Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.773
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Heart Lung ; 69: 71-77, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357290

RESUMO

BACKGROUND: Many studies have reported correlations between diet-derived antioxidants and asthma. Nevertheless, the probable association between diet-derived antioxidants and asthma remains a matter of discussion. OBJECTIVES: We explored the association between Diet-Derived Antioxidants and Asthma. METHODS: We used data from the 2003-2018 National Health and Nutrition Examination Survey (NHANES) to assess the relationship between diet-derived antioxidants and asthma and a two-sample Mendelian randomization (MR) study was employed to assess the causal associations between lifelong diet-derived circulating antioxidant levels and the risk of asthma. RESULTS: Participants with asthma were more likely to be young-to-middle-aged females, smokers, have lower income, belong to non-Hispanic Black ethnicity, have a high school education, have a BMI over 30. The dietary intakes of vitamin C, zinc, selenium, and CDAI were negatively associated with asthma risk (Vitamin C: OR = 0.76, 95 % CI: 0.63-0.91, P = 0.032; Zinc: OR = 0.86, 95 % CI: 0.75-1.00, P = 0.046; Selenium: OR = 0.85, 95 % CI: 0.73-0.98, P = 0.004; CDAI: OR = 0.80, 95 % CI: 0.65-0.97, P = 0.027). There was a significant nonlinear relationship between the dietary intake of vitamin C, zinc, and selenium and the risk of asthma (Pnon-linear < 0.05). However, no causal link between circulating antioxidants and asthma risk was found in the MR analysis. Sensitivity analyses supported the robustness of the results. CONCLUSION: In the observational study, we identified a negative correlation between the dietary intake of vitamin C, zinc, selenium, and CDAI and asthma risk, while our MR analyses did not find evidence to support a causal relationship between diet-derived antioxidants and the risk of asthma.

2.
J Sci Food Agric ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258508

RESUMO

Increasing global palm oil production yields a valuable palm fatty acid distillate (PFAD) - a rich vitamin E (Vit-E) source and multifunctional ingredient in the food agro-industry - that can be utilized to achieve sustainability. This article reviews trends in the use and role of PFAD and its Vit-E in the food sector and proposes an integrated agro-industrial concept toward sustainability. Vit-E can be separated from PFAD with diverse and impactful pharmaceutical activities, including antioxidant, anti-inflammatory, anticancer and anti-ultraviolet effects. Based on in vivo experimental tests, PFAD and Vit-E supplementation can enhance the productivity and quality of livestock-based food products. PFAD is a plasticizer and antistatic packaging material in food packaging systems, and its derivatives can be used as food additives. Meanwhile, the Vit-E molecule in packaging can extend food shelf life by maintaining color stability, reducing lipid oxidation and rancidity, adding antimicrobial properties, and influencing changes in packaging properties such as water vapor, tensile strength, melting point and other physical properties. Toward sustainability, an integrated agro-industrial design has been proposed to implement clean production, increase the added value of palm oil industry residues, minimize environmental risks and increase profits to achieve long-term social welfare. In conclusion, PFAD residues and their Vit-E content have shown broad benefits in the food sector and prospects toward sustainability. © 2024 Society of Chemical Industry.

3.
Fitoterapia ; 179: 106207, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39255909

RESUMO

The members of the genus Centaurea have a great interest in pharmaceutical and nutraceutical fields due to their biological potential. Based on this information, we aimed to evaluate the biological properties (antioxidant, enzyme inhibition and cytotoxicity) and chemical profile of the extract of Centaurea stapfiana, an unstudied species. The highest total phenolic content was found in the ethanol/water extract with 32.17 mg GAE/g. A total of 102 of them were identified by HPLC-ESI-QTOF-MS analysis. These compounds were mainly hydroxybenzoic acid and hydroxycinnamic acid as well as flavonoids. In the antioxidant tests, the ethanol/water extract had the best free radical scavenging and reducing ability. However, in the enzyme inhibition test, the ethanol extract was the most active. The extracts were also tested on two tumour cell lines (RAW 264.7 and HepG2) and one non-tumour cell line (S17). The ethanol extract showed the promising effect on HepG2 (cell viability: 28.6 % at 50 g/ml). Furthermore, we examined the interactions between the compounds and enzymatic and cellular targets. A good interaction was found between quercetin-3-xylosyl-(1- > 6)-glucoside and iNOS. In summary, our results suggest that C. stapfiana can be considered as a versatile raw material for the development of health-promoting applications in the pharmaceutical and cosmeceutical fields.

4.
Heliyon ; 10(18): e37600, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309964

RESUMO

Introduction: During processing, a large amount of by-products is produced from tamarillo fruits in the form of stalks, outer skins, and pomace (residual seeds and inner skins). This material is a renewable source of bioactive compounds with high economic value and positive effects on human health. Previous reviews have focused on the ethnobotanical, traditional uses, and phytochemistry of the tamarillo fruit. This report aims to compile production and cultivation data, as well as the valorization of this agro-industrial residue, green extraction methods used for extracting the bioactive compounds, and their biological activity. Method: In this study, a literature search was conducted in five scientific databases: Web of Science, ScienceDirect, Scopus, PubMed, and Google Scholar to retrieve research published in English, Spanish, or Portuguese between 2009 and 2024, which mentions the composition and extraction methods of bioactive compounds from tamarillo wastes and by-products and the health benefits associated with these compounds. The data extracted was compiled and shown in this scoping review. Results: Tamarillo wastes and by products have a rich nutritional and bioactive composition, including high protein, vitamins A and C, minerals, dietary fiber, sugars, terpenes, flavonoids, carotenoids, anthocyanins, and other phytochemicals. Green methods have been effective, yielding high amounts of these compounds while preserving their integrity. Natural polyphenols have shown antioxidant, anticholinesterase, anti-inflammatory, antimicrobial, anti-diabetic, and anti-obesity properties. The antioxidant fibers, mucilage, and pectin of the pomace contribute to improved intestinal health. Conclusion: Therefore, these wastes and by-products have potential uses as natural colorant, antioxidants, supplements, functional foods, active biobased films, and in pharmaceutical and cosmeceutical sectors due to their effective bioactive molecules. Future research should focus on the use of tamarillo by-products as a source of functional ingredients in several other formulations that are still little explored, as well as their use as a natural colorant and antioxidant. More studies are necessary on the composition-activity relationship, physiological mechanisms, and clinical response.

5.
Front Nutr ; 11: 1453147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39315012

RESUMO

Background: Numerous observational studies and randomized controlled trials have recently revealed the associations between circulating antioxidants and the risk of endometriosis, while the underlying causal relationship remains unclear. This study aimed to investigate the causal association between genetically determined circulating antioxidants and the risk of endometriosis using Mendelian randomization (MR). Methods: A two-sample MR analysis was conducted using publicly available summary data from genome-wide association studies (GWAS) to investigate the causal impact of genetically determined absolute circulating antioxidants (such as ascorbate, retinol, ß-carotene, and lycopene) and their metabolites (including α-and γ-tocopherol, ascorbate, and retinol) on the risk of endometriosis. The study used inverse variance weighted (IVW) or Wald ratio analyses as the primary estimation method and also conducted sensitivity analyses to assess heterogeneity and pleiotropy. Results: No significant causality was observed for genetically determined circulating antioxidants and the risk of endometriosis. The pooled odds ratios (ORs) for absolute circulating antioxidants were 0.62 (95% CI: 0.32-1.18, retinol), 0.95 (95% CI: 0.79-1.15, ß-carotene), 1.01 (95% CI: 0.95-1.08, lycopene), and 1.00 (95% CI: 0.99-1.02, ascorbate, expressed as a Wald ratio). The pooled ORs indicating the EM risk per unit increase in circulating antioxidant metabolites were 1.04 (95% CI: 0.82-1.33, γ-tocopherol), 0.91 (95% CI: 0.57-1.46, α-tocopherol), 1.03 (95% CI: 0.99-1.07, retinol), and 0.96 (95% CI: 0.87-1.06, ascorbate). Conclusion: Our study demonstrated that increased levels of diet-derived circulating antioxidants were not significantly associated with a reduced risk of endometriosis.

6.
Nitric Oxide ; 152: 31-47, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299646

RESUMO

The biochemical interplay between antioxidants and pro-oxidants maintains the redox homeostatic balance of the cell, which, when perturbed to moderate or high extents, has been implicated in the onset and/or progression of chronic diseases such as diabetes mellitus, cancer, and neurodegenerative diseases. Thioredoxin, glutaredoxin, and lipoic acid-like thiol oxidoreductase systems constitute a unique ensemble of robust cellular antioxidant defenses, owing to their indispensable roles as S-denitrosylases, S-deglutathionylases, and disulfide reductants in maintaining a reduced free thiol state with biological relevance. Thus, in cells subjected to nitrosative stress, cellular antioxidants will S-denitrosylate their cognate S-nitrosoprotein substrates, rather than participate in trans-S-nitrosylation via protein-protein interactions. Researchers have been at the forefront of vaguely establishing the concept of 'transnitrosylation' and its influence on pathophysiology with experimental evidence from in vitro studies that lack proper biochemical logic. The suggestive and reiterative use of antioxidants as transnitrosylases in the scientific literature leaves us on a cliffhanger with several open-ended questions that prompted us to 'hunt' for scientific logic behind the trans-S-nitrosylation chemistry. Given the gravity of the situation and to look at the bigger picture of 'trans-S-nitrosylation', we aim to present a novel attempt at justifying the hesitance in accepting antioxidants as capable of transnitrosylating their cognate protein partners and reflecting on the need to resolve the controversy that would be crucial from the perspective of understanding therapeutic outcomes involving such cellular antioxidants in disease pathogenesis. Further characterization is required to identify the regulatory mechanisms or conditions where an antioxidant like Trx, Grx, or DJ-1 can act as a cellular transnitrosylase.

7.
Food Chem ; 463(Pt 2): 141212, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39303468

RESUMO

This study focuses on the extraction of bioactive compounds from Quercus sideroxyla Bonpl., leaves which have been shown to possess health benefits. The extraction process was done using pressurized liquid extraction (PLE), which is efficient and preserves heat-sensitive compounds. Key factors in the process included the choice of solvents, pressure, temperature, and extraction duration. The Hansen solubility parameters analysis aided in selecting effective solvents, such as ethanol and benzyl alcohol. The extracts were found to contain phenolic compounds, flavonoids, and polyphenols with antioxidant properties. The UPLC-PDA-ESI-QqQ was employed for the precise identification and quantification of these compounds, demonstrating superior extraction of quinic acid and gallic acid at elevated temperatures. Notably, the extracts obtained through PLE exhibited significant inhibitory activity of the MAO-A enzyme, linked to neuronal and cognitive health, suggesting potential benefits in these areas.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39305632

RESUMO

Hypericum japonicum is a traditional folk medicine with various bioactivities such as hepatoprotective, antioxidant, and anti-tumorous. The antioxidant effect of H. japonicum is one of the most prominent effects due to its responsibility for many of its activities. To clarify active natural substance, the antioxidant properties of H. japonicum were preliminarily assessed by ferric reducing-antioxidant power (FRAP), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and Oxygen radical absorbance capacity (ORAC), as well as superoxide dismutase (SOD). Then, a straightforward and effective method named online liquid extraction-high performance liquid chromatography combined with ABTS antioxidant assay and mass spectrometry (OLE-HPLC-ABTS/Q-TOF-MS) was developed to swiftly and directly discover the antioxidants in H. japonicum. Using mobile phase as extraction and separation reagent, coupled with online activity analysis and compounds identification by high-resolution MS, the online system enables rapid screening of natural antioxidant bioactives from complex mixture. By using it, a total of 9 compounds including flavonoids and phenolic acids characterized by retention time, precise mass, and fragmentation ions in MS/MS spectra showed antioxidant action. Finally, the antioxidant and SOD activity of main found active compounds were validated by in vitro experiment assay and molecular docking. In summary, these results suggested that H. japonicum could be considered as a potential source of natural antioxidants, and the online integrated system might become a promising candidate for the natural antioxidants discovery in the future.

9.
Food Chem X ; 23: 101771, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39280214

RESUMO

Jujube, a fruit rich in phenolic compounds, is renowned for its potential health benefits, including lowering blood pressure, and exhibiting anti-cancer, and anti-inflammatory effects, attributed to its potent antioxidant properties. However, the application of these phenolics in food products is limited by their instability and low concentration in plant tissues. This study investigates the nanoencapsulation of jujube extract (JE) using nanoliposomes (NLs) coated with pea protein isolate (PPI) to enhance stability and bioavailability. NLs were prepared via the ethanol injection method and optimized through comprehensive characterization, including dynamic light scattering, polydispersity index, and zeta potential. The encapsulated JE showed improved antioxidant activity and controlled release profiles in simulated gastric fluid and simulated intestinal fluid. This research highlights the potential of PPI-coated NLs in stabilizing and enhancing the bioactivity of jujube phenolics, providing a promising approach for their integration into functional foods.

10.
Nutrients ; 16(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39275182

RESUMO

Prostate cancer is the leading cause of cancer death in men. Some studies suggest that selenium Se (+4) may help prevent prostate cancer. Certain forms of Se (+4), such as Selol, have shown anticancer activity with demonstrated pro-oxidative effects, which can lead to cellular damage and cell death, making them potential candidates for cancer therapy. Our recent study in healthy mice found that Selol changes the oxidative-antioxidative status in blood and tissue. However, there are no data on the effect of Selol in mice with tumors, considering that the tumor itself influences this balance. This research investigated the impact of Selol on tumor morphology and oxidative-antioxidative status in blood and tumors, which may be crucial for the formulation's effectiveness. Our study was conducted on healthy and tumor-bearing animal models, which were either administered Selol or not. We determined antioxidant enzyme activities (Se-GPx, GPx, GST, and TrxR) spectrophotometrically in blood and the tumor. Furthermore, we measured plasma prostate-specific antigen (PSA) levels, plasma and tumor malondialdehyde (MDA) concentration as a biomarker of oxidative stress, selenium (Se) concentrations and the tumor ORAC value. Additionally, we assessed the impact of Selol on tumor morphology and the expression of p53, BCL2, and Ki-67. The results indicate that treatment with Selol influences the morphology of tumor cells, indicating a potential role in inducing cell death through necrosis. Long-term supplementation with Selol increased antioxidant enzyme activity in healthy animals and triggered oxidative stress in cancer cells, activating their antioxidant defense mechanisms. This research pathway shows promise in understanding the anticancer effects of Selol. Selol appears to increase the breakdown of cancer cells more effectively in small tumors than in larger ones. In advanced tumors, it may accelerate tumor growth if used as monotherapy. Therefore, further studies are necessary to evaluate its efficacy either in combination therapy or for the prevention of recurrence.


Assuntos
Antioxidantes , Estresse Oxidativo , Neoplasias da Próstata , Masculino , Animais , Estresse Oxidativo/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Camundongos , Antioxidantes/farmacologia , Selênio/farmacologia , Modelos Animais de Doenças , Compostos de Selênio/farmacologia , Malondialdeído/metabolismo , Antígeno Prostático Específico/sangue , Linhagem Celular Tumoral , Glutationa Peroxidase/metabolismo , Proteína Supressora de Tumor p53/metabolismo
11.
Mar Environ Res ; 202: 106747, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39293272

RESUMO

Microplastics (MP) are omnipresent in aquaculture and can induce several toxic effects, mainly oxidative stress. Therefore, alternatives to minimize these effects are welcome. In this study, chitosan (1 and 3 g/kg) was supplemented through the feed of farmed shrimp P. vannamei for 30 days. After this period, the shrimp were exposed to MP (0.5 mg/L) for 7 days. The results showed the presence of MP in hepatopancreas, gills and muscle. Hepatopancreas morphological alterations, as well as lipid peroxidation, a decrease in GSH level, and an increase in SOD activity indicated an oxidative stress that was reversed by chitosan. The muscle was also affected by MP, showing decreased CAT activity and increased SOD activity, though no lipid peroxidation was observed. In muscle, chitosan reversed the SOD increase to basal activity. The results obtained showed that chitosan was more effective against oxidative stress than in preventing accumulation and histological damage.

12.
Int J Environ Health Res ; : 1-13, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39290154

RESUMO

The present study evaluated a range of biological activities of Rubus idaeus leaves, often considered as by-products, in relation to hyperglycemia. The antiglycation potential of this plant has not been previously reported. In this research, the methanolic leaf extract of R. idaeus was assessed for its antioxidant, enzyme inhibitory and antiglycation activities. The bioactive compounds present in the extract were screened using LC-MS/MS. Enzyme inhibitory activities were tested on α-glucosidase and α-amylase, and the antiglycation effect was investigated using BSA-fructose model. The methanolic extract showed a high polyphenolic contents (176.26 ± 2.26 mg GAE/g) and important IC50 values for DPPH (34.79 ± 2.40 µg/mL) and ABTS radical scavenging activities (49.75 ± 2.47 µg/mL). In addition, the plant leaf extract significantly inhibited hyperglycemia-related enzymes in a dose-dependent manner and demonstrated a reduction in fluorescent AGEs, fructosamine, and dicarbonyl compounds. Therefore, R. idaeus cv Maravilla could be an effective source of therapeutics for improving the healthcare outcomes of diabetic patients.

13.
Front Nutr ; 11: 1465486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346651

RESUMO

Introduction: This research utilized data from the NHANES 2011-2018 study to investigate the connection between the Oxidative Balance Score (OBS) and muscular dystrophies. Methods: This study is a cross-sectional, observational, secondary analysis utilizing data from the NHANES 2011-2018. Spearman's correlation, chi-square tests, logistic regression, and restricted cubic spline plots were employed for statistical analyses. Results: This association remained significant after adjustment for various demographic and medical history factors (For continuous OBS: crude model, odds ratio [OR], 0.95, 95% confidence interval [CI:] 0.94, 0.97, p < 0.001; Model 1, OR, 0.94, 95% CI: 0.92, 0.96, p < 0.001; Model 2, OR, 0.95, 95% CI: 0.93, 0.97, p < 0.001; Model 3, OR, 0.95, 95% CI: 0.93, 0.97, p < 0.001; In quartile Q4 vs. Q1: Crude model, OR, 0. 42, 95% CI: 0.26, 0.66, p < 0.001; Model 1, OR, 0.33, 95% CI: 0.21, 0.52, p < 0.001; Model 2, OR, 0.37, 95% CI: 0.23, 0.58, p < 0.001; Model 3, OR, 0.38, 95% CI: 0.23, 0.60, p < 0.001). Restricted cubic spline (RCS) analysis further supported this inverse relationship, suggesting that OBS values above 10 may confer protection against muscular dystrophies (p for overall <0.001, p for non-linear = 0.536). However, the relationship between OBS and muscular dystrophies was not statistically significant in the subgroups with education level below high school, presence of cancer, or diabetes (p = 0.735, p = 0.574, p = 0.409, respectively). Conclusion: The study found a significant inverse correlation between the OBS and muscular dystrophies, suggesting that individuals with higher oxidative balance had a lower risk of developing muscular dystrophies. The study highlights the potential role of oxidative balance in muscular dystrophies prevention and management.

14.
Front Cell Dev Biol ; 12: 1452824, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39324070

RESUMO

Ferroptosis, a form of regulated cell death mediated by lipid peroxidation (LPO), has become the subject of intense research due to its potential therapeutic applications in cancer chemotherapy as well as its pathophysiological role in ischemic organ injury. The role of mitochondrial lipid peroxidation (LPO) in ferroptosis remains poorly understood. We show that supplementation of exogenous iron in the form of ferric ammonium citrate (FAC) in combination with buthionine sulfoximine (BSO, an inhibitor of glutathione biosynthesis) induces mitochondrial lipid peroxidation that precedes ferroptosis in normal human fibroblasts. The mitochondrial-targeted antioxidant SkQ1 and the redox mediator methylene blue, which inhibits the production of reactive oxygen species (ROS) in complex I of the mitochondrial electron transport chain, prevent both mitochondrial lipid peroxidation and ferroptosis, but do not affect the cytosolic ROS accumulation. These data indicate that mitochondrial lipid peroxidation is required for ferroptosis induced by exogenous iron. FAC in the absence of BSO stimulates mitochondrial peroxidation without reducing cell viability. Glutathione depletion by BSO does not affect FAC-induced mitochondrial LPO but strongly stimulates the accumulation of ROS in the cytosol. These data allow us to conclude that mitochondrial LPO is not sufficient for ferroptosis and that cytosolic ROS mediates additional oxidative events that stimulate ferroptosis in conjunction with mitochondrial LPO.

15.
Antioxidants (Basel) ; 13(9)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39334687

RESUMO

Male fertility is strongly affected by the overexpression of free radicals induced by heavy metals. The aim of this study was to evaluate the potential antioxidant, anti-inflammatory, and gonado-protective effects of natural compounds. Biochemical and morphological assays were performed on male albino rats divided into five groups: a control group (water only), a group orally exposed to a metal mixture of Pb-Cd-Hg-As alone and three groups co-administered the metal mixture and an aqueous extract of the Nigerian medicinal plant, Anonychium africanum (Prosopis africana, PA), at three different concentrations (500, 1000, and 1500 mg/kg) for 60 days. The metal mixture induced a significant rise in testicular weight, metal bioaccumulation, oxidative stress, and pro-inflammatory and apoptotic markers, while the semen analysis indicated a lower viability and a decrease in normal sperm count, and plasma reproductive hormones showed a significant variation. Parallel phytochemical investigations showed that PA has bioactive compounds like phlobatannins, flavonoids, polyphenols, tannins, saponins, steroids, and alkaloids, which are protective against oxidative injury in neural tissues. Indeed, the presence of PA co-administered with the metal mixture mitigated the toxic metals' impact, which was determined by observing the oxido-inflammatory response via nuclear factor erythroid 2-related factor 2, thus boosting male reproductive health.

16.
Antioxidants (Basel) ; 13(9)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39334727

RESUMO

Doxorubicin (DOX) is an effective anticancer drug, but its use is limited by dose-dependent heart toxicity. Quercetin is a natural antioxidant frequently studied for its beneficial properties. Moreover, a wide range of dietary supplements are available for human use. This in vivo study aimed to explore the potential cardioprotective effects of quercetin in chronic DOX treatment. A total of 32 Wistar rats were randomly divided into four groups: control, DOX, DOX/Q-50, and DOX/Q-100, treated with saline, 2.5 mg/kg body-weight DOX, 2.5 mg/kg body-weight DOX + 50 mg quercetin, and 2.5 mg/kg body-weight DOX + 100 mg quercetin, respectively, for two weeks. Rats were monitored using cardiac ultrasound (US) and markers for cardiac injury. Oxidative damage and ultrastructural changes in the heart were investigated. Chronic DOX treatment led to a decline in cardiac function and elevated values of NT pro-BNP, troponin I, and CK-MB. Quercetin treatment slightly improved certain US parameters, and normalized serum NT pro-BNP levels. Furthermore, DOX-induced SOD1 depletion with consequent Nrf2 activation and DNA damage as shown by an increase in γH2AX and 8HOdG. Quercetin treatment alleviated these alterations. Oral administration of quercetin alleviated serum markers associated with DOX-induced cardiotoxicity. Furthermore, it exhibited a favorable impact on the cardiac US parameters. This suggests that quercetin may have potential cardioprotective properties.

17.
Antioxidants (Basel) ; 13(9)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39334762

RESUMO

BACKGROUND: Oxidative stress, associated with diseases and aging, underscores the therapeutic potential of natural antioxidants. Flavonoids, known for scavenging free radicals and modulating cell signaling, offer significant health benefits and contribute to longevity. To explore their in vivo effects, we investigated the antioxidant activity of quercetin, apigenin, luteolin, naringenin, and genistein, using Saccharomyces cerevisiae as a model organism. METHODS: We performed viability assays to evaluate the effects of these compounds on cell growth, both in the presence and absence of H2O2. Additional assays, including spot assays, drug drop tests, and colony-forming unit assays, were also conducted. RESULTS: Viability assays indicated that the tested compounds are non-toxic. H2O2 reduced yeast viability, but flavonoid-treated cells showed increased resistance, confirming their protective effect. Polyphenols scavenged intracellular reactive oxygen species (ROS) and protected cells from oxidative damage. Investigations into defense systems revealed that H2O2 induced catalase activity and oxidized glutathione accumulation, both of which were reduced by polyphenol treatment. CONCLUSIONS: The tested natural compounds enhance cell viability and reduce oxidative damage by scavenging ROS and modulating antioxidant defenses. These results suggest their potential as supplements and pave the way for further research.

18.
Antioxidants (Basel) ; 13(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39334768

RESUMO

Oxidative stress is the result of the imbalance between reactive oxygen and nitrogen species (RONS), which are produced by several endogenous and exogenous processes, and antioxidant defenses consisting of exogenous and endogenous molecules that protect biological systems from free radical toxicity. Oxidative stress is a major factor in the aging process, contributing to the accumulation of cellular damage over time. Oxidative damage to cellular biomolecules, leads to DNA alterations, lipid peroxidation, protein oxidation, and mitochondrial dysfunction resulting in cellular senescence, immune system and tissue dysfunctions, and increased susceptibility to age-related pathologies, such as inflammatory disorders, cardiovascular and neurodegenerative diseases, diabetes, and cancer. Oxidative stress-driven DNA damage and mutations, or methylation and histone modification, which alter gene expression, are key determinants of tumor initiation, angiogenesis, metastasis, and therapy resistance. Accumulation of genetic and epigenetic damage, to which oxidative stress contributes, eventually leads to unrestrained cell proliferation, the inhibition of cell differentiation, and the evasion of cell death, providing favorable conditions for tumorigenesis. Colorectal, breast, lung, prostate, and skin cancers are the most frequent aging-associated malignancies, and oxidative stress is implicated in their pathogenesis and biological behavior. Our aim is to shed light on the molecular and cellular mechanisms that link oxidative stress, aging, and cancers, highlighting the impact of both RONS and antioxidants, provided by diet and exercise, on cellular senescence, immunity, and development of an antitumor response. The dual role of ROS as physiological regulators of cell signaling responsible for cell damage and diseases, as well as its use for anti-tumor therapeutic purposes, will also be discussed. Managing oxidative stress is crucial for promoting healthy aging and reducing the risk of age-related tumors.

19.
Antioxidants (Basel) ; 13(9)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39334793

RESUMO

Studying the effects of genetic and environmental factors on plant biochemical components helps in selecting the best varieties for the food industry and breeding programs. This study analyzed the nutritional qualities, secondary metabolites, and antioxidant activities of 14 field-grown yardlong beans accessions and how they are affected by differences in pod and seed colors. The analyzed parameters varied significantly among the yardlong bean accessions, with variances ranging from 1.36% in total unsaturated fatty acid content to 51.01% in DPPH• scavenging activity. Accessions YLB4, YLB7, and YLB14 performed the best, showing antioxidant indices of 100.00, 70.10, and 67.88%, respectively. Among these, YLB14 showed a characteristic property, having the highest levels of vitamin C (2.62 mg/g) and omega-6 to omega-3 ratio (2.67). It also had the second highest dietary fiber (21.45%), stearic acid (4.44%), and linoleic acid (40.39%) contents, as well as the lowest thrombogenicity index (0.38). Although cluster and principal component analyses did not clearly separate the yardlong beans based on pod or seed color, analysis of variance revealed that these factors and their interaction had significant effects on total phenol, DPPH• scavenging activity, ABTS•+ scavenging activity, and reducing power. In contrast, the nutritional parameters, except for dietary fiber, were not significantly affected by pod and seed color variations. Therefore, consuming yardlong beans of different pod and seed colors may not affect the overall nutrient intake. In general, this study identified yardlong beans with green pods and black seeds as good sources of antioxidants. Accordingly, further metabolomics and genomics studies are suggested to thoroughly explore their characteristics.

20.
Antioxidants (Basel) ; 13(9)2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39334802

RESUMO

Anthocyanins, a class of flavonoid compounds responsible for the vibrant colors of many fruits and vegetables, have received considerable attention in recent years due to their potential health benefits. This review, focusing on evidence from both in vitro and in vivo studies, provides a comprehensive overview of the current state of knowledge regarding the health-promoting properties of anthocyanins. The chemical structure and diversity of anthocyanins, their bioavailability, and their mechanisms of action at the cellular and molecular level are examined. Research on the antioxidant, anti-inflammatory, anticancer, and neuroprotective effects of anthocyanins is critically reviewed. Special emphasis is placed on the role of anthocyanins in the prevention and treatment of chronic diseases such as cardiovascular diseases, diabetes, and neurodegenerative diseases. This review also discusses the challenges of translating in vitro findings to in vivo and highlights the importance of considering dose, bioavailability, and metabolism when assessing the therapeutic potential of anthocyanins. This review concludes with the identification of gaps in current research and suggestions for future directions for anthocyanin studies, including the need for more long-term clinical trials and investigations into potential synergistic effects with other phytochemicals. This comprehensive analysis highlights the promising role of anthocyanins in promoting human health and provides valuable insights for researchers, health professionals, and the nutraceutical industry. This study provides new insights, as it comprehensively investigates the dual anti-inflammatory and anticancer effects of anthocyanins in both in vitro and in vivo models. By uncovering the biological properties of anthocyanins from a variety of natural sources, this research not only expands our knowledge of the action of these compounds at the cellular level, but also enhances their clinical relevance through in vivo validation. Furthermore, the innovative use of anthocyanins may lead to important advances in their therapeutic application in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA