Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Biomedicines ; 12(8)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39200154

RESUMO

BACKGROUND: Platelets, a type of anucleated cell, play a crucial role in cardiovascular diseases (CVDs). Therefore, targeting platelet activation is essential for mitigating CVDs. Endogenous agonists, such as collagen, activate platelets by initiating signal transduction through specific platelet receptors, leading to platelet aggregation. Eugenol, primarily sourced from clove oil, is known for its antibacterial, anticancer, and anti-inflammatory properties, making it a valuable medicinal agent. In our previous study, eugenol was shown to inhibit platelet aggregation induced by collagen and arachidonic acid. We concluded that eugenol exerts a potent inhibitory effect on platelet activation by targeting the PLCγ2-PKC and cPLA2-TxA2 pathways, thereby suppressing platelet aggregation. In our current study, we found that eugenol significantly inhibits NF-κB activation. This led us to investigate the relationship between the NF-κB and cPLA2 pathways to elucidate how eugenol suppresses platelet activation. METHODS: In this study, we prepared platelet suspensions from the blood of healthy human donors to evaluate the inhibitory mechanisms of eugenol on platelet activation. We utilized immunoblotting and confocal microscopy to analyze these mechanisms in detail. Additionally, we assessed the anti-thrombotic effect of eugenol by observing fluorescein-induced platelet plug formation in the mesenteric microvessels of mice. RESULTS: For immunoblotting and confocal microscopy studies, eugenol significantly inhibited NF-κB-mediated signaling events stimulated by collagen in human platelets. Specifically, it reduced the phosphorylation of IKK and p65 and prevented the degradation of IκBα. Additionally, CAY10502, a cPLA2 inhibitor, significantly reduced NF-κB-mediated signaling events. In contrast, BAY11-7082, an IKK inhibitor, did not affect collagen-stimulated cPLA2 phosphorylation. These findings suggest that cPLA2 acts as an upstream regulator of NF-κB activation during platelet activation. Furthermore, both BAY11-7082 and CAY10502 significantly reduced the collagen-induced rise in intracellular calcium levels. In the animal study, eugenol demonstrated potential as an anti-thrombotic agent by significantly reducing platelet plug formation in fluorescein-irradiated mouse mesenteric microvessels. CONCLUSION: Our study uncovered a novel pathway in platelet activation involving the cPLA2-NF-κB axis, which plays a key role in the antiplatelet effects of eugenol. These findings suggest that eugenol could serve as a valuable and potent prophylactic or therapeutic option for arterial thrombosis.

2.
J Lipid Res ; 65(7): 100571, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795860

RESUMO

Phospholipase A2 (PLA2) constitutes a superfamily of enzymes that hydrolyze phospholipids at their sn-2 fatty acyl position. Our laboratory has demonstrated that PLA2 enzymes regulate membrane remodeling and cell signaling by their specificity toward their phospholipid substrates at the molecular level. Recent in vitro studies show that each type of PLA2, including Group IVA cytosolic PLA2 (cPLA2), Group V secreted PLA2 (sPLA2), Group VIA calcium independent PLA2 (iPLA2) and Group VIIA lipoprotein-associated PLA2, also known as platelet-activating factor acetyl hydrolase, can discriminate exquisitely between fatty acids at the sn-2 position. Thus, these enzymes regulate the production of diverse PUFA precursors of inflammatory metabolites. We now determined PLA2 specificity in macrophage cells grown in cell culture, where the amounts and localization of the phospholipid substrates play a role in which specific phospholipids are hydrolyzed by each enzyme type. We used PLA2 stereospecific inhibitors in tandem with a novel UPLC-MS/MS-based lipidomics platform to quantify more than a thousand unique phospholipid molecular species demonstrating cPLA2, sPLA2, and iPLA2 activity and specificity toward the phospholipids in living cells. The observed specificity follows the in vitro capability of the enzymes and can reflect the enrichment of certain phospholipid species in specific membrane locations where particular PLA2's associate. For assaying, we target 20:4-PI for cPLA2, 22:6-PG for sPLA2, and 18:2-PC for iPLA2. These new results provide great insight into the physiological role of PLA2 enzymes in cell membrane remodeling and could shed light on how PLA2 enzymes underpin inflammation and other lipid-related diseases.


Assuntos
Lipidômica , Macrófagos , Fosfolipases A2 , Macrófagos/metabolismo , Fosfolipases A2/metabolismo , Animais , Camundongos , Especificidade por Substrato , Humanos , Fosfolipídeos/metabolismo , Células RAW 264.7
3.
Cell Rep Med ; 5(5): 101510, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38614093

RESUMO

Key gene mutations are essential for colorectal cancer (CRC) development; however, how the mutated tumor cells impact the surrounding normal cells to promote tumor progression has not been well defined. Here, we report that PIK3CA mutant tumor cells transmit oncogenic signals and result in malignant transformation of intestinal epithelial cells (IECs) via paracrine exosomal arachidonic acid (AA)-induced H3K4 trimethylation. Mechanistically, PIK3CA mutations sustain SGK3-FBW7-mediated stability of the cPLA2 protein, leading to the synthetic increase in AA, which is transported through exosome and accumulated in IECs. Transferred AA directly binds Menin and strengthens the interactions of Menin and MLL1/2 methyltransferase. Finally, the combination of VTP50469, an inhibitor of the Menin-MLL interaction, and alpelisib synergistically represses PDX tumors harboring PIK3CA mutations. Together, these findings unveil the metabolic link between PIK3CA mutant tumor cells and the IECs, highlighting AA as the potential target for the treatment of patients with CRC harboring PIK3CA mutations.


Assuntos
Ácido Araquidônico , Transformação Celular Neoplásica , Montagem e Desmontagem da Cromatina , Classe I de Fosfatidilinositol 3-Quinases , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Ácido Araquidônico/metabolismo , Animais , Mutação/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Montagem e Desmontagem da Cromatina/genética , Camundongos , Linhagem Celular Tumoral , Colo/patologia , Colo/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Exossomos/metabolismo , Exossomos/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Histonas/metabolismo , Histonas/genética
4.
Antioxidants (Basel) ; 13(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38397818

RESUMO

Phospholipases (PL) A2 catalyzes the hydrolysis of membrane phospholipids and mostly generates arachidonic acid (AA). The enzyme 5-lipoxygenase (5-LOX) can metabolize AA to obtain inflammatory leukotrienes, whose biosynthesis highly depends on cPLA2 and 5-LOX activities. Formyl Peptide Receptor 2 (FPR2) belongs to a subfamily of class A GPCRs and is considered the most versatile FPRs isoform. Signaling triggered by FPR2 includes the activation of several downstream kinases and NADPH oxidase (NOX)-dependent ROS generation. In a metabolomic analysis we observed a significant increase in AA concentration in FPR2-stimulated lung cancer cell line CaLu-6. We analyzed cPLA2 phosphorylation and observed a time-dependent increase in cPLA2 Ser505 phosphorylation in FPR2-stimulated cells, which was prevented by the MEK inhibitor (PD098059) and the p38MAPK inhibitor (SB203580) and by blocking NOX function. Similarly, we demonstrated that phosphorylation of 5-LOX at Ser271 and Ser663 residues requires FPR2-dependent p38MAPK and ERKs activation. Moreover, we showed that 5-LOX Ser271 phosphorylation depends on a functional NOX expression. Our overall data demonstrate for the first time that FPR2-induced ERK- and p38MAPK-dependent phosphorylation/activation of cPLA2 and 5-LOX requires a functional NADPH oxidase. These findings represent an important step towards future novel therapeutic possibilities aimed at resolving the inflammatory processes underlying many human diseases.

5.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396774

RESUMO

Platelets assume a pivotal role in the pathogenesis of cardiovascular diseases (CVDs), emphasizing their significance in disease progression. Consequently, addressing CVDs necessitates a targeted approach focused on mitigating platelet activation. Eugenol, predominantly derived from clove oil, is recognized for its antibacterial, anticancer, and anti-inflammatory properties, rendering it a valuable medicinal agent. This investigation delves into the intricate mechanisms through which eugenol influences human platelets. At a low concentration of 2 µM, eugenol demonstrates inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Notably, thrombin and U46619 remain unaffected by eugenol. Its modulatory effects extend to ATP release, P-selectin expression, and intracellular calcium levels ([Ca2+]i). Eugenol significantly inhibits various signaling cascades, including phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß, mitogen-activated protein kinases, and cytosolic phospholipase A2 (cPLA2)/thromboxane A2 (TxA2) formation induced by collagen. Eugenol selectively inhibited cPLA2/TxA2 phosphorylation induced by AA, not affecting p38 MAPK. In ADP-treated mice, eugenol reduced occluded lung vessels by platelet thrombi without extending bleeding time. In conclusion, eugenol exerts a potent inhibitory effect on platelet activation, achieved through the inhibition of the PLCγ2-PKC and cPLA2-TxA2 cascade, consequently suppressing platelet aggregation. These findings underscore the potential therapeutic applications of eugenol in CVDs.


Assuntos
Eugenol , Embolia Pulmonar , Humanos , Camundongos , Animais , Eugenol/farmacologia , Eugenol/uso terapêutico , Eugenol/metabolismo , Fosfolipase C gama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Ativação Plaquetária , Agregação Plaquetária , Plaquetas/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Tromboxano A2/metabolismo , Colágeno/metabolismo , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/metabolismo , Fosfolipases A2 Citosólicas/metabolismo
6.
Vascul Pharmacol ; 154: 107275, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38184094

RESUMO

Corticotropin releasing factor family peptides (CRF peptides) include 4 members, corticotropin releasing hormone (CRH), Urocortin (UCN1), UCN2 and UCN3. CRF peptides function via the two distinct receptors, CRF1 and CRF2. Among them, CRH/CRF1 has been recognized to influence immunity/inflammation peripherally. Both pro- and anti-inflammatory effects of CRH are reported. Likewise, UCNs, peripherally in cardiovascular system have been documented to have both potent protective and harmful effects, with UCN1 acting on both CRF1 & CRF2 and UCN2 & UCN3 on CRF2. We and others also observe protective and detrimental effects of CRF peptides/receptors on vasculature, with the latter of predominantly higher incidence, i.e., they play an important role in the development of vasculitis while in some cases they are found to counteract vascular inflammation. The pro-vasculitis effects of CRH & UCNs include increasing vascular endothelial permeability, interrupting endothelial adherens & tight junctions leading to hyperpermeability, stimulating immune/inflammatory cells to release inflammatory factors, and promoting angiogenesis by VEGF release while the anti-vasculitis effects may be just the opposite, depending on many factors such as different CRF receptor types, species and systemic conditions. Furthermore, CRF peptides' pro-vasculitis effects are found to be likely related to cPLA2 and S1P receptor signal pathway. This minireview will focus on summarizing the peripheral effects of CRF peptides on vasculature participating in the processes of vasculitis.


Assuntos
Hormônio Liberador da Corticotropina , Vasculite , Humanos , Hormônio Liberador da Corticotropina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Peptídeos , Inflamação , Urocortinas/metabolismo , Urocortinas/farmacologia
7.
Adv Sci (Weinh) ; 9(32): e2203995, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36106364

RESUMO

Vascular smooth muscle cells (SMCs) can adapt to changes in cellular geometric cues; however, the underlying mechanisms remain elusive. Using 2D micropatterned substrates to engineer cell geometry, it is found that in comparison with an elongated geometry, a square-shaped geometry causes the nuclear-to-cytoplasmic redistribution of DNA methyltransferase 1 (DNMT1), hypermethylation of mitochondrial DNA (mtDNA), repression of mtDNA gene transcription, and impairment of mitochondrial function. Using irregularly arranged versus circumferentially aligned vascular grafts to control cell geometry in 3D growth, it is demonstrated that cell geometry, mtDNA methylation, and vessel contractility are closely related. DNMT1 redistribution is found to be dependent on the phosphoinositide 3-kinase and protein kinase B (AKT) signaling pathways. Cell elongation activates cytosolic phospholipase A2, a nuclear mechanosensor that, when inhibited, hinders AKT phosphorylation, DNMT1 nuclear accumulation, and energy production. The findings of this study provide insights into the effects of cell geometry on SMC function and its potential implications in the optimization of vascular grafts.


Assuntos
Músculo Liso Vascular , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Músculo Liso Vascular/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Metilação de DNA/genética , Mitocôndrias/metabolismo , Metabolismo Energético
8.
Neuro Oncol ; 24(11): 1871-1883, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35312010

RESUMO

BACKGROUND: Targeting glioblastoma (GBM) energy metabolism through multiple metabolic pathways has emerged as an effective therapeutic approach. Dual inhibition of phospholipid and mitochondrial metabolism with cytoplasmic phospholipase A2 (cPLA2) knockdown and metformin treatment could be a potential strategy. However, the strategic prerequisite is to explore a carrier capable of co-delivering the therapeutic combination to cross the blood-brain barrier (BBB) and preferentially accumulate at the GBM site. METHODS: Blood exosomes (Exos) were selected as the combination delivery carriers. The cellular uptake of Exos and the therapeutic effects of the combination strategy were evaluated in primary GBM cells. In vivo GBM-targeted delivery efficiency and anti-GBM efficacy were tested in a patient-derived xenograft (PDX) model. RESULTS: Here, we showed that the Exos-mediated cPLA2 siRNA/metformin combined strategy could regulate GBM energy metabolism for personalized treatment. Genomic analysis and experiments showed that polymerase 1 and transcript release factor (PTRF, a biomarker of GBM) positively regulated the uptake of Exos by GBM cells, confirming the feasibility of the delivery strategy. Further, Exos could co-load cPLA2 siRNA (sicPLA2) and metformin and co-deliver them across the BBB and into GBM tissue. The mitochondrial energy metabolism of GBM was impaired with this combination treatment (Exos-Met/sicPLA2). In the PDX GBM model, systemic administration of Exos-Met/sicPLA2 reduced tumor growth and prolonged survival. CONCLUSIONS: Our findings demonstrated that Exos-based combined delivery of sicPLA2 and metformin selectively targeted the GBM energy metabolism to achieve antitumor effects, showing its potential as a personalized therapy for GBM patients.


Assuntos
Exossomos , Glioblastoma , Metformina , Humanos , Linhagem Celular Tumoral , Metabolismo Energético , Exossomos/metabolismo , Glioblastoma/patologia , Fosfolipases A2/metabolismo , Fosfolipases A2/uso terapêutico , Fosfolipases A2 Citosólicas/metabolismo , RNA Interferente Pequeno , Ensaios Antitumorais Modelo de Xenoenxerto , Animais
9.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216105

RESUMO

Calcium-dependent cytosolic phospholipase A2α (cPLA2α) had been previously found to be overexpressed by aortic valve interstitial cells (AVICs) subjected to in vitro calcific induction. Here, cPLA2α expression was immunohistochemically assayed in porcine aortic valve leaflets (iAVLs) that had undergone accelerated calcification subsequent to 2- to 28-day-long implantation in rat subcutis. A time-dependent increase in cPLA2α-positive AVICs paralleled mineralization progression depending on dramatic cell membrane degeneration with the release of hydroxyapatite-nucleating acidic lipid material, as revealed by immunogold particles decorating organelle membranes in 2d-iAVLs, as well as membrane-derived lipid byproducts in 7d- to 28d-iAVLs. Additional positivity was detected for (i) pro-inflammatory IL-6, mostly exhibited by rat peri-implant cells surrounding 14d- and 28d-iAVLs; (ii) calcium-binding osteopontin, with time-dependent increase and no ossification occurrence; (iii) anti-calcific fetuin-A, mostly restricted to blood plasma within vessels irrorating the connective envelopes of 28d-iAVLs; (iv) early apoptosis marker annexin-V, limited to sporadic AVICs in all iAVLs. No positivity was found for either apoptosis executioner cleaved caspase-3 or autophagy marker MAP1. In conclusion, cPLA2α appears to be a factor characterizing AVL calcification concurrently with a distinct still uncoded cell death form also in an animal model, as well as a putative target for the prevention and treatment of calcific valve diseases.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Cálcio/metabolismo , Fosfolipases A2 do Grupo IV/metabolismo , Osteogênese/fisiologia , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Calcinose/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Intersticiais de Cajal/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Suínos
10.
J Exp Clin Cancer Res ; 41(1): 54, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135586

RESUMO

BACKGROUND: Molecular mechanisms underlying inflammation-associated breast tumor growth are poorly studied. S100A7, a pro-inflammatory molecule has been shown to enhance breast cancer growth and metastasis. However, the S100A7-mediated molecular mechanisms in enhancing tumor growth and metastasis are unclear. METHODS: Human breast cancer tissue and plasma samples were used to analyze the expression of S100A7, cPLA2, and PGE2. S100A7-overexpressing or downregulated human metastatic breast cancer cells were used to evaluate the S100A7-mediated downstream signaling mechanisms. Bi-transgenic mS100a7a15 overexpression, TNBC C3 (1)/Tag transgenic, and humanized patient-derived xenograft mouse models and cPLA2 inhibitor (AACOCF3) were used to investigate the role of S100A7/cPLA2/PGE2 signaling in tumor growth and metastasis. Additionally, CODEX, a highly advanced multiplexed imaging was employed to delineate the effects of S100A7/cPLA2 inhibition on the recruitment of various immune cells. RESULTS: In this study, we found that S100A7 and cPLA2 are highly expressed and correlate with decreased overall survival in breast cancer patients. Further mechanistic studies revealed that S100A7/RAGE signaling promotes the expression of cPLA2 to mediate its oncogenic effects. Pharmacological inhibition of cPLA2 suppressed S100A7-mediated tumor growth and metastasis in multiple pre-clinical models including transgenic and humanized patient-derived xenograft (PDX) mouse models. The attenuation of cPLA2 signaling reduced S100A7-mediated recruitment of immune-suppressive myeloid cells in the tumor microenvironment (TME). Interestingly, we discovered that the S100A7/cPLA2 axis enhances the immunosuppressive microenvironment by increasing prostaglandin E2 (PGE2). Furthermore, CO-Detection by indEXing (CODEX) imaging-based analyses revealed that cPLA2 inhibition increased the infiltration of activated and proliferating CD4+ and CD8+ T cells in the TME. In addition, CD163+ tumor associated-macrophages were positively associated with S100A7 and cPLA2 expression in malignant breast cancer patients. CONCLUSIONS: Our study provides new mechanistic insights on the cross-talk between S100A7/cPLA2 in enhancing breast tumor growth and metastasis by generating an immunosuppressive TME that inhibits the infiltration of cytotoxic T cells. Furthermore, our studies indicate that S100A7/cPLA2 could be used as novel prognostic marker and cPLA2 inhibitors as promising drugs against S100A7-overexpressing aggressive breast cancer.


Assuntos
Neoplasias da Mama/genética , Fosfolipases A2 Citosólicas/antagonistas & inibidores , Proteína A7 Ligante de Cálcio S100/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Microambiente Tumoral
11.
Molecules ; 26(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946532

RESUMO

Cytosolic phospholipase A2α (cPLA2α) is the rate-limiting enzyme in releasing arachidonic acid and biosynthesis of its derivative eicosanoids. Thus, the catalytic activity of cPLA2α plays an important role in cellular metabolism in healthy as well as cancer cells. There is mounting evidence suggesting that cPLA2α is an interesting target for cancer treatment; however, it is unclear which cancers are most relevant for further investigation. Here we report the relative expression of cPLA2α in a variety of cancers and cancer cell lines using publicly available datasets. The profiling of a panel of cancer cell lines representing different tissue origins suggests that hematological malignancies are particularly sensitive to the growth inhibitory effect of cPLA2α inhibition. Several hematological cancers and cancer cell lines overexpressed cPLA2α, including multiple myeloma. Multiple myeloma is an incurable hematological cancer of plasma cells in the bone marrow with an emerging requirement of therapeutic approaches. We show here that two cPLA2α inhibitors AVX420 and AVX002, significantly and dose-dependently reduced the viability of multiple myeloma cells and induced apoptosis in vitro. Our findings implicate cPLA2α activity in the survival of multiple myeloma cells and support further studies into cPLA2α as a potential target for treating hematological cancers, including multiple myeloma.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Fosfolipases A2 do Grupo IV , Mieloma Múltiplo , Proteínas de Neoplasias , Linhagem Celular Tumoral , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Fosfolipases A2 do Grupo IV/metabolismo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/enzimologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo
12.
J Exp Clin Cancer Res ; 40(1): 344, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727953

RESUMO

Background High resistance to therapy and poor prognosis characterizes malignant pleural mesothelioma (MPM). In fact, the current lines of treatment, based on platinum and pemetrexed, have limited impact on the survival of MPM patients. Adaptive response to therapy-induced stress involves complex rearrangements of the MPM secretome, mediated by the acquisition of a senescence-associated-secretory-phenotype (SASP). This fuels the emergence of chemoresistant cell subpopulations, with specific gene expression traits and protumorigenic features. The SASP-driven rearrangement of MPM secretome takes days to weeks to occur. Thus, we have searched for early mediators of such adaptive process and focused on metabolites differentially released in mesothelioma vs mesothelial cell culture media, after treatment with pemetrexed. METHODS: Mass spectrometry-based (LC/MS and GC/MS) identification of extracellular metabolites and unbiased statistical analysis were performed on the spent media of mesothelial and mesothelioma cell lines, at steady state and after a pulse with pharmacologically relevant doses of the drug. ELISA based evaluation of arachidonic acid (AA) levels and enzyme inhibition assays were used to explore the role of cPLA2 in AA release and that of LOX/COX-mediated processing of AA. QRT-PCR, flow cytometry analysis of ALDH expressing cells and 3D spheroid growth assays were employed to assess the role of AA at mediating chemoresistance features of MPM. ELISA based detection of p65 and IkBalpha were used to interrogate the NFkB pathway activation in AA-treated cells. RESULTS: We first validated what is known or expected from the mechanism of action of the antifolate. Further, we found increased levels of PUFAs and, more specifically, arachidonic acid (AA), in the transformed cell lines treated with pemetrexed. We showed that pharmacologically relevant doses of AA tightly recapitulated the rearrangement of cell subpopulations and the gene expression changes happening in pemetrexed -treated cultures and related to chemoresistance. Further, we showed that release of AA following pemetrexed treatment was due to cPLA2 and that AA signaling impinged on NFkB activation and largely affected anchorage-independent, 3D growth and the resistance of the MPM 3D cultures to the drug. CONCLUSIONS: AA is an early mediator of the adaptive response to pem in chemoresistant MPM and, possibly, other malignancies.


Assuntos
Antineoplásicos/efeitos adversos , Ácido Araquidônico/uso terapêutico , Espectrometria de Massas/métodos , Mesotelioma Maligno/tratamento farmacológico , Estresse Fisiológico/efeitos dos fármacos , Ácido Araquidônico/farmacologia , Feminino , Humanos , Masculino
13.
Front Cell Dev Biol ; 9: 687024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504840

RESUMO

Objective: Fexofenadine (FFD) is an antihistamine drug with an anti-inflammatory effect. The intervertebral disc (IVD) degeneration process is involved in inflammation in which tumor necrosis factor-α (TNF-α) plays an important role. This study aims to investigate the role of FFD in the pathological process of IVD degeneration. Methods: Safranin O staining was used for the measurement of cartilageous tissue in the disc. Hematoxylin-Eosin (H&E) staining was used to determine the disc construction. A rat needle puncture model was taken advantage of to examine the role of FFD in disc degeneration in vivo. Western Blotting assay, immunochemistry, and immunoflurence staining were used for the determination of inflammatory molecules. ELISA assay was performed to detect the release of inflammatory cytokines. A real-time PCR assay was analyzed to determine the transcriptional expressions of molecules. Results: Elevated TNF-α resulted in inflammatory disc degeneration, while FFD protected against TNF-α-induced IVD degeneration. Mechanism study found FFD exhibited a disc protective effect through at least two pathways. (a) FFD inhibited TNF-α-mediated extracellular matrix (ECM) degradation and (b) FFD rescued TNF-α induced inflammation in disc degeneration. Furthermore, the present study found that FFD suppressed TNF-α mediated disc degeneration via the cPLA2/NF-κB signaling pathway. Conclusions: FFD provided another alternative for treating disc degeneration through a novel mechanism. Additionally, FFD may also be a potential target for the treatment of other inflammatory-related diseases, including IVD degeneration.

14.
Cancer Chemother Pharmacol ; 88(4): 689-697, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34255137

RESUMO

BACKGROUND: Cytosolic phospholipase A2alpha (cPLA2α), an enzyme that is responsible for the hydrolysis of membrane phospholipids, is a key mediator of tumor transformation, progression and metastasis. The role of cPLA2α in gastric cancer has not been revealed. METHODS: cPLA2α expression was analyzed using RT-PCR and immunohistochemistry approaches in gastric cancer patient samples (n = 26) and multiple cell lines (n = 7). cPLA2α function was studied using plasmid overexpression and siRNA knockdown approaches in SNU-1, MKN-74 and MKN-45 cell lines. The downstream effectors of cPLA2α were determined using biochemical assays. RESULTS: cPLA2α upregulation is a common feature in gastric cancer patients, particularly those with metastasis. cPLA2α overexpression is sufficient to promote gastric cancer cell growth and migration, and confer chemo-resistance. cPLA2α depletion is active against gastric cancer via inhibiting growth and migration, and inducing apoptosis in gastric cancer cells. Of note, cPLA2α depletion augments efficacy of chemotherapy. Mechanistic studies confirm that cPLA2α regulates gastric cancer biological activities via mainly regulating Ras/MEK/ERK and possibly Akt/ß-catenin pathways. Pearson correlation coefficient analysis also suggests a moderate positive correlation between cPLA2α and RAS in gastric cancer. CONCLUSIONS: Our work demonstrates cPLA2α inhibition as a therapeutic strategy to overcome chemo-resistance and highlights the association of cPLA2α and Ras in gastric cancer.


Assuntos
Antineoplásicos/farmacologia , Fosfolipases A2 do Grupo IV/genética , Neoplasias Gástricas/patologia , Proteínas ras/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Células Tumorais Cultivadas , Regulação para Cima , beta Catenina/metabolismo
15.
Anticancer Res ; 41(1): 211-218, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33419815

RESUMO

BACKGROUND/AIM: Extracellular acidity, a characteristic of solid tumors, has been proposed to be a critical factor for aggravating tumor malignancy and conferring resistance to therapeutics. Recently, acidity has been implicated in inflammatory responses, which are mediated through active lipid metabolites in various human tissues. In the present study, we investigated whether acidity can affect lipid-mediated signaling, and found that phospholipase A2 (PLA2) activity increased at acidic pH in SNU601 and AGS gastric carcinoma cell lines. MATERIALS AND METHODS: To identify the PLA2 isoform that is responsible for the acidity-induced activity, we assessed mRNA levels of cPLA2 isotypes through real-time qPCR, and protein levels through immunoblot assay in cells cultured in acidic medium. RESULTS: It was found that acidic pH conditions markedly elevated the PLA2γ expression. A gene interference study using specific siRNA of cPLA2γ suggested that expression of cPLA2γ in acidic culture conditions may be associated with protection of cancer cells in acidic environment, as shown by cell viability and clonogenic assays. In addition, expression of cPLA2γ appeared to confer cell resistance to anticancer drugs under acidic pH conditions. CONCLUSION: Acidity-induced cPLA2γ expression may exert protective effects by imparting resistance to the gastric cancer cells under acidic environment.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Fosfolipases A2 do Grupo IV/genética , Concentração de Íons de Hidrogênio , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Antineoplásicos/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Espaço Extracelular/metabolismo , Expressão Gênica , Inativação Gênica , Fosfolipases A2 do Grupo IV/metabolismo , Humanos , RNA Interferente Pequeno , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
16.
J Neurotrauma ; 38(9): 1327-1337, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-25386720

RESUMO

Surviving motoneurons undergo dendritic atrophy after spinal cord injury (SCI), suggesting an important therapeutic target for neuroprotective strategies to improve recovery of function after SCI. Our previous studies showed that cytosolic phospholipase A2 (PLA2) may play an important role in the pathogenesis of SCI. In the present study, we investigated whether blocking cytosolic PLA2 (cPLA2) pharmacologically with arachidonyl trifluoromethyl ketone (ATK) or genetically using cPLA2 knockout (KO) mice attenuates motoneuron atrophy after SCI. C57BL/6 mice received either sham or contusive SCI at the T10 level. At 30 min after SCI, mice were treated with ATK or vehicle. Four weeks later, motoneurons innervating the vastus lateralis muscle of the quadriceps were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Soma volume, motoneuron number, lesion volume, and tissue sparing were also assessed, as were muscle weight, fiber cross-sectional area, and motor endplate size and density. ATK administration reduced percent lesion volume and increased percent volume of spared white matter, compared to the vehicle-treated control animals. SCI with or without ATK treatment had no effect on the number or soma volume of quadriceps motoneurons. However, SCI resulted in a decrease in dendritic length of quadriceps motoneurons in untreated animals, and this decrease was completely prevented by treatment with ATK. Similarly, vastus lateralis muscle weights of untreated SCI animals were smaller than those of sham surgery controls, and these reductions were prevented by ATK treatment. No effects on fiber cross-sectional areas, motor endplate area, or density were observed across treatment groups. Remarkably, genetically deleting cPLA2 in cPLA2 KO mice attenuated dendritic atrophy after SCI. These findings suggest that, after SCI, cord tissue damage and regressive changes in motoneuron and muscle morphology can be reduced by inhibition of cPLA2, further supporting a role for cPLA2 as a neurotherapeutic target for SCI treatment.


Assuntos
Neurônios Motores/enzimologia , Atrofia Muscular/enzimologia , Fármacos Neuroprotetores/uso terapêutico , Inibidores de Fosfolipase A2/uso terapêutico , Fosfolipases A2 Citosólicas/metabolismo , Traumatismos da Medula Espinal/epidemiologia , Animais , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Inibidores de Fosfolipase A2/farmacologia , Fosfolipases A2 Citosólicas/antagonistas & inibidores , Traumatismos da Medula Espinal/tratamento farmacológico
17.
Neuro Oncol ; 23(3): 387-399, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33140095

RESUMO

BACKGROUND: Metabolism remodeling is a hallmark of glioblastoma (GBM) that regulates tumor proliferation and the immune microenvironment. Previous studies have reported that increased polymerase 1 and transcript release factor (PTRF) levels are associated with a worse prognosis in glioma patients. However, the biological role and the molecular mechanism of PTRF in GBM metabolism remain unclear. METHODS: The relationship between PTRF and lipid metabolism in GBM was detected by nontargeted metabolomics profiling and subsequent lipidomics analysis. Western blotting, quantitative real-time PCR, and immunoprecipitation were conducted to explore the molecular mechanism of PTRF in lipid metabolism. A sequence of in vitro and in vivo experiments (both xenograft tumor and intracranial tumor mouse models) were used to detect the tumor-specific impacts of PTRF. RESULTS: Here, we show that PTRF triggers a cytoplasmic phospholipase A2 (cPLA2)-mediated phospholipid remodeling pathway that promotes GBM tumor proliferation and suppresses tumor immune responses. Research in primary cell lines from GBM patients revealed that cells overexpressing PTRF show increased cPLA2 activity-resulting from increased protein stability-and exhibit remodeled phospholipid composition. Subsequent experiments revealed that PTRF overexpression alters the endocytosis capacity and energy metabolism of GBM cells. Finally, in GBM xenograft and intracranial tumor mouse models, we showed that inhibiting cPLA2 activity blocks tumor proliferation and prevents PTRF-induced reduction in CD8+ tumor-infiltrating lymphocytes. CONCLUSIONS: The PTRF-cPLA2 lipid remodeling pathway promotes tumor proliferation and suppresses immune responses in GBM. In addition, our findings highlight multiple new therapeutic targets for GBM.


Assuntos
Glioblastoma , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Imunidade , Metabolismo dos Lipídeos , Camundongos , Fosfolipases A2 , Fosfolipases A2 Citosólicas , Fosfolipídeos , Proteínas de Ligação a RNA/metabolismo , Microambiente Tumoral
18.
Mol Genet Metab Rep ; 25: 100642, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32939338

RESUMO

In de novo purine biosynthesis (DNPS), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (EC 2.1.2.3)/inosine monophosphate cyclohydrolase (EC 3.5.4.10) (ATIC) catalyzes the last two reactions of the pathway: conversion of 5-aminoimidazole-4-carboxamide ribonucleotide [aka Z-nucleotide monophosphate (ZMP)] to 5-formamido-4-imidazolecarboxamide ribonucleotide (FAICAR) then to inosine monophosphate (IMP). Mutations in ATIC cause an untreatable and devastating inborn error of metabolism in humans. ZMP is an adenosine monophosphate (AMP) mimetic and a known activator of AMP-activated protein kinase (AMPK). Recently, a HeLa cell line null mutant for ATIC was constructed via CRISPR-Cas9 mutagenesis. This mutant, crATIC, accumulates ZMP during purine starvation. Given that the mutant can accumulate ZMP in the absence of treatment with exogenous compounds, crATIC is likely an important cellular model of DNPS inactivation and ZMP accumulation. In the current study, we characterize the crATIC transcriptome versus the HeLa transcriptome in purine-supplemented and purine-depleted growth conditions. We report and discuss transcriptome changes with particular relevance to Alzheimer's disease and in genes relevant to lipid and fatty acid synthesis, neurodevelopment, embryogenesis, cell cycle maintenance and progression, extracellular matrix, immune function, TGFß and other cellular processes.

19.
Am J Respir Cell Mol Biol ; 63(6): 819-830, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926636

RESUMO

Pathological changes in the biomechanical environment are implicated in the progression of idiopathic pulmonary fibrosis (IPF). Stiffened matrix augments fibroblast proliferation and differentiation and activates TGF-ß1 (transforming growth factor-ß1). Stiffened matrix impairs the synthesis of the antifibrogenic lipid mediator prostaglandin E2 (PGE2) and reduces the expression of the rate-limiting prostanoid biosynthetic enzyme cyclooxygenase-2 (COX-2). We now show that prostaglandin E synthase (PTGES), the final enzyme in the PGE2 biosynthetic pathway, is expressed at lower levels in the lungs of patients with IPF. We also show substantial induction of COX-2, PTGES, prostaglandin E receptor 4 (EP4), and cytosolic phospholipase A2 (cPLA2) expression in human lung fibroblasts cultured in soft collagen hydrogels or in spheroids compared with conventional culture on stiff plastic culture plates. Induction of COX-2, cPLA2, and PTGES expression in spheroid cultures was moderately inhibited by the p38 mitogen-activated protein kinase inhibitor SB203580. The induction of prostanoid biosynthetic enzyme expression was accompanied by an increase in PGE2 levels only in non-IPF-derived fibroblast spheroids. Our study reveals an extensive dysregulation of prostanoid biosynthesis and signaling pathways in IPF-derived fibroblasts, which are only partially abrogated by culture in soft microenvironments.


Assuntos
Microambiente Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Imidazóis/farmacologia , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Prostaglandina-E Sintases/metabolismo
20.
Cell ; 181(7): 1596-1611.e27, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32559461

RESUMO

Oncogenic transformation is associated with profound changes in cellular metabolism, but whether tracking these can improve disease stratification or influence therapy decision-making is largely unknown. Using the iKnife to sample the aerosol of cauterized specimens, we demonstrate a new mode of real-time diagnosis, coupling metabolic phenotype to mutant PIK3CA genotype. Oncogenic PIK3CA results in an increase in arachidonic acid and a concomitant overproduction of eicosanoids, acting to promote cell proliferation beyond a cell-autonomous manner. Mechanistically, mutant PIK3CA drives a multimodal signaling network involving mTORC2-PKCζ-mediated activation of the calcium-dependent phospholipase A2 (cPLA2). Notably, inhibiting cPLA2 synergizes with fatty acid-free diet to restore immunogenicity and selectively reduce mutant PIK3CA-induced tumorigenicity. Besides highlighting the potential for metabolic phenotyping in stratified medicine, this study reveals an important role for activated PI3K signaling in regulating arachidonic acid metabolism, uncovering a targetable metabolic vulnerability that largely depends on dietary fat restriction. VIDEO ABSTRACT.


Assuntos
Ácido Araquidônico/análise , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Eicosanoides/metabolismo , Animais , Ácido Araquidônico/metabolismo , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Citosol/metabolismo , Eicosanoides/fisiologia , Ativação Enzimática , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipases A2/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA