Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 161: 107103, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121496

RESUMO

We investigated the effects of extremely-low frequency electromagnetic fields (ELF-EMFs; 50 Hz) on the secretion of cortisol in 14 men (mean age = 38.0 ± 0.9 years) working in extra-high voltage (EHV) substations. The workers dwelt in houses that were close to substations and high-voltage lines. Thus, they had long histories (1-20 years) of long-yerm exposure to ELF-EMFs. Magnetic field strength was recorded using Emdex dosimeters worn by the volunteers day and night for seven days; the one-week geometric mean ranged from 0.1 to 2.6 µT. Blood samples were taken hourly from 20:00 to 08:00 the next morning. Cortisol concentrations and patterns were compared to age-matched, unexposed control subjects whose exposure level was ten times lower. The comparison of the control group (n = 15) and the groups exposed to fields of 0.1-0.3 µT (n = 5) and > 0.3 µT (n = 9), respectively, revealed a significant effect of field intensity on the cortisol secretory pattern. This study strongly suggests that chronic exposure to ELF-EMFs alters the peak-time serum cortisol levels. Studies are required on the effect of this disruption in high-risk populations such as children, elderly people, and patients with cancer.


Assuntos
Campos Eletromagnéticos , Hidrocortisona , Adulto , Idoso , Criança , Campos Eletromagnéticos/efeitos adversos , Humanos , Masculino
3.
Chronobiol Int ; 33(8): 1101-19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27308960

RESUMO

Biological processes are organized in time as innate rhythms defined by the period (τ), phase (peak [Φ] and trough time), amplitude (A, peak-trough difference) and mean level. The human time structure in its entirety is comprised of ultradian (τ < 20 h), circadian (20 h > τ < 28 h) and infradian (τ > 28 h) bioperiodicities. The circadian time structure (CTS) of human beings, which is more complicated than in lower animals, is orchestrated and staged by a brain central multioscillator system that includes a prominent pacemaker - the suprachiasmatic nuclei of the hypothalamus. Additional pacemaker activities are provided by the pineal hormone melatonin, which circulates during the nighttime, and the left and right cerebral cortices. Under ordinary circumstances this system coordinates the τ and Φ of rhythms driven by subservient peripheral cell, tissue and organ clock networks. Cyclic environmental, feeding and social time cues synchronize the endogenous 24 h clocks and rhythms. Accordingly, processes and functions of the internal environment are integrated in time for maximum biological efficiency, and they are also organized and synchronized in time to the external environment to ensure optimal performance and response to challenge. Artificial light at night (ALAN) exposure can alter the CTS as can night work, which, like rapid transmeridian displacement by air travel, necessitates realignment of the Φ of the multitude of 24 h rhythms. In 2001, Stevens and Rea coined the phrase "circadian disruption" (CD) to label the CTS misalignment induced by ALAN and shift work (SW) as a potential pathologic mechanism of the increased risk for cancer and other medical conditions. Current concerns relating to the effects of ALAN exposure on the CTS motivated us to renew our long-standing interest in the possible role of CD in the etiopathology of common human diseases and patient care. A surprisingly large number of medical conditions involve CD: adrenal insufficiency; nocturia; sleep-time non-dipping and rising blood pressure 24 h patterns (nocturnal hypertension); delayed sleep phase syndrome, non-24 h sleep/wake disorder; recurrent hypersomnia; SW intolerance; delirium; peptic ulcer disease; kidney failure; depression; mania; bipolar disorder; Parkinson's disease; Smith-Magenis syndrome; fatal familial insomnia syndrome; autism spectrum disorder; asthma; byssinosis; cancers; hand, foot and mouth disease; post-operative state; and ICU outcome. Poorly conceived medical interventions, for example nighttime dosing of synthetic corticosteroids and certain ß-antagonists and cyclic nocturnal enteral or parenteral nutrition, plus lifestyle habits, including atypical eating times and chronic alcohol consumption, also can be causal of CD. Just as surprisingly are the many proven chronotherapeutic strategies available today to manage the CD of several of these medical conditions. In clinical medicine, CD seems to be a common, yet mostly unrecognized, pathologic mechanism of human disease as are the many effective chronotherapeutic interventions to remedy it.


Assuntos
Transtornos Cronobiológicos/etiologia , Ritmo Circadiano , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hipertensão , Noctúria , Preparações Farmacêuticas , Humanos , Proibitinas
4.
J Biol Rhythms ; 30(4): 318-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26017928

RESUMO

The suprachiasmatic nucleus (SCN) drives circadian rhythms in behavioral and physiological variables, including the inflammatory response. Shift work is known to disturb circadian rhythms and is associated with increased susceptibility to develop disease. In rodents, circadian disruption due to shifted light schedules (jet lag) induced increased innate immune responses. To gain more insight into the influence of circadian disruption on the immune response, we characterized the inflammatory response in a model of rodent shift work and demonstrated that circadian disruption affected the inflammatory response to lipopolysaccharide (LPS) both in vivo and in vitro. Since food consumption is a main disturbing element in the shift work schedule, we also evaluated the inflammatory response to LPS in a group of rats that had no access to food during their working hours. Our results demonstrated that the shift work schedule decreased basal TNF-α levels in the liver but not in the circulation. Despite this, we observed that shift work induced increased cytokine response after LPS stimulation in comparison to control rats. Also, Kupffer cells (liver macrophages) isolated from shift work rats produced more TNF-α in response to in vitro LPS stimulation, suggesting important effects of circadian desynchronization on the functionality of this cell type. Importantly, the effects of shift work on the inflammatory response to LPS were prevented when food was not available during the working schedule. Together, these results show that dissociating behavior and food intake from the synchronizing drive of the SCN severely disturbs the immune response.


Assuntos
Transtornos Cronobiológicos/fisiopatologia , Ritmo Circadiano , Ingestão de Alimentos , Inflamação/etiologia , Lipopolissacarídeos/imunologia , Animais , Relógios Biológicos/fisiologia , Células Cultivadas , Transtornos Cronobiológicos/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Lipopolissacarídeos/administração & dosagem , Fígado/imunologia , Fígado/metabolismo , Masculino , Fotoperíodo , Ratos Wistar , Núcleo Supraquiasmático/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Tolerância ao Trabalho Programado
5.
Sleep Med Rev ; 17(6): 433-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23618533

RESUMO

Shift work is commonly associated with disturbed life rhythms, resulting in chronic exposure to circadian desynchronization and sleep restriction. Epidemiological data have shown that shift workers are at an increased risk of cardiovascular disease and breast cancer. In this review, we will explore how observed increases in neuroendocrine stress, non-specific immune responses and pro-oxidative status could act as biological mediators for these damaging health risks in shift workers. To explain these risks, compelling evidence from laboratory studies links circadian misalignment but also sleep restriction to disruptions in the neuroendocrine, immune and oxidative stress systems. Assessment of neuroendocrine, oxidative and immune stress in the shift worker population is still a limited and novel field, which may have considerable clinical relevance. Finally, we will consider the potential benefits of a countermeasure, such as napping, in minimizing the neuroendocrine and immune stress and cardiovascular risk imposed by shift work.


Assuntos
Estresse Oxidativo/fisiologia , Tolerância ao Trabalho Programado/fisiologia , Humanos , Imunidade/fisiologia , Sistemas Neurossecretores/fisiopatologia , Estresse Oxidativo/imunologia , Fatores de Risco , Transtornos do Sono do Ritmo Circadiano/imunologia , Transtornos do Sono do Ritmo Circadiano/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA