Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.100
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microb Pathog ; 196: 106960, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313132

RESUMO

BACKGROUND: High-risk human papillomavirus (HPV) infection is a major risk factor of HPV-related tumors, especially cervical cancer. To date, there is no specific drug for the treatment of HPV infection. PURPOSE: To explore the role of canonical Wnt signaling pathway in HPV16 infection and to screen inhibitors against HPV16 infection from natural small molecule compounds targeting the canonicalWnt pathway. METHODS: Wnt pathway inhibitor IWP-2 and FH535 were used to inhibit Wnt/ß-catenin signaling pathway. HPV16-GFP pseudovirus infectivity were analyzed by fluorescence microscopy and fluorescence activated cell sorting. A small molecule screening of a total of CFDA-approved 29 natural compounds targeting the Wnt pathway was performed. RESULTS: Wnt signaling pathway inhibitor suppressed HPV16-GFP pseudovirus infection in HaCat cells. Natural small molecule compounds screening identified 6-Gingerol, gossypol, tanshinone II2A, and EGCG as inhibitors of HPV16-GFP pseudovirus infection. CONCLUSION: Wnt signaling pathway is involved in the process of HPV infection of host cells. 6-Gingerol, gossypol, tanshinone II2A, and EGCG inhibited HPV16-GFP pseudovirus infection and suppressed Wnt/ß-catenin pathway in HaCat cells.

2.
J Nanobiotechnology ; 22(1): 580, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304875

RESUMO

Apoptotic vesicles (apoVs) play a vital role in various physiological and pathological conditions. However, we have yet to fully understand their precise biological effects in rescuing impaired mesenchymal stem cells (MSCs). Here, we proved that systemic infusion of MSCs derived from wild-type (WT) mice rather than from ovariectomized (OVX) mice effectively improved the osteopenia phenotype and rescued the impaired recipient MSCs in osteoporotic mice. Meanwhile, apoVs derived from WT MSCs (WT apoVs) instead of OVX apoVs efficiently restored the impaired biological function of OVX MSCs and their ability to improve osteoporosis. Mechanistically, the reduced miR-145a-5p expression hindered the osteogenic differentiation and immunomodulatory capacity of OVX MSCs by affecting the TGF-ß/Smad 2/3-Wnt/ß-catenin signaling axis, resulting in the development of osteoporosis. WT apoVs directly transferred miR-145a-5p to OVX MSCs, which were then reused to restore their impaired biological functions. The differential expression of miR-145a-5p is responsible for the distinct efficacy between the two types of apoVs. Overall, our findings unveil the remarkable potential of apoVs, as a novel nongenetic engineering approach, in rescuing the biological function and therapeutic capability of MSCs derived from patients. This discovery offers a new avenue for exploring apoVs-based stem cell engineering and expands the application scope of stem cell therapy, contributing to the maintenance of bone homeostasis through a previously unrecognized mechanism.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Células-Tronco Mesenquimais/metabolismo , Osteoporose/terapia , Osteoporose/genética , Camundongos , Feminino , Osteogênese , Camundongos Endogâmicos C57BL , Transplante de Células-Tronco Mesenquimais/métodos , Apoptose , Vesículas Extracelulares/metabolismo , Via de Sinalização Wnt , Células Cultivadas , Ovariectomia
3.
Biochem Biophys Res Commun ; 733: 150691, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39303525

RESUMO

Neuroblastoma is the most common extra-cranial solid tumor diagnosed mostly in children below the age of five years and comprises of about 15 % of all paediatric cancer deaths. Tumor initiating cancer stem cells (CSCs) can be targeted for better treatment approaches. BASP1-AS1 is a long non coding (Lnc) RNA that is a divergent LncRNA for its coding gene brain abundant membrane attached signal protein 1 (BASP1). We had earlier demonstrated it to be expressed in foetus derived human neural progenitor cells (hNPCs), where it was a positive regulator of BASP1 and was critical for neural differentiation. In this study, we have investigated the role of BASP1-AS1 in CSCs derived from the human neuroblastoma cell line SH-SY5Y. We cultured SH-SY5Y cells on Poly-d-Lysine coated flasks in serum free media supplemented with growth factors, which led to the enrichment of CSCs as determined by marker expression. When grown on ultra-low attachment flasks, these cells formed CSCs enriched neurospheres. We examined the effects of BASP1-AS1 siRNA mediated knockdown on CSCs enriched SH-SY5Y cells and SH-SY5Y derived neurospheres. BASP1-AS1 knockdown decreased the levels of the corresponding gene BASP1 and the rate of cell proliferation of CSCs enriched cells along with low expression of Ki67. It also reduced the mRNA levels of stem cell and pluripotency gene markers (CD133, CD44, c-KIT, SOX2, OCT4 and NANOG), as also Wnt 2 and the Wnt pathway effector ß catenin. It also abrogated the formation of neurospheres in ultra-low attachment flasks. A similar effect on proliferation and stemness related properties was seen on BASP1 knockdown. BASP1-AS1 and its related pathways may provide a point of intervention for the CSCs population in neuroblastoma.

4.
Stem Cell Res Ther ; 15(1): 287, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256806

RESUMO

BACKGROUND: Androgenetic alopecia (AGA) is a common form of hair loss. Androgens, such as testosterone and dihydrotestosterone, are the main causes of AGA. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) can reduce AGA. However, preparing therapeutic doses of MSCs for clinical use is challenging. Induced pluripotent stem cell-derived MSCs (iMSCs) are homogenous and easily expandable, enabling scalable production of EVs. Hyaluronic acid (HA) can exert various functions including free radical scavenging, immune regulation, and cell migration. Herein, we examined whether hyaluronic acid (HA) stimulation of iMSCs could produce EVs with enhanced therapeutic outcomes for AGA. METHODS: EVs were collected from iMSCs primed with HA (HA-iMSC-EVs) or without HA (iMSC-EVs). The characteristics of EVs were examined using dynamic light scattering, cryo-transmission electron microscopy, immunoblotting, flow cytometry, and proteomic analysis. In vitro, we compared the potential of EVs in stimulating the survival of hair follicle dermal papilla cells undergoing testosterone-mediated AGA. Additionally, the expression of androgen receptor (AR) and relevant growth factors as well as key proteins of Wnt/ß-catenin signaling pathway (ß-catenin and phosphorylated GSK3ß) was analyzed. Subsequently, AGA was induced in male C57/BL6 mice by testosterone administration, followed by repeated injections of iMSC-EVs, HA-iMSC-EVs, finasteride, or vehicle. Several parameters including hair growth, anagen phase ratio, reactivation of Wnt/ß-catenin pathway, and AR expression was examined using qPCR, immunoblotting, and immunofluorescence analysis. RESULTS: Both types of EVs showed typical characteristics for EVs, such as size distribution, markers, and surface protein expression. In hair follicle dermal papilla cells, the mRNA levels of AR, TGF-ß, and IL-6 increased by testosterone was blocked by HA-iMSC-EVs, which also contributed to the augmented expression of trophic genes related to hair regrowth. However, no notable changes were observed in the iMSC-EVs. Re-activation of Wnt/ß-catenin was observed in HA-iMSC-EVs but not in iMSC-EVs, as shown by ß-catenin stabilization and an increase in phosphorylated GSK3ß. Restoration of hair growth was more significant in HA-iMSC-EVs than in iMSC-EVs, and was comparable to that in mice treated with finasteride. Consistently, the decreased anagen ratio induced by testosterone was reversed by HA-iMSC-EVs, but not by iMSC-EVs. An increased expression of hair follicular ß-catenin protein, as well as the reduction of AR was observed in the skin tissue of AGA mice receiving HA-iMSC-EVs, but not in those treated with iMSC-EVs. CONCLUSIONS: Our results suggest that HA-iMSC-EVs have potential to improve AGA by regulating growth factors/cytokines and stimulating AR-related Wnt/ß-catenin signaling.


Assuntos
Alopecia , Vesículas Extracelulares , Folículo Piloso , Ácido Hialurônico , Células-Tronco Mesenquimais , Vesículas Extracelulares/metabolismo , Alopecia/terapia , Alopecia/metabolismo , Alopecia/tratamento farmacológico , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Animais , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Humanos , Via de Sinalização Wnt/efeitos dos fármacos , Masculino , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Testosterona/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Endogâmicos C57BL
5.
Cancer Cell Int ; 24(1): 306, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227913

RESUMO

Clinical trials and studies have implicated that E3 ubiquitin ligase BTBD3 (BTB Domain Containing 3) is a cancer-associated gene. However, the role and underlying mechanism of BTBD3 in colorectal cancer (CRC) is not fully understood yet. Herein, our study demonstrated that the mRNA and protein levels of BTBD3 were decreased in CRC tissues and associated with TYPO3 and Wnt/ß-catenin pathway. Our results showed that circRAE1 knockdown and TYRO3 overexpression activated Wnt/ß-catenin signaling pathway and the EMT process-associated markers, indicating that circRAE1/miR-388-3p/TYRO3 axis exacerbated tumorigenesis of CRC by activating Wnt/ß-catenin signaling pathway. In addition, overexpression of BTBD3 reduced CRC cell migration and invasion in vitro and inhibited tumor growth in vivo. Our data demonstrated that BTBD3 suppressed CRC progression through negative regulation of the circRAE1/miR-388-3p/TYRO3 axis and the Wnt/ß-catenin pathway. Our data further confirmed that BTBD3 bound and ubiquitinated ß-catenin and led to ß-catenin degradation, therefore blocked the Wnt/ß-catenin pathway and suppressed the CRC tumorigenesis. This study explored the mechanism of BTBD3 involved in CRC tumorigenesis and provided a new theoretical basis for the prevention and treatment of CRC.

6.
Discov Oncol ; 15(1): 465, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298013

RESUMO

The main cause of gastric cancer (GC)-related death is due to malignant cell unregulated distant metastasis and proliferation. Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) has been shown to play an important role in carcinogenesis and the development of metastasis in several tumors. However, its downstream regulatory mechanism in GC is not well defined. Our study aims to investigate the function and regulatory mechanism of hnRNPA1 in GC. We analyzed the differential expression of hnRNPA1 in gastric cancer and paired adjacent normal tissues in the TCGA database. Kaplan-Meier analysis was employed for survival assessment. The expressions of hnRNPA1 in GC cells were measured by qRT-PCR and Western blot. Transwell assay, CCK8 and colony formation assay were used to detect the effect of hnRNPA1 on the metastasis and proliferation ability of GC cells. Additionally, Western blotting was performed to examine the expression of proteins related to the Wnt/ß-catenin signaling pathway as well as epithelial-mesenchymal transition (EMT), while further investigations were carried out to explore potential regulatory mechanisms. The results showed that hnRNPA1 was highly expressed differentially in GC over normal gastric tissue. Knocking down hnRNPA1 inhibited the metastasis and proliferation of human gastric cancer cells. Overexpression of hnRNPA1 significantly enhanced the metastatic potential and proliferative capacity of human GC cells. Further mechanism exploration revealed that knocking down hnRNPA1 inhibited the Wnt/ß-catenin signaling pathway and WNT1 inducible signaling pathway protein-2 (WISP2), an activator of the Wnt/ß-catenin signaling pathway. Whereas overexpression of hnRNPA1 had the opposite effects. Our results demonstrated that hnRNPA1 promoted metastasis and proliferation of GC cells by activating Wnt/ß-catenin signaling pathway via WISP2. hnRNPA1 may serve as a potential biomarker and novel therapeutic targets for GC.

7.
J Orthop Surg Res ; 19(1): 480, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152444

RESUMO

BACKGROUND: Increasing evidence shows the pivotal significance of miRNAs in the pathogenesis of osteoporosis. miR-381-3p has been identified as an inhibitor of osteogenesis. This study explored the role and mechanism of miR-381-3p in postmenopausal osteoporosis (PMOP), the most common type of osteoporosis. METHODS: Bilateral ovariectomy (OVX) rat model was established and miR-381-3p antagomir was administrated through the tail vein in vivo. The pathological changes in rats were assessed through the evaluation of serum bone turnover markers (BALP, PINP, and CTX-1), hematoxylin and eosin (H&E) staining, as well as the expression of osteoblast differentiation biomarkers. Moreover, isolated bone marrow mesenchymal stem cells from OVX-induced rats (OVX-BMMSCs) were utilized to explore the impact of miR-381-3p on osteoblast differentiation. In addition, the target gene and downstream pathway of miR-381-3p were further investigated both in vivo and in vitro. RESULTS: miR-381-3p expression was elevated, whereas KLF5 was suppressed in OVX rats. miR-381-3p antagomir decreased serum levels of bone turnover markers, improved trabecular separation, promoted osteoblast differentiation biomarker expression in OVX rats. ALP activity and mineralization were suppressed, and levels of osteoblast differentiation biomarkers were impeded after miR-381-3p overexpression during osteoblast differentiation of OVX-BMMSCs. While contrasting results were found after inhibition of miR-381-3p. miR-381-3p targets KLF5, negatively affecting its expression as well as its downstream Wnt/ß-catenin pathway, both in vivo and in vitro. Silencing of KLF5 restored Wnt/ß-catenin activation induced by miR-381-3p antagomir. CONCLUSION: miR-381-3p aggravates PMOP by inhibiting osteogenic differentiation through targeting KLF5/Wnt/ß-catenin pathway. miR-381-3p appears to be a promising candidate for therapeutic intervention in PMOP.


Assuntos
Diferenciação Celular , Fatores de Transcrição Kruppel-Like , MicroRNAs , Osteogênese , Osteoporose Pós-Menopausa , Ovariectomia , Via de Sinalização Wnt , Animais , Feminino , Humanos , Ratos , Células Cultivadas , Modelos Animais de Doenças , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Osteoblastos/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Osteoporose/genética , Osteoporose/etiologia , Osteoporose/metabolismo , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/metabolismo , Ovariectomia/efeitos adversos , Ratos Sprague-Dawley , Via de Sinalização Wnt/fisiologia , Via de Sinalização Wnt/genética
8.
Cell Stem Cell ; 31(9): 1298-1314.e8, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39146934

RESUMO

Endogenous retroviruses (ERVs) occupy a significant part of the human genome, with some encoding proteins that influence the immune system or regulate cell-cell fusion in early extra-embryonic development. However, whether ERV-derived proteins regulate somatic development is unknown. Here, we report a somatic developmental function for the primate-specific ERVH48-1 (SUPYN/Suppressyn). ERVH48-1 encodes a fragment of a viral envelope that is expressed during early embryonic development. Loss of ERVH48-1 led to impaired mesoderm and cardiomyocyte commitment and diverted cells to an ectoderm-like fate. Mechanistically, ERVH48-1 is localized to sub-cellular membrane compartments through a functional N-terminal signal peptide and binds to the WNT antagonist SFRP2 to promote its polyubiquitination and degradation, thus limiting SFRP2 secretion and blocking repression of WNT/ß-catenin signaling. Knockdown of SFRP2 or expression of a chimeric SFRP2 with the ERVH48-1 signal peptide rescued cardiomyocyte differentiation. This study demonstrates how ERVH48-1 modulates WNT/ß-catenin signaling and cell type commitment in somatic development.


Assuntos
Diferenciação Celular , Retrovirus Endógenos , Proteínas de Membrana , Miócitos Cardíacos , Via de Sinalização Wnt , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Retrovirus Endógenos/metabolismo , Retrovirus Endógenos/genética , Animais , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Primatas , Células HEK293 , Mesoderma/metabolismo
9.
Nutrients ; 16(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125288

RESUMO

Young-onset colorectal cancer is an increasing concern worldwide due to the growing prevalence of Westernized lifestyles in childhood and adolescence. Environmental factors during early life, particularly early-life nutrition, significantly contribute to the increasing incidence. Recently, there have been reports of beneficial effects, including anti-inflammation and anti-cancer, of a unique fungus (Antrodia camphorate, AC) native to Taiwan. The objective of this study is to investigate the impact of AC supplementation in early life on the development of young-onset intestinal tumorigenesis. APC1638N mice were fed with a high-fat diet (HF) at 4-12 weeks of age, which is equivalent to human childhood/adolescence, before switching to a normal maintenance diet for an additional 12 weeks up to 24 weeks of age, which is equivalent to young to middle adulthood in humans. Our results showed that the body weight in the HF groups significantly increased after 8 weeks of feeding (p < 0.05). Following a switch to a normal maintenance diet, the change in body weight persisted. AC supplementation significantly suppressed tumor incidence and multiplicity in females (p < 0.05) and reduced IGF-1 and Wnt/ß-catenin signaling (p < 0.05). Moreover, it altered the gut microbiota, suppressed inflammatory responses, and created a microenvironment towards suppressing tumorigenesis later in life.


Assuntos
Carcinogênese , Dieta Hiperlipídica , Suplementos Nutricionais , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Camundongos , Masculino , Dieta Hiperlipídica/efeitos adversos , Carcinogênese/efeitos dos fármacos , Polyporales , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias Colorretais/prevenção & controle , Modelos Animais de Doenças , Proteína da Polipose Adenomatosa do Colo/genética
10.
Toxicology ; 508: 153932, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39179171

RESUMO

Hydroquinone (HQ), a metabolite of benzene, is frequently utilized as a surrogate for benzene in in vitro studies and is associated with the development of acute myeloid leukemia (AML). In the hemotoxicity caused by benzene and HQ, cell apoptosis plays a key role. However, the molecular mechanisms underlying HQ are unknown. Studies have indicated that Suv39h1 is involved in regulating cell division and proliferation by regulating histone H3K9me3. Meanwhile, the Wnt/ß-catenin signaling pathway also plays a significant role in cell proliferation and apoptosis. Therefore, this study was aimed at exploring the regulatory role of Suv39h1 and the Wnt/ß-catenin signaling pathway in the effects of HQ on bone marrow mesenchymal stem cells (BMSCs), as well as its influence on cell proliferation and apoptosis. The results demonstrated that HQ elevated the levels of Suv39h1 and H3K9me3 and activated the Wnt/ß-catenin signaling pathway by upregulating ß-catenin, Wnt2b, C-myc, and Cyclin D1 and downregulating Wnt5a, resulting in an increase in cell growth and a decrease in apoptosis. Suv39h1 knockdown inhibited the Wnt/ß-catenin signaling pathway. Meanwhile, inhibition of the Wnt/ß-catenin signaling pathway resulted in the down-regulation of Suv39h1 and H3K9me3 in BMSCs. They both promoted cell proliferation and inhibited apoptosis in the effects of HQ on BMSCs by downregulating the expression of Cyt-C, Bax, Caspase 3, and Caspase 9 and upregulating the expression of Bcl-xl. Therefore, we concluded that Suv39h1 and the Wnt/ß-catenin signaling pathway may mutually regulate each other in the effects of HQ on BMSCs in order to ameliorate the altered function of BMSCs.


Assuntos
Apoptose , Proliferação de Células , Hidroquinonas , Células-Tronco Mesenquimais , Via de Sinalização Wnt , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Apoptose/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Animais , Hidroquinonas/toxicidade , Células Cultivadas , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , beta Catenina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Masculino
11.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39204206

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most common human malignancies worldwide. The molecular mechanisms of OSCC pathogenesis are still unknown; however, in recent years, several reports have focused on the role of enhancer of zeste homolog 2 (EZH2) in OSCC. Therefore, in this study we aimed to investigate the effects of GSK343, a selective EZH2 inhibitor, and its impact on the signaling pathways in OSCC, using an in vitro and in vivo orthotopic model. In the in vitro model, GSK343 (1, 10, and 25 µM) significantly decreased OSCC cell viability and cell migration through EZH2 inhibition, modulating NF-κB/IκBα pathway activation and eNOS, VEGF, and TGFß expression, important markers of angiogenesis. In the in vivo model, GSK343 (5 mg/kg and 10 mg/kg) restored tongue tissue architecture and reduced tumor progression through EZH2 inhibition and Wnt/ß-catenin signaling pathway modulation. Moreover, GSK343 reduced the expression of inflammatory mediators; eNOS and TGFß, markers of angiogenesis; and CD31 and CD34, markers of micro vessel density, respectively. In conclusion, our data demonstrate that GSK343 counteracts oral cancer progression through EZH2/Wnt/ß-catenin pathway modulation, suggesting that it could be a promising therapeutic approach for OSCC management.

12.
Neurotoxicology ; 105: 21-33, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39209270

RESUMO

Deterioration in the neurocognitive function of cancer patients referred to as "Chemobrain" is a devastating obstacle associated with cyclophosphamide (CYP). CYP is an alkylating agent, clinically utilized as an efficient anticancer and immunosuppressant. Coenzyme Q10 (CoQ10) is a worthwhile micronutrient with diverse biological activities embracing antioxidant, anti-apoptotic, and neuroprotective effects. The current experiment was designed for investigating the neuroprotective capability of CoQ10 versus CYP-elicited chemobrain in rats besides elucidating the causal molecular mechanisms. Male Sprague Dawley rats received CoQ10 (10 mg/kg, orally, once daily, for 10 days) and/or a single dose of CYP (200 mg/kg i.p. on day 7). CoQ10 counteracted CYP-induced cognitive and motor dysfunction as demonstrated by the findings of neurobehavioral tests (passive avoidance, Y maze, locomotion, and rotarod tests). Histopathological analysis further affirmed the neuroprotective abilities of CoQ10. CoQ10 effectually diminished CYP-provoked oxidative injury by restoring the antioxidant activity of catalase (CAT) enzyme while reducing malondialdehyde (MDA) levels. Besides, CoQ10 efficiently repressed CYP-induced neuronal apoptosis by downregulating the expression of Bax and caspase-3 while upregulating the Bcl-2 expression. Moreover, CoQ10 hampered CYP-provoked upregulation in acetylcholinesterase (AChE) activity. Furthermore, CoQ10 considerably augmented hippocampal neurogenesis by elevating the expressions of brain-derived neurotrophic factor (BDNF) and Ki-67. These promising neuroprotective effects can be credited to upregulating Wnt/ß-catenin pathway as evidenced by the elevated expressions of Wnt-3a, ß-catenin, and Phoshpo-glycogen synthase kinase-3 ß (p-GSK-3ß). Collectively, these findings proved the neuroprotective capabilities of CoQ10 against CYP-induced chemobrain through combating oxidative injury, repressing intrinsic apoptosis, boosting neurogenesis, and eventually upregulating the Wnt/ß-catenin pathway.

13.
Int J Oncol ; 65(4)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39155873

RESUMO

Following the publication of the above article, a concerned reader drew to the authors' attention that, among Figs. 1D, 2A and 4B, certain of the control western blots had been re­used in different blots. The authors have retrieved and re­examined their original data, and were able to identify the correct control western blots where the data had been inadvertently duplicated in the affected original figures. The revised versions of Figs. 2 and 4, now featuring the correct control western blots, are shown in the subsequent two pages. The authors regret that the data in question featured in the original article had been re­used, and thank the Editor of International Journal of Oncology for granting them the opportunity to publish this corrigendum. All the authors agree with the publication of this corrigendum; furthermore, they apologize to the readership of the journal for any inconvenience caused. [International Journal of Oncology 46: 1205­1213, 2015; DOI: 10.3892/ijo.2014.2800].

14.
Cancer Invest ; 42(8): 726-739, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39189652

RESUMO

The role of tweety homolog 3 (TTYH3) has been studied in several cancers, including hepatocellular carcinoma, cholangiocarcinoma, and gastric cancer. The results showed that TTYH3 is highly expression in cervical cancer tissues and cells and high TTYH3 expression correlates with poor prognosis in patients with cervical cancer. TTYH3 markedly reduced the apoptosis rate and promoted proliferation, migration, and invasion. Silencing of TTYH3 has been shown to have an inhibitory effect on cervical cancer progression. Moreover, TTYH3 enhanced EMT and activated Wnt/ß-catenin signaling. Furthermore, TTYH3 knockdown inhibited the tumor growth in vivo. In conclusion, TTYH3 promoted cervical cancer progression by activating the Wnt/ß-catenin signaling.


TTYH3 is upregulated in cervical cancer tissue and cells.TTYH3 promotes cervical cancer cell proliferation.TTYH3 inhibits cervical cancer cell apoptosis.TTYH3 induces cervical cancer cell migration and invasion.TTYH3 activates the Wnt signaling in cervical cancer cell.


Assuntos
Apoptose , Proliferação de Células , Progressão da Doença , Neoplasias do Colo do Útero , Via de Sinalização Wnt , Humanos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Feminino , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Camundongos , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal , beta Catenina/metabolismo , beta Catenina/genética , Prognóstico , Pessoa de Meia-Idade , Camundongos Nus
15.
J Transl Med ; 22(1): 639, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978058

RESUMO

BACKGROUND: Breast cancer is one of the most common malignant tumors in women. Cell division cycle associated 5 (CDCA5), a master regulator of sister chromatid cohesion, was reported to be upregulated in several types of cancer. Here, the function and regulation mechanism of CDCA5 in breast cancer were explored. METHODS: CDCA5 expression was identified through immunohistochemistry staining in breast cancer specimens. The correlation between CDCA5 expression with clinicopathological features and prognosis of breast cancer patients was analyzed using a tissue microarray. CDCA5 function in breast cancer was explored in CDCA5-overexpressed/knockdown cells and mice models. Co-IP, ChIP and dual-luciferase reporter assay assays were performed to clarify underlying molecular mechanisms. RESULTS: We found that CDCA5 was expressed at a higher level in breast cancer tissues and cell lines, and overexpression of CDCA5 was significantly associated with poor prognosis of patients with breast cancer. Moreover, CDCA5 knockdown significantly suppressed the proliferation and migration, while promoted apoptosis in vitro. Mechanistically, we revealed that CDCA5 played an important role in promoting the binding of E2F transcription factor 1 (E2F1) to the forkhead box M1 (FOXM1) promoter. Furthermore, the data of in vitro and in vivo revealed that depletion of FOXM1 alleviated the effect of CDCA5 overexpression on breast cancer. Additionally, we revealed that the Wnt/ß-catenin signaling pathway was required for CDCA5 induced progression of breast cancer. CONCLUSIONS: We suggested that CDCA5 promoted progression of breast cancer via CDCA5/FOXM1/Wnt axis, CDCA5 might serve as a novel therapeutic target for breast cancer treatment.


Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Proliferação de Células , Progressão da Doença , Fator de Transcrição E2F1 , Proteína Forkhead Box M1 , Regulação Neoplásica da Expressão Gênica , Ligação Proteica , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Feminino , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Pessoa de Meia-Idade , Apoptose , Prognóstico , Camundongos Nus , Movimento Celular , Regiões Promotoras Genéticas/genética , Camundongos Endogâmicos BALB C , Camundongos , Técnicas de Silenciamento de Genes , Proteínas Adaptadoras de Transdução de Sinal
16.
Cancer Cell Int ; 24(1): 250, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020410

RESUMO

BACKGROUND: Pien Tze Huang (PZH), a traditional Chinese medicine formulation, is recognized for its therapeutic effect on colitis and colorectal cancer. However, its protective role and underlying mechanism in colitis-associated colorectal cancer (CAC) remain to be elucidated. METHODS: A CAC mouse model was established using AOM/DSS. Twenty mice were randomly divided into four groups (n = 5/group): Control, PZH, AOM/DSS, and AOM/DSS + PZH groups. Mice in the PZH and AOM/DSS + PZH group were orally administered PZH (250 mg/kg/d) from the first day of experiment, while the control and AOM/DSS group received an equivalent volume of distilled water. Parameters such as body weight, disease activity index (DAI), colon weight, colon length, colon histomorphology, intestinal tumor formation, serum concentrations of pro-inflammatory cytokines, proliferation and apoptosis in colon tissue were assessed. RNA sequencing was employed to identify the differentially expressed transcripts (DETs) in colonic tissues and related signaling pathways. Wnt/ß-Catenin Pathway-Related genes in colon tissue were detected by QPCR and immunohistochemistry (IHC). RESULTS: PZH significantly attenuated AOM/DSS-induced weight loss, DAI elevation, colonic weight gain, colon shortening, histological damage, and intestinal tumor formation in mice. PZH also notably decreased serum concentration of IL-6, IL-1ß, and TNF-α. Furthermore, PZH inhibited cell proliferation and promote apoptosis in tumor tissues. RNA-seq and KEGG analysis revealed key pathways influenced by PZH, including Wnt/ß-catenin signaling pathway. IHC staining confirmed that PZH suppressed the expression of ß-catenin, cyclin D1 and c-Myc in colonic tissues. CONCLUSIONS: PZH ameliorates AOM/DSS-induced CAC in mice by suppressing the activation of Wnt/ß-catenin signaling pathway.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38967825

RESUMO

Trophinin-associated protein (TROAP), a cytoplasmic protein essential for spindle assembly and centrosome integrity during mitosis, has been reported to serve as an oncogene in various tumors. However, its role in endometrial cancer (EC) progression is still undefined. TROAP expression in EC was analyzed via GEPIA and HPA databases. The diagnostic and prognostic values of TROAP were examined by ROC curve analysis and Kaplan-Meier plotter, respectively. Cell proliferation was evaluated using CCK-8 and EdU incorporation assays. Apoptosis was assessed using TUNEL and flow cytometry assays. GSEA was performed to explore TROAP-related pathways in EC. Expression of TROAP, proliferating cell nuclear antigen (PCNA), Ki-67, cleaved-caspase-3 (cl-caspase-3), caspase-3, active ß-catenin, and total ß-catenin was detected using western blot analysis. TROAP was upregulated in EC. TROAP served as a potential diagnostic and prognostic marker in EC patients. TROAP silencing suppressed proliferation and enhanced apoptosis in EC cells. GSEA revealed that EC and Wnt signaling pathways were related to the expression of TROAP. We further demonstrated that TROAP knockout repressed the Wnt/ß-catenin pathway in EC cells. Moreover, SKL2001, a Wnt/ß-catenin activator, partially abrogated the effects of TROAP silencing on EC cell proliferation and apoptosis, while the signaling inhibitor XAV-939 had the opposite effect. In conclusion, TROAP knockout retarded proliferation and elicited apoptosis in EC cells by blocking the Wnt/ß-catenin pathway.

18.
Sci Rep ; 14(1): 14047, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890371

RESUMO

This study aimed to explore naringin's potential to promote the osteogenic differentiation of MC3T3-E1 under oxidative stress. It delved into Nar's connection with the Wnt/ß-catenin and PI3K/Akt signaling pathways. Initially, 2911 OP-related genes were analyzed, revealing close ties with the PI3K/Akt and Wnt pathways alongside oxidative stress. Nar's potential targets-ESR1, HSP90AA1, and ESR2-were identified through various databases and molecular docking studies confirmed Nar's affinity with ESR1 and HSP90AA1. Experiments established optimal concentrations for Nar and H2O2. H2O2 at 0.3 mmol/L damaged MC3T3-E1 cells, alleviated by 0.1 µmol/L Nar. Successful establishment of oxidative stress models was confirmed by DCFH-DA probe and NO detection. Nar exhibited the ability to enhance osteogenic differentiation, counteracting oxidative damage. It notably increased osteoblast-related protein expression in MC3T3-E1 cells under oxidative stress. The study found Nar's positive influence on GSK-3ß phosphorylation, ß-catenin accumulation, and pathway-related protein expression, all critical in promoting osteogenic differentiation. The research concluded that Nar effectively promotes osteogenic differentiation in MC3T3-E1 cells under oxidative stress. It achieved this by activating the Wnt/ß-catenin and PI3K/Akt pathways, facilitating GSK-3ß phosphorylation, and enhancing ß-catenin accumulation, pivotal in osteogenesis.


Assuntos
Diferenciação Celular , Flavanonas , Osteogênese , Estresse Oxidativo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Via de Sinalização Wnt , beta Catenina , Flavanonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Camundongos , Diferenciação Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Peróxido de Hidrogênio , Linhagem Celular , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos
19.
J Transl Med ; 22(1): 565, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872189

RESUMO

Wnt/ß-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Via de Sinalização Wnt , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Animais , beta Catenina/metabolismo
20.
J Orthop Surg Res ; 19(1): 352, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877549

RESUMO

PURPOSE: Facet joint degeneration (FJD) is a major cause of low back pain. Parathyroid hormone (PTH) (1-34) is commonly used to treat osteoporosis. However, little is known about its effects on FJD induced by estrogen deficiency. This study aims to investigate the effects of PTH (1-34) on FJD induced by estrogen deficiency and the underlying pathogenesis of the disease. METHODS: Forty 3-month-old female Sprague-Dawley rats were randomly divided into four groups: 30 received bilateral ovariectomy (OVX) followed by 12 weeks of treatment with normal saline, PTH (1-34) or 17ß-estradiol (E2), and 10 received sham surgery followed by administration of normal saline. Status and Wnt/ß-catenin signaling activity in the cartilage and subchondral bone of the L4-L5 FJs and serum biomarkers were analyzed. RESULTS: Administration of PTH (1-34) and E2 ameliorated cartilage lesions, and significantly decreased MMP-13 and caspase-3 levels and chondrocyte apoptosis. PTH (1-34) but not E2 significantly increased cartilage thickness, number of chondrocytes, and the expression of aggrecan. PTH (1-34) significantly improved microarchitecture parameters of subchondral bone, increased the expression of collagen I and osteocalcin, and decreased RANKL/OPG ratio. E2 treatment significantly increased the OPG level and decreased the RANKL/OPG ratio in the subchondral bone of ovariectomized rats, but it did not significantly improve the microarchitecture parameters of subchondral bone. Wnt3a and ß-catenin expression was significantly reduced in the articular cartilage and subchondral bone in OVX rats, but PTH (1-34) could increase the expression of these proteins. E2 significantly increased the activity of Wnt/ß-catenin pathway only in cartilage, but not in subchondral bone. The restoration of Wnt/ß-catenin signaling had an obvious correlation with the improvement of some parameters associated with the FJs status. CONCLUSION: Wnt/ß-catenin signaling may be a potential therapeutic target for FJD induced by estrogen deficiency. PTH (1-34) is effective in treating this disease with better efficacy than 17ß-estradiol, and the efficacy may be attributed to its restoration of Wnt/ß-catenin signaling.


Assuntos
Vértebras Lombares , Ovariectomia , Hormônio Paratireóideo , Ratos Sprague-Dawley , Via de Sinalização Wnt , Articulação Zigapofisária , Animais , Feminino , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Articulação Zigapofisária/efeitos dos fármacos , Ratos , Estradiol/farmacologia , Estradiol/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA