Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39382384

RESUMO

CONTEXT: Some children with diazoxide-unresponsive congenital hyperinsulinism (HI) lack any detectable disease-causing mutation in peripheral blood DNA. OBJECTIVE: To examine whether somatic post-zygotic mutations of known HI genes are responsible for disease in children with diazoxide-unresponsive HI requiring surgery with histology not classified as focal or Localized Islet Nuclear Enlargement (LINE), and without detectable mutations by standard genetic testing of peripheral blood DNA. METHODS: Next-generation sequencing (NGS) was performed on specimens of pancreas from 10 children with diazoxide-unresponsive HI. RESULTS: Four unique GCK mutations were identified at low levels of mosaicism ranging from 4.4-10.1% in pancreatic DNA from five of these 10 children. The GCK mutations were not detectable in peripheral blood DNA by NGS in three cases from which peripheral blood DNA was available for testing. All four GCK mutations have been previously published as activating HI mutations. The histology was consistent with diffuse-HI in four of the five cases with mosaic GCK mutations. In one of these, hypomethylation of IC2 on chromosome 11p was identified in pancreatic and peripheral blood DNA. Histology of the fifth case revealed minor islet abnormalities suggestive of Beckwith Wiedemann Spectrum (BWSp) although molecular analysis for 11pUPD was negative in pancreas. CONCLUSION: These results indicate that post-zygotic somatic GCK mutations are responsible for some cases of non-focal diazoxide-unresponsive hyperinsulinism.

2.
BMC Med ; 22(1): 259, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902652

RESUMO

BACKGROUND: IMCY-0098, a synthetic peptide developed to halt disease progression via elimination of key immune cells in the autoimmune cascade, has shown a promising safety profile for the treatment of type 1 diabetes (T1D) in a recent phase 1b trial. This exploratory analysis of data from that trial aimed to identify the patient biomarkers at baseline associated with a positive response to treatment and examined the associations between immune response parameters and clinical efficacy endpoints (as surrogates for mechanism of action endpoints) using an artificial intelligence-based approach of unsupervised explainable machine learning. METHODS: We conducted an exploratory analysis of data from a phase 1b, dose-escalation, randomized, placebo-controlled study of IMCY-0098 in patients with recent-onset T1D. Here, a panel of markers of T cell activation, memory T cells, and effector T cell response were analyzed via descriptive statistics. Artificial intelligence-based analyses of associations between all variables, including immune responses and clinical responses, were performed using the Knowledge Extraction and Management (KEM®) v 3.6.2 analytical platform. RESULTS: The relationship between all available patient data was investigated using unsupervised machine learning implemented in the KEM® environment. Of 15 associations found for the dose C group (450 µg subcutaneously followed by 3 × 225 µg subcutaneously), seven involved human leukocyte antigen (HLA) type, all of which identified improvement/absence of worsening of disease parameters in DR4+ patients and worsening/absence of improvement in DR4- patients. This association with DR4+ and non-DR3 was confirmed using the endpoints normalized area under the curve C-peptide from mixed meal tolerance tests where presence of DR4 HLA haplotype was associated with an improvement in both endpoints. Exploratory immune analysis showed that IMCY-0098 dose B (150 µg subcutaneously followed by 3 × 75 µg subcutaneously) and dose C led to an increase in presumed/potentially protective antigen-specific cytolytic CD4+ T cells and a decrease in pathogenic CD8+ T cells, consistent with the expected mechanism of action of IMCY-0098. The analysis identified significant associations between immune and clinical responses to IMCY-0098. CONCLUSIONS: Promising preliminary efficacy results support the design of a phase 2 study of IMCY-0098 in patients with recent-onset T1D. TRIAL REGISTRATION: ClinicalTrials.gov NCT03272269; EudraCT: 2016-003514-27.


Assuntos
Biomarcadores , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/imunologia , Método Duplo-Cego , Masculino , Feminino , Adulto , Imunoterapia/métodos , Adulto Jovem , Adolescente , Resultado do Tratamento , Peptídeos/administração & dosagem , Peptídeos/uso terapêutico , Pessoa de Meia-Idade
3.
Pathol Int ; 74(8): 438-453, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38888200

RESUMO

Currently, there are more than 10 million patients with diabetes mellitus in Japan. Therefore, the need to explore the pathogenesis of diabetes and the complications leading to its cure is becoming increasingly urgent. Pathological examination of pancreatic tissues from patients with type 2 diabetes reveals a decrease in the volume of beta cells because of a combination of various stresses. In human type 2 diabetes, islet amyloid deposition is a unique pathological change characterized by proinflammatory macrophage (M1) infiltration into the islets. The pathological changes in the pancreas with islet amyloid were different according to clinical factors, which suggests that type 2 diabetes can be further subclassified based on islet pathology. On the other hand, diabetic peripheral neuropathy is the most frequent diabetic complication. In early diabetic peripheral neuropathy, M1 infiltration in the sciatic nerve evokes oxidative stress or attenuates retrograde axonal transport, as clearly demonstrated by in vitro live imaging. Furthermore, islet parasympathetic nerve density and beta cell volume were inversely correlated in type 2 diabetic Goto-Kakizaki rats, suggesting that diabetic peripheral neuropathy itself may contribute to the decrease in beta cell volume. These findings suggest that the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy may be interrelated.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/etiologia , Humanos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Ratos , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/patologia , Estresse Oxidativo , Pâncreas/patologia
4.
Biogerontology ; 25(5): 819-836, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38748336

RESUMO

An over-activation of the mechanistic target of rapamycin (mTOR) pathway promotes senescence and age-related diseases like type 2 diabetes. Besides, the regenerative potential of pancreatic islets deteriorates with aging. Nevertheless, the role of mTOR on senescence promoted by metabolic stress in islet cells as well as its relevance for electrophysiological aspects is not yet known. Here, we investigated whether parameters suggested to be indicative for senescence are induced in vitro in mouse islet cells by glucotoxicity and if mTOR inhibition plays a protective role against this. Islet cells exhibit a significant increase (~ 76%) in senescence-associated beta-galactosidase (SA-beta-gal) activity after exposure to glucotoxicity for 72 h. Glucotoxicity does not markedly influence p16INK4a protein within 72 h, but p16INK4a levels increase significantly after a 7-days incubation period. mTOR inhibition with a low rapamycin concentration (1 nM) entirely prevents the glucotoxicity-mediated increase of SA-beta-gal and p16INK4a. At the functional level, reactive oxygen species, calcium homeostasis, and electrical activity are disturbed by glucotoxicity, and rapamycin fails to prevent this. In contrast, rapamycin significantly attenuates the insulin hypersecretion promoted by glucotoxicity by modifying the mRNA levels of Vamp2 and Snap25 genes, related to insulin exocytosis. Our data indicate an influence of glucotoxicity on pancreatic islet-cell senescence and a reduction of the senescence markers by mTOR inhibition, which is relevant to preserve the regenerative potential of the islets. Decreasing the influence of mTOR on islet cells exposed to glucotoxicity attenuates insulin hypersecretion, but is not sufficient to prevent electrophysiological disturbances, indicating the involvement of mTOR-independent mechanisms.


Assuntos
Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina , Ilhotas Pancreáticas , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Senescência Celular/efeitos dos fármacos , Insulina/metabolismo , Sirolimo/farmacologia , beta-Galactosidase/metabolismo , Secreção de Insulina/efeitos dos fármacos , Glucose/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Células Cultivadas , Espécies Reativas de Oxigênio/metabolismo
5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731926

RESUMO

The escalating prevalence of diabetes mellitus underscores the need for a comprehensive understanding of pancreatic beta cell function. Interest in glucose effectiveness has prompted the exploration of novel regulatory factors. The myeloid/lymphoid or mixed-lineage leukaemia gene (MLL) is widely recognised for its role in leukemogenesis and nuclear regulatory mechanisms through its histone methyltransferase activity in active chromatin. However, its function within pancreatic endocrine tissues remains elusive. Herein, we unveil a novel role of MLL in glucose metabolism and insulin secretion. MLL knockdown in ßHC-9 pancreatic beta cells diminished insulin secretion in response to glucose loading, paralleled by the downregulation of the glucose-sensitive genes SLC2a1 and SLC2a2. Similar observations were made in MLL heterozygous knockout mice (MLL+/-), which exhibited impaired glucose tolerance and reduced insulin secretion without morphological anomalies in pancreatic endocrine cells. The reduction in insulin secretion was independent of changes in beta cell mass or insulin granule morphology, suggesting the regulatory role of MLL in glucose-sensitive gene expression. The current results suggest that MLL interacts with circadian-related complexes to modulate the expression of glucose transporter genes, thereby regulating glucose sensing and insulin secretion. Our findings shed light on insulin secretion control, providing potential avenues for therapeutics against diabetes.


Assuntos
Transportador de Glucose Tipo 2 , Glucose , Histona-Lisina N-Metiltransferase , Secreção de Insulina , Células Secretoras de Insulina , Proteína de Leucina Linfoide-Mieloide , Animais , Células Secretoras de Insulina/metabolismo , Glucose/metabolismo , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Regulação da Expressão Gênica , Camundongos Knockout , Insulina/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Linhagem Celular , Masculino
6.
Curr Diabetes Rev ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38747221

RESUMO

The epidemic of diabetes continues to be an increasing problem, and there is a need for new therapeutic strategies. There are several promising drugs and molecules in synthetic medicinal chemistry that are developing for diabetes. In addition to this approach, extensive studies with gene and cell therapies are being conducted. Gene therapy is an existing approach in treating several diseases, such as cancer, autoimmune diseases, heart disease and diabetes. Several reports have also suggested that stem cells have the differentiation capability to functional pancreatic beta cell development in vitro and in vivo, with the utility to treat diabetes and prevent the progression of diabetes-related complications. In this current review, we have focused on the different types of cell therapies and vector-based gene therapy in treating or preventing diabetes.

7.
Cell Transplant ; 33: 9636897241246577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646716

RESUMO

Calcineurin inhibitors (CNIs) are critical in preventing rejection posttransplantation but pose an increased risk of post-transplant diabetes (PTD). Recent studies show that late conversion from CNIs to belatacept, a costimulation blocker, improves HbA1c in kidney transplant recipients with PTD or de novo diabetes. This study investigates whether the observed effects on PTD stem solely from CNI withdrawal or if belatacept influences PTD independently. The study assessed the impact of tacrolimus and belatacept on insulin secretion in MIN6 cells (a beta cell line) and rat islets. Tacrolimus and belatacept were administered to the cells and islets, followed by assessments of cell viability and insulin secretion. Tacrolimus impaired insulin secretion without affecting cell viability, while belatacept showed no detrimental effects on either parameter. These findings support clinical observations of improved HbA1c upon switching from tacrolimus to belatacept. Belatacept holds promise in islet or pancreas transplantation, particularly in patients with unstable diabetes. Successful cases of islet transplantation treated with belatacept without severe hypoglycemia highlight its potential in managing PTD. Further research is needed to fully understand the metabolic changes accompanying the transition from CNIs to belatacept. Preserving insulin secretion emerges as a promising avenue for investigation in this context.


Assuntos
Abatacepte , Imunossupressores , Insulina , Tacrolimo , Tacrolimo/uso terapêutico , Tacrolimo/farmacologia , Abatacepte/uso terapêutico , Abatacepte/farmacologia , Animais , Ratos , Insulina/metabolismo , Imunossupressores/uso terapêutico , Imunossupressores/farmacologia , Humanos , Masculino , Secreção de Insulina/efeitos dos fármacos , Camundongos , Transplante das Ilhotas Pancreáticas/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo
8.
Cell Calcium ; 120: 102883, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643716

RESUMO

The basal and glucose-induced insulin secretion from pancreatic beta cells is a tightly regulated process that is triggered in a Ca2+-dependent fashion and further positively modulated by substances that raise intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP) or by certain antidiabetic drugs. In a previous study, we have temporally resolved the subplasmalemmal [Ca2+]i dynamics in beta cells that are characterized by trains of sharply delimited spikes, reaching peak values up to 5 µM. Applying total internal reflection fluorescence (TIRF) microscopy and synaptopHluorin to visualize fusion events of individual granules, we found that several fusion events can coincide within 50 to 150 ms. To test whether subplasmalemmal [Ca2+]i microdomains around single or clustered Ca2+ channels may cause a synchronized release of insulin-containing vesicles, we applied simultaneous dual-color TIRF microscopy and monitored Ca2+ fluctuations and exocytotic events in INS-1 cells at high frame rates. The results indicate that fusions can be triggered by subplasmalemmal Ca2+ spiking. This, however, does account for a minority of fusion events. About 90 %-95 % of fusion events either happen between Ca2+ spikes or incidentally overlap with subplasmalemmal Ca2+ spikes. We conclude that only a fraction of exocytotic events in glucose-induced and tolbutamide- or forskolin-enhanced insulin release from INS-1 cells is tightly coupled to Ca2+ microdomains around voltage-gated Ca2+ channels.


Assuntos
Cálcio , Exocitose , Células Secretoras de Insulina , Insulina , Microscopia de Fluorescência , Células Secretoras de Insulina/metabolismo , Cálcio/metabolismo , Animais , Ratos , Insulina/metabolismo , Exocitose/efeitos dos fármacos , Sinalização do Cálcio , Secreção de Insulina/efeitos dos fármacos , Glucose/metabolismo , Vesículas Secretórias/metabolismo
9.
Islets ; 16(1): 2344622, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38652652

RESUMO

Chronically elevated levels of glucose are deleterious to pancreatic ß cells and contribute to ß cell dysfunction, which is characterized by decreased insulin production and a loss of ß cell identity. The Krüppel-like transcription factor, Glis3 has previously been shown to positively regulate insulin transcription and mutations within the Glis3 locus have been associated with the development of several pathologies including type 2 diabetes mellitus. In this report, we show that Glis3 is significantly downregulated at the transcriptional level in INS1 832/13 cells within hours of being subjected to high glucose concentrations and that diminished expression of Glis3 is at least partly attributable to increased oxidative stress. CRISPR/Cas9-mediated knockdown of Glis3 indicated that the transcription factor was required to maintain normal levels of both insulin and MafA expression and reduced Glis3 expression was concomitant with an upregulation of ß cell disallowed genes. We provide evidence that Glis3 acts similarly to a pioneer factor at the insulin promoter where it permissively remodels the chromatin to allow access to a transcriptional regulatory complex including Pdx1 and MafA. Finally, evidence is presented that Glis3 can positively regulate MafA transcription through its pancreas-specific promoter and that MafA reciprocally regulates Glis3 expression. Collectively, these results suggest that decreased Glis3 expression in ß cells exposed to chronic hyperglycemia may contribute significantly to reduced insulin transcription and a loss of ß cell identity.


Assuntos
Regulação para Baixo , Glucose , Células Secretoras de Insulina , Insulina , Proteínas Repressoras , Animais , Ratos , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Estresse Oxidativo/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo
10.
Front Immunol ; 15: 1375177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650946

RESUMO

Human allogeneic pancreatic islet transplantation is a life-changing treatment for patients with severe Type 1 Diabetes (T1D) who suffer from hypoglycemia unawareness and high risk of severe hypoglycemia. However, intensive immunosuppression is required to prevent immune rejection of the graft, that may in turn lead to undesirable side effects such as toxicity to the islet cells, kidney toxicity, occurrence of opportunistic infections, and malignancies. The shortage of cadaveric human islet donors further limits islet transplantation as a treatment option for widespread adoption. Alternatively, porcine islets have been considered as another source of insulin-secreting cells for transplantation in T1D patients, though xeno-transplants raise concerns over the risk of endogenous retrovirus transmission and immunological incompatibility. As a result, technological advancements have been made to protect transplanted islets from immune rejection and inflammation, ideally in the absence of chronic immunosuppression, to improve the outcomes and accessibility of allogeneic islet cell replacement therapies. These include the use of microencapsulation or macroencapsulation devices designed to provide an immunoprotective environment using a cell-impermeable layer, preventing immune cell attack of the transplanted cells. Other up and coming advancements are based on the use of stem cells as the starting source material for generating islet cells 'on-demand'. These starting stem cell sources include human induced pluripotent stem cells (hiPSCs) that have been genetically engineered to avoid the host immune response, curated HLA-selected donor hiPSCs that can be matched with recipients within a given population, and multipotent stem cells with natural immune privilege properties. These strategies are developed to provide an immune-evasive cell resource for allogeneic cell therapy. This review will summarize the immunological challenges facing islet transplantation and highlight recent bio-engineering and cell-based approaches aimed at avoiding immune rejection, to improve the accessibility of islet cell therapy and enhance treatment outcomes. Better understanding of the different approaches and their limitations can guide future research endeavors towards developing more comprehensive and targeted strategies for creating a more tolerogenic microenvironment, and improve the effectiveness and sustainability of islet transplantation to benefit more patients.


Assuntos
Diabetes Mellitus Tipo 1 , Rejeição de Enxerto , Transplante das Ilhotas Pancreáticas , Transplante das Ilhotas Pancreáticas/métodos , Humanos , Animais , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Engenharia Biomédica/métodos , Ilhotas Pancreáticas/imunologia
11.
Front Endocrinol (Lausanne) ; 15: 1399741, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572475

RESUMO

[This corrects the article DOI: 10.3389/fendo.2023.1221520.].

13.
Biophys Chem ; 307: 107168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367541

RESUMO

The polypeptide hormone Amylin (also known as islet amyloid polypeptide) plays a role in regulation of glucose metabolism, but forms pancreatic islet amyloid deposits in type 2 diabetes. The process of islet amyloid formation contributes to ß-cell dysfunction and the development of the disease. Amylin is produced as a pro-from and undergoes processing prior to secretion. The mature hormone contains an amidated C-terminus. Analysis of an alignment of vertebrate amylin sequences reveals that the processing signal for amidation is strictly conserved. Furthermore, the enzyme responsible for C-terminal amidation is found in all of these organisms. Comparison of the physiologically relevant amidated form to a variant with a free C-terminus (Amylin-COO-) shows that replacement of the C-terminal amide with a carboxylate slows, but does not prevent amyloid formation. Pre-fibrillar species produced by both variants are toxic to cultured ß-cells, although hAmylin-COO- is moderately less so. Amyloid fibrils produced by either peptide are not toxic. Prior work (ACS Pharmacol. Translational. Sci. 1, 132-49 (2018)) shows that Amylin- COO- exhibits a 58-fold reduction in activation of the Amylin1 receptor and 20-fold reduction in activation of the Amylin3 receptor. Thus, hAmylin-COO- exhibits significant toxicity, but significantly reduced activity and offers a reagent for studies which aim to decouple hAmylin's toxic effects from its activity. The different behaviours of free and C-terminal amidated Amylin should be considered when designing systems to produce the polypeptide recombinantly.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônios Peptídicos , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Diabetes Mellitus Tipo 2/metabolismo , Amidas , Proteínas Amiloidogênicas , Amiloide/química
14.
Tissue Cell ; 87: 102318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377632

RESUMO

Diabetes is a global problem that threatens human health. Cell therapy methods using stem cells, and tissue engineering of pancreatic islets as new therapeutic approaches have increased the chances of successful diabetes treatment. In this study, to differentiate Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) into insulin-producing cells (IPCs) with improved maturity, and function, platelet-rich plasma (PRP)-Polyvinylpyrrolidone (PVP)-Polycaprolactone (PCL)/PCL scaffold was designed. The two-dimensional (2D) control group included cell culture without differentiation medium, and the experimental groups included 2D, and three-dimensional (3D) groups with pancreatic beta cell differentiation medium. WJ-MSCs-derived IPCs on PRP-PVP-PCL/PCL scaffold took round cluster morphology, the typical pancreatic islets morphology. Real-time PCR, immunocytochemistry, and flowcytometry data showed a significant increase in pancreatic marker genes in WJ-MSCs-derived IPCs on the PRP-PVP-PCL/PCL scaffold compared to the 2D-experimental group. Also, using the ELISA assay, a significant increase in the secretion of insulin, and C-peptide was measured in the WJ-MSCs-derived IPCs of the 3D-experimental group compared to the 2D experimental group, the highest amount of insulin (38 µlU/ml), and C-peptide (43 pmol/l) secretion was in the 3D experimental group, and in response to 25 mM glucose solution, which indicated a significant improvement in the functional level of the WJ-MSCs-derived IPCs in the 3D group. The results showed that the PRP-PVP-PCL/PCL scaffold can provide an appropriate microenvironment for the engineering of pancreatic islets, and the generation of IPCs.


Assuntos
Diabetes Mellitus , Células-Tronco Mesenquimais , Poliésteres , Povidona/análogos & derivados , Geleia de Wharton , Humanos , Peptídeo C , Diferenciação Celular , Células Cultivadas
15.
Transpl Int ; 37: 11900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304198

RESUMO

The generation of insulin-producing cells from human-induced pluripotent stem cells holds great potential for diabetes modeling and treatment. However, existing protocols typically involve incubating cells with un-physiologically high concentrations of glucose, which often fail to generate fully functional IPCs. Here, we investigated the influence of high (20 mM) versus low (5.5 mM) glucose concentrations on IPCs differentiation in three hiPSC lines. In two hiPSC lines that were unable to differentiate to IPCs sufficiently, we found that high glucose during differentiation leads to a shortage of NKX6.1+ cells that have co-expression with PDX1 due to insufficient NKX6.1 gene activation, thus further reducing differentiation efficiency. Furthermore, high glucose during differentiation weakened mitochondrial respiration ability. In the third iPSC line, which is IPC differentiation amenable, glucose concentrations did not affect the PDX1/NKX6.1 expression and differentiation efficiency. In addition, glucose-stimulated insulin secretion was only seen in the differentiation under a high glucose condition. These IPCs have higher KATP channel activity and were linked to sufficient ABCC8 gene expression under a high glucose condition. These data suggest high glucose concentration during IPC differentiation is necessary to generate functional IPCs. However, in cell lines that were IPC differentiation unamenable, high glucose could worsen the situation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Insulina/metabolismo , Diferenciação Celular , Glucose/farmacologia , Glucose/metabolismo
16.
Front Endocrinol (Lausanne) ; 15: 1306127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318298

RESUMO

Pancreatic beta cells replenishment is considered the next therapeutic option for type 1 diabetes; while stimulating endogenous beta cells proliferation is the "holy grail" for those patients with exhausted beta cell mass. Here we are demonstrating that the pro-apoptotic receptor TMEM219 is expressed in fetal pancreas, in beta cell precursors and in in vitro embryonic-derived endocrine progenitors. TMEM219 signaling negatively regulates beta cells at early stages and induces Caspase 8-mediated cell death. Pharmacological blockade of TMEM219 further rescued beta cell precursor and proliferation markers, and decreased cell death, both in islets and in in vitro-derived endocrine progenitors, allowing for beta cell preservation. While addressing the upstream controlling TMEM219 expression, we determined the TMEM219 miRNet; indeed, one of those miRNAs, miR-129-2, is highly expressed in human islets, particularly in patients at risk or with established type 1 diabetes. miR-129-2 mimic downregulated TMEM219 expression in islets, in in vitro embryonic-derived endocrine progenitors and in highly proliferating insulinoma-derived cells. Moreover, miR-129-2 inhibitor induced a TMEM219 overexpression in insulinoma-derived cells, which restored cell proliferation and functional markers, thus acting as endogenous regulator of TMEM219 expression. The TMEM219 upstream regulator miR129-2 controls the fate of beta cell precursors and may unleash their regenerative potentials to replenish beta cells in type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Insulinoma , MicroRNAs , Neoplasias Pancreáticas , Humanos , Proliferação de Células , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição/metabolismo
17.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339098

RESUMO

Diabetes mellitus is clinically defined by chronic hyperglycemia. Sex differences in the presentation and outcome of diabetes exist with premenopausal women having a reduced risk of developing diabetes, relative to men, or women after menopause. Accumulating evidence shows a protective role of estrogens, specifically 17-beta estradiol, in the maintenance of pancreatic beta cell health; however, the mechanisms underlying this protection are still unknown. To elucidate these potential mechanisms, we used a pancreatic beta cell line (BTC6) and a mouse model of hyperglycemia-induced atherosclerosis, the ApoE-/-:Ins2+/Akita mouse, exhibiting sexual dimorphism in glucose regulation. In this study we hypothesize that 17-beta estradiol protects pancreatic beta cells by modulating the unfolded protein response (UPR) in response to endoplasmic reticulum (ER) stress. We observed that ovariectomized female and male ApoE-/-:Ins2+/Akita mice show significantly increased expression of apoptotic UPR markers. Sham operated female and ovariectomized female ApoE-/-:Ins2+/Akita mice supplemented with exogenous 17-beta estradiol increased the expression of adaptive UPR markers compared to non-supplemented ovariectomized female ApoE-/-:Ins2+/Akita mice. These findings were consistent to what was observed in cultured BTC6 cells, suggesting that 17-beta estradiol may protect pancreatic beta cells by repressing the apoptotic UPR and enhancing the adaptive UPR activation in response to pancreatic ER stress.


Assuntos
Diabetes Mellitus , Hiperglicemia , Células Secretoras de Insulina , Humanos , Feminino , Camundongos , Masculino , Animais , Células Secretoras de Insulina/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Resposta a Proteínas não Dobradas , Diabetes Mellitus/metabolismo , Estresse do Retículo Endoplasmático , Hiperglicemia/metabolismo , Apolipoproteínas E/metabolismo
18.
Diabetologia ; 67(5): 908-927, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409439

RESUMO

AIMS/HYPOTHESIS: The proinflammatory cytokines IFN-α, IFN-γ, IL-1ß and TNF-α may contribute to innate and adaptive immune responses during insulitis in type 1 diabetes and therefore represent attractive therapeutic targets to protect beta cells. However, the specific role of each of these cytokines individually on pancreatic beta cells remains unknown. METHODS: We used deep RNA-seq analysis, followed by extensive confirmation experiments based on reverse transcription-quantitative PCR (RT-qPCR), western blot, histology and use of siRNAs, to characterise the response of human pancreatic beta cells to each cytokine individually and compared the signatures obtained with those present in islets of individuals affected by type 1 diabetes. RESULTS: IFN-α and IFN-γ had a greater impact on the beta cell transcriptome when compared with IL-1ß and TNF-α. The IFN-induced gene signatures have a strong correlation with those observed in beta cells from individuals with type 1 diabetes, and the level of expression of specific IFN-stimulated genes is positively correlated with proteins present in islets of these individuals, regulating beta cell responses to 'danger signals' such as viral infections. Zinc finger NFX1-type containing 1 (ZNFX1), a double-stranded RNA sensor, was identified as highly induced by IFNs and shown to play a key role in the antiviral response in beta cells. CONCLUSIONS/INTERPRETATION: These data suggest that IFN-α and IFN-γ are key cytokines at the islet level in human type 1 diabetes, contributing to the triggering and amplification of autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Interferons/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interferon gama/metabolismo , Ilhotas Pancreáticas/metabolismo
19.
J Extracell Vesicles ; 13(2): e12410, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38320981

RESUMO

Extracellular vesicles (EVs) exert a significant influence not only on the pathogenesis of diseases but also on their therapeutic interventions, contingent upon the variances observed in their originating cells. Mitochondria can be transported between cells via EVs to promote pathological changes. In this study, we found that EVs derived from M1 macrophages (M1-EVs), which encapsulate inflammatory mitochondria, can penetrate pancreatic beta cells. Inflammatory mitochondria fuse with the mitochondria of pancreatic beta cells, resulting in lipid peroxidation and mitochondrial disruption. Furthermore, fragments of mitochondrial DNA (mtDNA) are released into the cytosol, activating the STING pathway and ultimately inducing apoptosis. The potential of adipose-derived stem cell (ADSC)-released EVs in suppressing M1 macrophage reactions shows promise. Subsequently, ADSC-EVs were utilized and modified with an F4/80 antibody to specifically target macrophages, aiming to treat ferroptosis of pancreatic beta cells in vivo. In summary, our data further demonstrate that EVs secreted from M1 phenotype macrophages play major roles in beta cell ferroptosis, and the modified ADSC-EVs exhibit considerable potential for development as a vehicle for targeted delivery to macrophages.


Assuntos
Vesículas Extracelulares , Ferroptose , Células Secretoras de Insulina , Pancreatite , Humanos , Doença Aguda , Células Secretoras de Insulina/metabolismo , Pancreatite/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Mitocôndrias
20.
ACS Synth Biol ; 13(3): 825-836, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377949

RESUMO

Enhancement of glucose-stimulated insulin secretion (GSIS) in exogenously delivered pancreatic ß-cells is desirable, for example, to overcome the insulin resistance manifested in type 2 diabetes or to reduce the number of ß-cells for supporting homeostasis of blood sugar in type 1 diabetes. Optogenetically engineered cells can potentiate their function with exposure to light. Given that cyclic adenosine monophosphate (cAMP) mediates GSIS, we surmised that optoamplification of GSIS is feasible in human ß-cells carrying a photoactivatable adenylyl cyclase (PAC). To this end, human EndoC-ßH3 cells were engineered to express a blue-light-activated PAC, and a workflow was established combining the scalable manufacturing of pseudoislets (PIs) with efficient adenoviral transduction, resulting in over 80% of cells carrying PAC. Changes in intracellular cAMP and GSIS were determined with the photoactivation of PAC in vitro as well as after encapsulation and implantation in mice with streptozotocin-induced diabetes. cAMP rapidly rose in ß-cells expressing PAC with illumination and quickly declined upon its termination. Light-induced amplification in cAMP was concomitant with a greater than 2-fold GSIS vs ß-cells without PAC in elevated glucose. The enhanced GSIS retained its biphasic pattern, and the rate of oxygen consumption remained unchanged. Diabetic mice receiving the engineered ß-cell PIs exhibited improved glucose tolerance upon illumination compared to those kept in the dark or not receiving cells. The findings support the use of optogenetics for molecular customization of the ß-cells toward better treatments for diabetes without the adverse effects of pharmacological approaches.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Insulina , Linhagem Celular , Glucose/farmacologia , AMP Cíclico , Adenilil Ciclases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA