Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Sci Rep ; 14(1): 19487, 2024 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174791

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a pneumonia with extremely heterogeneous clinical presentation, ranging from asymptomatic to severely ill patients. Previous studies have reported links between the presence of host genetic variants and the outcome of the COVID-19 infection. In our study, we used whole exome sequencing in a cohort of 444 SARS-CoV-2 patients, admitted to hospital in the period October-2020-April-2022, to search for associations between rare pathogenic/potentially pathogenic variants and COVID-19 progression. We used gene prioritization-based analysis in genes that have been reported by host genetic studies. Although we did not identify correlation between the presence of rare pathogenic variants and COVID-19 outcome, in critically ill patients we detected known mutations in a number of genes associated with severe disease related to cardiovascular disease, primary ciliary dyskinesia, cystic fibrosis, DNA damage repair response, coagulation, primary immune disorder, hemoglobin subunit ß, and others. Additionally, we report 93 novel pathogenic variants found in severely infected patients who required intubation or died. A network analysis showed main component, consisting of 13 highly interconnected genes related to epithelial cilium. In conclusion, we have detected rare pathogenic host variants that may have influenced the COVID-19 outcome in Bulgarian patients.


Assuntos
COVID-19 , Sequenciamento do Exoma , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/genética , COVID-19/virologia , COVID-19/patologia , Bulgária , Feminino , Masculino , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Pessoa de Meia-Idade , Idoso , Adulto , Mutação , Cílios/patologia , Cílios/genética
2.
Mil Med Res ; 11(1): 54, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135208

RESUMO

The global prevalence rate for congenital hydrocephalus (CH) is approximately one out of every five hundred births with multifaceted predisposing factors at play. Genetic influences stand as a major contributor to CH pathogenesis, and epidemiological evidence suggests their involvement in up to 40% of all cases observed globally. Knowledge about an individual's genetic susceptibility can significantly improve prognostic precision while aiding clinical decision-making processes. However, the precise genetic etiology has only been pinpointed in fewer than 5% of human instances. More occurrences of CH cases are required for comprehensive gene sequencing aimed at uncovering additional potential genetic loci. A deeper comprehension of its underlying genetics may offer invaluable insights into the molecular and cellular basis of this brain disorder. This review provides a summary of pertinent genes identified through gene sequencing technologies in humans, in addition to the 4 genes currently associated with CH (two X-linked genes L1CAM and AP1S2, two autosomal recessive MPDZ and CCDC88C). Others predominantly participate in aqueduct abnormalities, ciliary movement, and nervous system development. The prospective CH-related genes revealed through animal model gene-editing techniques are further outlined, focusing mainly on 4 pathways, namely cilia synthesis and movement, ion channels and transportation, Reissner's fiber (RF) synthesis, cell apoptosis, and neurogenesis. Notably, the proper functioning of motile cilia provides significant impulsion for cerebrospinal fluid (CSF) circulation within the brain ventricles while mutations in cilia-related genes constitute a primary cause underlying this condition. So far, only a limited number of CH-associated genes have been identified in humans. The integration of genotype and phenotype for disease diagnosis represents a new trend in the medical field. Animal models provide insights into the pathogenesis of CH and contribute to our understanding of its association with related complications, such as renal cysts, scoliosis, and cardiomyopathy, as these genes may also play a role in the development of these diseases. Genes discovered in animals present potential targets for new treatments but require further validation through future human studies.


Assuntos
Hidrocefalia , Humanos , Hidrocefalia/genética , Hidrocefalia/etiologia , Animais , Predisposição Genética para Doença
3.
Kidney Med ; 6(8): 100857, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39105070

RESUMO

Recent studies have described several children with very early-onset polycystic kidney disease (PKD) that mimicked autosomal recessive polycystic kidney disease because of 2 hypomorphic PKD1 gene variants. However, no reports have described pathological changes in the primary cilia in these cases. We analyzed the primary cilia in the kidney tubules of an early elementary school child who had very early-onset PKD and a history of large, echogenic kidneys in utero. There was no family history of autosomal dominant PKD. The patient developed kidney failure and received a living-donor kidney transplant from his father. Genetic analysis revealed compound heterozygous variants in the PKD1 gene: c.3876C>A (p. Phe1292Leu) and c.5957C>T (p. Thr1986Met). These variants were likely pathogenic based on in silico analysis. The absence of kidney cysts in the parents suggested that these variants were hypomorphic alleles. Pathological examination of the patient's excised kidney showed prominent dilatation of the proximal and distal tubules. Immunofluorescence staining for α-tubulin showed pronounced elongation of the primary cilia. These findings suggest that the hypomorphic PKD1 variants expressed in this patient with very early-onset PKD were pathogenic.

4.
Cell Mol Gastroenterol Hepatol ; : 101389, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128653

RESUMO

BACKGROUND AND AIMS: The apical-basal polarity of pancreatic acinar cells is essential for maintaining tissue architecture. However, the mechanisms by which polarity proteins regulate acinar pancreas injury and regeneration are poorly understood. METHODS: Cerulein-induced pancreatitis was induced in mice with conditional deletion of the polarity protein Par3 in the pancreas. The impact of Par3 loss on pancreas injury and regeneration was assessed by histological analyses and transcriptional profiling by RNA sequencing. Mice were pretreated with the bromodomain and extraterminal domain (BET) inhibitor JQ1 before co-treatment with cerulein to determine the effect of BET inhibition on pancreas injury and regeneration. RESULTS: Initially, we show that Par3 is increased in acinar-ductal metaplasia (ADM) lesions present in human and mouse chronic pancreatitis specimens. While Par3 loss disrupts tight junctions, Par3 is dispensable for pancreatogenesis. However, with aging, Par3 loss results in low-grade inflammation, acinar degeneration, and pancreatic lipomatosis. Par3 loss exacerbates acute pancreatitis-induced injury and chronic pancreatitis-induced acinar cell loss, promotes pancreatic lipomatosis, and prevents regeneration. Par3 loss also results in suppression of chronic pancreatitis-induced ADM and primary ciliogenesis. Notably, targeting BET proteins attenuates chronic pancreatitis-induced loss of primary cilia and promotes ADM in mice lacking pancreatic Par3. Targeting BET proteins also attenuates cerulein-induced acinar cell loss and enhances recovery of acinar cell mass and body weight of mice lacking pancreatic Par3. CONCLUSIONS: Combined, this study demonstrates how Par3 restrains chronic pancreatitis-induced changes in the pancreas and identifies a potential role for BET inhibitors to attenuate pancreas injury and facilitate regeneration.

5.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125708

RESUMO

Single cilia, 100 nm in diameter and 10 µm in length, were isolated from mouse tracheae with Triton X-100 (0.02%) treatment, and the effects of pH on ciliary beating were examined by measuring the ciliary beat frequency (CBF) and the ciliary bend distance (CBD-an index of amplitude) using a high-speed video microscope (250 fps). ATP (2.5 mM) plus 8Br-cAMP (10 µM) reactivated the CBF and CBD in the isolated cilia, similar to the cilia of in vivo tracheae. In the reactivated isolated cilia, an elevation in pH from 7.0 to 8.0 increased the CBF from 3 to 15 Hz and the CBD from 0.6 to 1.5 µm. The pH elevation also increased the velocity of the effective stroke; however, it did not increase the recovery stroke, and, moreover, it decreased the intervals between beats. This indicates that H+ (pHi) directly acts on the axonemal machinery to regulate CBF and CBD. In isolated cilia priorly treated with 1 µM PKI-amide (a PKA inhibitor), 8Br-cAMP did not increase the CBF or CBD in the ATP-stimulated isolated cilia. pH modulates the PKA signal, which enhances the axonemal beating generated by the ATP-activated inner and outer dyneins.


Assuntos
Trifosfato de Adenosina , Cílios , AMP Cíclico , Traqueia , Animais , Cílios/efeitos dos fármacos , Cílios/metabolismo , Trifosfato de Adenosina/metabolismo , Concentração de Íons de Hidrogênio , Traqueia/metabolismo , Traqueia/efeitos dos fármacos , Camundongos , AMP Cíclico/metabolismo , Masculino
6.
Stem Cell Res Ther ; 15(1): 198, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971766

RESUMO

BACKGROUND: Trans-sutural distraction osteogenesis (TSDO) involves the application of distraction force to facial sutures to stimulate osteogenesis. Gli1+ cells in the cranial sutures play an important role in bone growth. However, whether Gli1+ cells in facial sutures differentiate into bone under distraction force is unknown. METHODS: 4-week-old Gli1ER/Td and C57BL/6 mice were used to establish a TSDO model to explore osteogenesis of zygomaticomaxillary sutures. A Gli1+ cell lineage tracing model was used to observe the distribution of Gli1+ cells and explore the role of Gli1+ cells in facial bone remodeling. RESULTS: Distraction force promoted bone remodeling during TSDO. Fluorescence and two-photon scanning images revealed the distribution of Gli1+ cells. Under distraction force, Gli1-lineage cells proliferated significantly and co-localized with Runx2+ cells. Hedgehog signaling was upregulated in Gli1+ cells. Inhibition of Hedgehog signaling suppresses the proliferation and osteogenesis of Gli1+ cells induced by distraction force. Subsequently, the stem cell characteristics of Gli1+ cells were identified. Cell-stretching experiments verified that mechanical force promoted the osteogenic differentiation of Gli1+ cells through Hh signaling. Furthermore, immunofluorescence staining and RT-qPCR experiments demonstrated that the primary cilia in Gli1+ cells exhibit Hedgehog-independent mechanosensitivity, which was required for the osteogenic differentiation induced by mechanical force. CONCLUSIONS: Our study indicates that the primary cilia of Gli1+ cells sense mechanical stimuli, mediate Hedgehog signaling activation, and promote the osteogenic differentiation of Gli1+ cells in zygomaticomaxillary sutures.


Assuntos
Diferenciação Celular , Cílios , Suturas Cranianas , Proteínas Hedgehog , Osteogênese , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco , Animais , Camundongos , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Osteogênese/fisiologia , Cílios/metabolismo , Suturas Cranianas/metabolismo , Camundongos Endogâmicos C57BL , Osteogênese por Distração/métodos , Proliferação de Células
7.
Front Cell Dev Biol ; 12: 1370723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989059

RESUMO

Juvenile nephronophthisis is an inherited renal ciliopathy with cystic kidney disease, renal fibrosis, and end-stage renal failure in children and young adults. Mutations in the NPHP1 gene encoding nephrocystin-1 protein have been identified as the most frequently responsible gene and cause the formation of cysts in the renal medulla. The molecular pathogenesis of juvenile nephronophthisis remains elusive, and no effective medicines to prevent end-stage renal failure exist even today. No human cellular models have been available yet. Here, we report a first disease model of juvenile nephronophthisis using patient-derived and gene-edited human induced pluripotent stem cells (hiPSCs) and kidney organoids derived from these hiPSCs. We established NPHP1-overexpressing hiPSCs from patient-derived hiPSCs and NPHP1-deficient hiPSCs from healthy donor hiPSCs. Comparing these series of hiPSCs, we found abnormalities in primary cilia associated with NPHP1 deficiency in hiPSCs. Kidney organoids generated from the hiPSCs lacking NPHP1 formed renal cysts frequently in suspension culture with constant rotation. This cyst formation in patient-derived kidney organoids was rescued by overexpression of NPHP1. Transcriptome analysis on these kidney organoids revealed that loss of NPHP1 caused lower expression of genes related to primary cilia in epithelial cells and higher expression of genes related to the cell cycle. These findings suggested the relationship between abnormality in primary cilia induced by NPHP1 loss and abnormal proliferative characteristics in the formation of renal cysts. These findings demonstrated that hiPSC-based systematic disease modeling of juvenile nephronophthisis contributed to elucidating the molecular pathogenesis and developing new therapies.

8.
Development ; 151(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007638

RESUMO

Vertebrate motile cilia are classified as (9+2) or (9+0), based on the presence or absence of the central pair apparatus, respectively. Cryogenic electron microscopy analyses of (9+2) cilia have uncovered an elaborate axonemal protein composition. The extent to which these features are conserved in (9+0) cilia remains unclear. CFAP53, a key axonemal filamentous microtubule inner protein (fMIP) and a centriolar satellites component, is essential for motility of (9+0), but not (9+2) cilia. Here, we show that in (9+2) cilia, CFAP53 functions redundantly with a paralogous fMIP, MNS1. MNS1 localises to ciliary axonemes, and combined loss of both proteins in zebrafish and mice caused severe outer dynein arm loss from (9+2) cilia, significantly affecting their motility. Using immunoprecipitation, we demonstrate that, whereas MNS1 can associate with itself and CFAP53, CFAP53 is unable to self-associate. We also show that additional axonemal dynein-interacting proteins, two outer dynein arm docking (ODAD) complex members, show differential localisation between types of motile cilia. Together, our findings clarify how paralogous fMIPs, CFAP53 and MNS1, function in regulating (9+2) versus (9+0) cilia motility, and further emphasise extensive structural diversity among these organelles.


Assuntos
Axonema , Cílios , Peixe-Zebra , Animais , Cílios/metabolismo , Cílios/ultraestrutura , Peixe-Zebra/metabolismo , Camundongos , Axonema/metabolismo , Axonema/ultraestrutura , Dineínas do Axonema/metabolismo , Dineínas do Axonema/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Dineínas/metabolismo
9.
Biomolecules ; 14(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062557

RESUMO

Agricultural workers exposed to organic dust from swine concentrated animal feeding operations (CAFOs) have increased chances of contracting chronic lung disease. Mucociliary clearance represents a first line of defense against inhaled dusts, but organic dust extracts (ODEs) from swine barns cause cilia slowing, leading to decreased bacterial clearance and increased lung inflammation. Because nutritional zinc deficiency is associated with chronic lung disease, we examined the role of zinc supplementation in ODE-mediated cilia slowing. Ciliated mouse tracheal epithelial cells were pretreated with 0-10 µg/mL ZinProTM for 1 h, followed by treatment with 5% ODE for 24 h. Cilia beat frequency (CBF) and protein kinase C epsilon (PKCε) activity were assayed. ODE treatment resulted in cilia slowing after 24 h, which was reversed with 0.5 and 1.0 µg/mL ZinPro pre-treatment. No zinc protection was observed at 50 ng/mL, and ciliated cells detached at high concentrations (100 µg/mL). ZinPro alone produced no changes in the baseline CBF and showed no toxicity to the cells at concentrations of up to 10 µg/mL. Pre-treatment with ZinPro inhibited ODE-stimulated PKCε activation in a dose-dependent manner. Based on ZinPro's superior cell permeability compared to zinc salts, it may be therapeutically more effective at reversing ODE-mediated cilia slowing through a PKCε pathway. These data demonstrate that zinc supplementation may support the mucociliary transport apparatus in the protection of CAFO workers against dust-mediated chronic lung disease.


Assuntos
Cílios , Poeira , Proteína Quinase C-épsilon , Zinco , Animais , Cílios/efeitos dos fármacos , Cílios/metabolismo , Suínos , Camundongos , Zinco/farmacologia , Proteína Quinase C-épsilon/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(28): e2320070121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968120

RESUMO

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.


Assuntos
Quinases Dyrk , Proteínas Hedgehog , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco , Animais , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proliferação de Células , Cílios/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Proteínas Nucleares , Proteínas Repressoras
11.
Front Cell Dev Biol ; 12: 1422227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035026

RESUMO

Extracellular vesicles (EVs) are crucial for transferring bioactive materials between cells and play vital roles in both health and diseases. Cellular protrusions, including filopodia and microvilli, are generated by the bending of the plasma membrane and are considered to be rigid structures facilitating various cellular functions, such as cell migration, adhesion, and environment sensing. Compelling evidence suggests that these protrusions are dynamic and flexible structures that can serve as sources of a new class of EVs, highlighting the unique role they play in intercellular material transfer. Cytonemes are specialized filopodia protrusions that make direct contact with neighboring cells, mediating the transfer of bioactive materials between cells through their tips. In some cases, these tips fuse with the plasma membrane of neighboring cells, creating tunneling nanotubes that directly connect the cytosols of the adjacent cells. Additionally, virus particles can be released from infected cells through small bud-like of plasma membrane protrusions. These different types of protrusions, which can transfer bioactive materials, share common protein components, including I-BAR domain-containing proteins, actin cytoskeleton, and their regulatory proteins. The dynamic and flexible nature of these protrusions highlights their importance in cellular communication and material transfer within the body, including development, cancer progression, and other diseases.

12.
Dev Biol ; 515: 92-101, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39029571

RESUMO

Congenital lung malformations are fatal at birth in their severe forms. Prevention and early intervention of these birth defects require a comprehensive understanding of the molecular mechanisms of lung development. We find that the loss of inturned (Intu), a cilia and planar polarity effector gene, severely disrupts growth and branching morphogenesis of the mouse embryonic lungs. Consistent with our previous results indicating an important role for Intu in ciliogenesis and hedgehog (Hh) signaling, we find greatly reduced number of primary cilia in both the epithelial and mesenchymal tissues of the lungs. We also find significantly reduced expression of Gli1 and Ptch1, direct targets of Hh signaling, suggesting disruption of cilia-dependent Hh signaling in Intu mutant lungs. An agonist of the Hh pathway activator, smoothened, increases Hh target gene expression and tubulogenesis in explanted wild type, but not Intu mutant, lungs, suggesting impaired Hh signaling response underlying lung morphogenetic defects in Intu mutants. Furthermore, removing both Gli2 and Intu completely abolishes branching morphogenesis of the lung, strongly supporting a mechanism by which Intu regulates lung growth and patterning through cilia-dependent Hh signaling. Moreover, a transcriptomics analysis identifies around 200 differentially expressed genes (DEGs) in Intu mutant lungs, including known Hh target genes Gli1, Ptch1/2 and Hhip. Genes involved in muscle differentiation and function are highly enriched among the DEGs, consistent with an important role of Hh signaling in airway smooth muscle differentiation. In addition, we find that the difference in gene expression between the left and right lungs diminishes in Intu mutants, suggesting an important role of Intu in asymmetrical growth and patterning of the mouse lungs.


Assuntos
Cílios , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Pulmão , Transdução de Sinais , Animais , Camundongos , Padronização Corporal/genética , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Pulmão/embriologia , Pulmão/metabolismo , Morfogênese/genética , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética
13.
Chest ; 166(1): e15-e20, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38986646

RESUMO

CASE PRESENTATION: An 82-year-old woman with a remote tracheostomy due to vocal cord paralysis and long-standing erosive, seropositive rheumatoid arthritis (RA) well controlled with methotrexate sought treatment at the ED with 1 month of dyspnea, chest tightness, and cough productive of blood-tinged sputum. She had been treated unsuccessfully as an outpatient with multiple courses of antibiotics. She did not smoke or drink alcohol and had no recent travel outside the country. Given concern for airway compromise, she was admitted to the hospital.


Assuntos
Artrite Reumatoide , Dispneia , Estenose Traqueal , Humanos , Feminino , Idoso de 80 Anos ou mais , Artrite Reumatoide/complicações , Artrite Reumatoide/diagnóstico , Dispneia/etiologia , Dispneia/diagnóstico , Estenose Traqueal/etiologia , Estenose Traqueal/diagnóstico , Tomografia Computadorizada por Raios X , Traqueostomia , Broncoscopia , Diagnóstico Diferencial
14.
Int J Biol Macromol ; : 133604, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964683

RESUMO

Cyclin-dependent kinase-like (CDKL) family proteins are serine/threonine protein kinases and is a specific branch of CMGC (including CDK, MAPK, GSK). Its name is due to the sequence similarity with CDK and it consists of 5 members. Their function in protein phosphorylation underpins their important role in cellular activities, including cell cycle, apoptosis, autophagy and microtubule dynamics. CDKL proteins have been demonstrated to regulate the length of primary cilium, which is a dynamic and diverse signaling hub and closely associated with multiple diseases. Furthermore, CDKL proteins have been shown to be involved in the development and progression of several diseases, including cancer, neurodegenerative diseases and kidney disease. In this review, we summarize the structural characteristics and discovered functions of CDKL proteins and their role in diseases, which might be helpful for the development of innovative therapeutic strategies for disease.

15.
Cells ; 13(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39056782

RESUMO

Disease-causing bi-allelic DNA variants in CCDC39 and CCDC40 are frequent causes of the hereditary disorder of primary ciliary dyskinesia (PCD). The encoded proteins form a molecular ruler complex, crucial for maintaining the 96 nm repeat units along the ciliary axonemes. Defects of those proteins cause a stiff, rapid, and flickery ciliary beating pattern, recurrent respiratory infections, axonemal disorganization, and abnormal assembly of GAS8, CCDC39, and DNALI1. We performed molecular characterization of the defects in the 96 nm axonemal ruler due to disease-causing variants in CCDC39 and CCDC40 and analyzed the effect on additional axonemal components. We identified a cohort of 51 individuals with disease-causing variants in CCDC39 and CCDC40 via next-generation sequencing techniques and demonstrated that the IDA heavy chains DNAH1, DNAH6, and DNAH7 are conspicuously absent within the respiratory ciliary axonemes by immunofluorescence analyses. Hence, we show for the first time that the centrin2 (CETN2) containing IDAs are also affected. These findings underscore the crucial role of CCDC39 and CCDC40 in the assembly and function of IDAs in human respiratory cilia. Thus, our data improve the diagnostics of axonemal ruler defects by further characterizing the associated molecular IDA defects.


Assuntos
Axonema , Humanos , Masculino , Dineínas do Axonema/metabolismo , Dineínas do Axonema/genética , Axonema/metabolismo , Cílios/metabolismo , Cílios/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Proteínas do Citoesqueleto , Dineínas/metabolismo , Dineínas/genética , Mutação/genética , Proteínas
16.
Plant Cell Environ ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935876

RESUMO

In Chlamydomonas, the directly light-gated, plasma membrane-localized cation channels channelrhodopsins ChR1 and ChR2 are the primary photoreceptors for phototaxis. Their targeting and abundance is essential for optimal movement responses. However, our knowledge how Chlamydomonas achieves this is still at its infancy. Here we show that ChR1 internalization occurs via light-stimulated endocytosis. Prior or during endocytosis ChR1 is modified and forms high molecular mass complexes. These are the solely detectable ChR1 forms in extracellular vesicles and their abundance therein dynamically changes upon illumination. The ChR1-containing extracellular vesicles are secreted via the plasma membrane and/or the ciliary base. In line with this, ciliogenesis mutants exhibit increased ChR1 degradation rates. Further, we establish involvement of the cysteine protease CEP1, a member of the papain-type C1A subfamily. ΔCEP1-knockout strains lack light-induced ChR1 degradation, whereas ChR2 degradation was unaffected. Low light stimulates CEP1 expression, which is regulated via phototropin, a SPA1 E3 ubiquitin ligase and cyclic AMP. Further, mutant and inhibitor analyses revealed involvement of the small GTPase ARL11 and SUMOylation in ChR1 targeting to the eyespot and cilia. Our study thus defines the degradation pathway of this central photoreceptor of Chlamydomonas and identifies novel elements involved in its homoeostasis and targeting.

17.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38940293

RESUMO

Generation of hematopoietic stem and progenitor cells (HSPCs) ex vivo and in vivo, especially the generation of safe therapeutic HSPCs, still remains inefficient. In this study, we have identified compound BF170 hydrochloride as a previously unreported pro-hematopoiesis molecule, using the differentiation assays of primary zebrafish blastomere cell culture and mouse embryoid bodies (EBs), and we demonstrate that BF170 hydrochloride promoted definitive hematopoiesis in vivo. During zebrafish definitive hematopoiesis, BF170 hydrochloride increases blood flow, expands hemogenic endothelium (HE) cells and promotes HSPC emergence. Mechanistically, the primary cilia-Ca2+-Notch/NO signaling pathway, which is downstream of the blood flow, mediated the effects of BF170 hydrochloride on HSPC induction in vivo. Our findings, for the first time, reveal that BF170 hydrochloride is a compound that enhances HSPC induction and may be applied to the ex vivo expansion of HSPCs.


Assuntos
Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas , Peixe-Zebra , Animais , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Diferenciação Celular/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Corpos Embrioides/citologia , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Cílios/metabolismo , Cílios/efeitos dos fármacos , Blastômeros/citologia , Blastômeros/metabolismo , Blastômeros/efeitos dos fármacos , Células Cultivadas
18.
Cureus ; 16(5): e59993, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38854310

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD) is caused by a mutation in the polycystic kidney and hepatic disease-1 (PKHD1) gene and is an important inherited cause of chronic kidney disease in children. The most typical presentations in neonates are massively enlarged kidneys with variable echogenicity, multiple small cysts, and congenital hepatic fibrosis. Potter sequence with pulmonary hypoplasia can present due to oligohydramnios. Severe pulmonary hypoplasia can lead to respiratory insufficiency and perinatal death. Some affected children can develop end-stage renal disease in early childhood or adolescence. Here, we report the clinical presentations, management, and renal outcomes of three neonatal cases of ARPKD from our center.

19.
J Hepatol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879173

RESUMO

BACKGROUND & AIMS: Biliary complications are a major cause of morbidity and mortality in liver transplantation. Up to 25% of patients that develop biliary complications require additional surgical procedures, re-transplantation or die in the absence of a suitable regraft. Here, we investigate the role of the primary cilium, a highly-specialised sensory organelle, in biliary injury leading to post-transplant biliary complications. METHODS: Human biopsies were used to study the structure and function of primary cilia in liver transplant recipients that develop biliary complications (N=7) in comparison with recipients without biliary complications (N=12). To study the biological effects of the primary cilia during transplantation, we generated murine models that recapitulate liver procurement and cold storage, and assessed the elimination of the primary cilia in biliary epithelial cells in the K19CreERTKif3aflox/flox mouse model. To explore the molecular mechanisms responsible for the observed phenotypes we used in vitro models of ischemia, cellular senescence and primary cilia ablation. Finally, we used pharmacological and genetic approaches to target cellular senescence and the primary cilia, both in mouse models and discarded human donor livers. RESULTS: Prolonged ischemic periods before transplantation result in ciliary shortening and cellular senescence, an irreversible cell cycle arrest that blocks regeneration. Our results indicate that primary cilia damage results in biliary injury and a loss of regenerative potential. Senescence negatively impacts primary cilia structure and triggers a negative feedback loop that further impairs regeneration. Finally, we explore how targeted interventions for cellular senescence and/or the stabilisation of the primary cilia improve biliary regeneration following ischemic injury. CONCLUSIONS: Primary cilia play an essential role in biliary regeneration and we demonstrate that senolytics and cilia-stabilising treatments provide a potential therapeutic opportunity to reduce the rate of biliary complications and improve clinical outcomes in liver transplantation. IMPACT AND IMPLICATIONS: Up to 25% of liver transplants result in biliary complications, leading to additional surgery, retransplants, or death. We found that the incidence of biliary complications is increased by damage to the primary cilium, an antenna that protrudes from the cell and is key to regeneration. Here, we show that treatments that preserve the primary cilia during the transplant process provide a potential solution to reduce the rates of biliary complications.

20.
EMBO Rep ; 25(7): 3040-3063, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849673

RESUMO

Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney causes ciliary elongation and cystogenesis, and cell-based proximity labeling proteomics and fluorescence microscopy show alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20, and polycystin-2 (PC2) are reduced in the cilia of DLG1-deficient cells compared to control cells. This phenotype is recapitulated in vivo and rescuable by re-expression of wild-type DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggest that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.


Assuntos
Proteínas de Transporte , Cílios , Proteína 1 Homóloga a Discs-Large , Canais de Cátion TRPP , Animais , Cílios/metabolismo , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética , Camundongos , Proteína 1 Homóloga a Discs-Large/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Humanos , Transporte Proteico , Camundongos Knockout , Rim/metabolismo , Células Epiteliais/metabolismo , Ligação Proteica , Refluxo Vesicoureteral/metabolismo , Refluxo Vesicoureteral/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Anormalidades Urogenitais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA