melanoma cells and lymphatic endothelium and promoting melanoma metastasis.


Assuntos
Vasos Linfáticos , Melanoma , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células Endoteliais/metabolismo , Metástase Linfática/patologia , Vasos Linfáticos/patologia , Melanoma/patologia , Transdução de Sinais , Proteínas Wnt/metabolismo
19.
EBioMedicine ; 99: 104914, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113759

RESUMO

BACKGROUND: Cerebral Cavernous Malformation (CCM) is a rare cerebrovascular disease, characterized by the presence of multiple vascular malformations that may result in intracerebral hemorrhages (ICHs), seizure(s), or focal neurological deficits (FND). Familial CCM (fCCM) is due to loss of function mutations in one of the three independent genes KRIT1 (CCM1), Malcavernin (CCM2), or Programmed Cell death 10 (PDCD10/CCM3). The aim of this study was to identify plasma protein biomarkers of fCCM to assess the severity of the disease and predict its progression. METHODS: Here, we have investigated plasma samples derived from n = 71 symptomatic fCCM patients (40 female/31 male) and n = 17 healthy donors (HD) (9 female/8 male) of the Phase 1/2 Treat_CCM trial, using multiplexed protein profiling approaches. FINDINGS: Biomarkers as sCD14 (p = 0.00409), LBP (p = 0.02911), CXCL4 (p = 0.038), ICAM-1 (p = 0.02013), ANG2 (p = 0.026), CCL5 (p = 0.00403), THBS1 (p = 0.0043), CRP (p = 0.0092), and HDL (p = 0.027), were significantly different in fCCM compared to HDs. Of note, sENG (p = 0.011), THBS1 (p = 0.011) and CXCL4 (p = 0.011), were correlated to CCM genotype. sROBO4 (p = 0.014), TM (p = 0.026) and CRP (p = 0.040) were able to predict incident adverse clinical events, such as ICH, FND or seizure. GDF-15, FLT3L, CXCL9, FGF-21 and CDCP1, were identified as predictors of the formation of new MRI-detectable lesions over 2-year follow-up. Furthermore, the functional relevance of ang2, thbs1, robo4 and cdcp1 markers was validated by zebrafish pre-clinical model of fCCM. INTERPRETATION: Overall, our study identifies a set of biochemical parameters to predict CCM progression, suggesting biological interpretations and potential therapeutic approaches to CCM disease. FUNDING: Italian Medicines Agency, Associazione Italiana per la Ricerca sul Cancro (AIRC), ERC, Leducq Transatlantic Network of Excellence, Swedish Research Council.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Animais , Humanos , Masculino , Feminino , Hemangioma Cavernoso do Sistema Nervoso Central/etiologia , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Associadas aos Microtúbulos/genética , Peixe-Zebra/metabolismo , Biomarcadores , Convulsões , Antígenos de Neoplasias , Moléculas de Adesão Celular
20.
J Clin Invest ; 134(4)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38127441

RESUMO

Lymphangioleiomyomatosis (LAM) is a progressive cystic lung disease caused by tuberous sclerosis complex 1/2 (TSC1/2) gene mutations in pulmonary mesenchymal cells, resulting in activation of the mechanistic target of rapamycin complex 1 (mTORC1). A subset of patients with LAM develop pulmonary vascular remodeling and pulmonary hypertension. Little, however, is known regarding how LAM cells communicate with endothelial cells (ECs) to trigger vascular remodeling. In end-stage LAM lung explants, we identified EC dysfunction characterized by increased EC proliferation and migration, defective angiogenesis, and dysmorphic endothelial tube network formation. To model LAM disease, we used an mTORC1 gain-of-function mouse model with a Tsc2 KO (Tsc2KO) specific to lung mesenchyme (Tbx4LME-Cre Tsc2fl/fl), similar to the mesenchyme-specific genetic alterations seen in human disease. As early as 8 weeks of age, ECs from mice exhibited marked transcriptomic changes despite an absence of morphological changes to the distal lung microvasculature. In contrast, 1-year-old Tbx4LME-Cre Tsc2fl/fl mice spontaneously developed pulmonary vascular remodeling with increased medial thickness. Single-cell RNA-Seq of 1-year-old mouse lung cells identified paracrine ligands originating from Tsc2KO mesenchyme, which can signal through receptors in arterial ECs. These ECs had transcriptionally altered genes including those in pathways associated with blood vessel remodeling. The proposed pathophysiologic mesenchymal ligand-EC receptor crosstalk highlights the importance of an altered mesenchymal cell/EC axis in LAM and other hyperactive mTORC1-driven diseases. Since ECs in patients with LAM and in Tbx4LME-Cre Tsc2fl/fl mice did not harbor TSC2 mutations, our study demonstrates that constitutively active mTORC1 lung mesenchymal cells orchestrated dysfunctional EC responses that contributed to pulmonary vascular remodeling.


Assuntos
Linfangioleiomiomatose , Proteína 2 do Complexo Esclerose Tuberosa , Esclerose Tuberosa , Proteínas Supressoras de Tumor , Animais , Humanos , Lactente , Camundongos , Células Endoteliais/metabolismo , Pulmão/metabolismo , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mesoderma/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Remodelação Vascular/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Técnicas In Vitro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA