Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Ther Adv Neurol Disord ; 16: 17562864231213240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152089

RESUMO

Myasthenia gravis (MG), Lambert-Eaton myasthenic syndrome (LEMS), and congenital myasthenic syndromes (CMS) represent an etiologically heterogeneous group of (very) rare chronic diseases. MG and LEMS have an autoimmune-mediated etiology, while CMS are genetic disorders. A (strain dependent) muscle weakness due to neuromuscular transmission disorder is a common feature. Generalized MG requires increasingly differentiated therapeutic strategies that consider the enormous therapeutic developments of recent years. To include the newest therapy recommendations, a comprehensive update of the available German-language guideline 'Diagnostics and therapy of myasthenic syndromes' has been published by the German Neurological society with the aid of an interdisciplinary expert panel. This paper is an adapted translation of the updated and partly newly developed treatment guideline. It defines the rapid achievement of complete disease control in myasthenic patients as a central treatment goal. The use of standard therapies, as well as modern immunotherapeutics, is subject to a staged regimen that takes into account autoantibody status and disease activity. With the advent of modern, fast-acting immunomodulators, disease activity assessment has become pivotal and requires evaluation of the clinical course, including severity and required therapies. Applying MG-specific scores and classifications such as Myasthenia Gravis Activities of Daily Living, Quantitative Myasthenia Gravis, and Myasthenia Gravis Foundation of America allows differentiation between mild/moderate and (highly) active (including refractory) disease. Therapy decisions must consider age, thymic pathology, antibody status, and disease activity. Glucocorticosteroids and the classical immunosuppressants (primarily azathioprine) are the basic immunotherapeutics to treat mild/moderate to (highly) active generalized MG/young MG and ocular MG. Thymectomy is indicated as a treatment for thymoma-associated MG and generalized MG with acetylcholine receptor antibody (AChR-Ab)-positive status. In (highly) active generalized MG, complement inhibitors (currently eculizumab and ravulizumab) or neonatal Fc receptor modulators (currently efgartigimod) are recommended for AChR-Ab-positive status and rituximab for muscle-specific receptor tyrosine kinase (MuSK)-Ab-positive status. Specific treatment for myasthenic crises requires plasmapheresis, immunoadsorption, or IVIG. Specific aspects of ocular, juvenile, and congenital myasthenia are highlighted. The guideline will be further developed based on new study results for other immunomodulators and biomarkers that aid the accurate measurement of disease activity.

2.
Acta Neurol Belg ; 123(6): 2325-2335, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656362

RESUMO

BACKGROUND: Congenital myasthenic syndrome is a disease that occurs due to several types such as mutations in different pre-synaptic, synaptic, post-synaptic proteins and, glycosylation defects associated with congenital myopathy. Juvenile myasthenia gravis is an autoimmune condition usually caused by antibodies targeting the acetylcholine receptor. AIMS: Our objective is to conduct an analysis on the subgroup traits exhibited by patients who have been diagnosed with congenital myasthenic syndrome and juvenile myasthenia gravis, with a focus on their long-term monitoring and management. METHODS: This study was conducted on children diagnosed with myasthenia gravis, who were under the care of Dokuz Eylul University's Department of Pediatric Neurology for a period of ten years. RESULTS: A total of 22 (12 congenital myasthenic syndrome, 10 juvenile myasthenia gravis) patients were identified. Defects in the acetylcholine receptor (6/12) were the most common type in the congenital myasthenic syndrome group. Basal-lamina-related defects (5/12) were the second most prevalent. One patient had a GFPT1 gene mutation (1/12). Patients with ocular myasthenia gravis (n = 6) exhibited milder symptoms. In the generalized myasthenia gravis group (n = 4), specifically in postpubertal girls, a more severe clinical progression was observed, leading to the implementation of more aggressive treatment strategies. CONCLUSION: This study highlights that clinical recognition of congenital myasthenic syndrome and knowledge of related genes will aid the rapid diagnosis and treatment of these rare neuromuscular disorders. Findings in the juvenile myasthenia gravis group demonstrate the impact of pubertal development and the need for timely and appropriate active therapy, including thymectomy, to improve prognosis.


Assuntos
Miastenia Gravis , Síndromes Miastênicas Congênitas , Criança , Feminino , Humanos , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/tratamento farmacológico , Turquia , Miastenia Gravis/diagnóstico , Miastenia Gravis/genética , Miastenia Gravis/complicações , Debilidade Muscular , Receptores Colinérgicos/genética
3.
Handb Clin Neurol ; 195: 635-652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37562891

RESUMO

Myasthenia gravis is an autoimmune disorder caused by antibodies against elements in the postsynaptic membrane at the neuromuscular junction, which leads to muscle weakness. Congenital myasthenic syndromes are rare and caused by mutations affecting pre- or postsynaptic function at the neuromuscular synapse and resulting in muscle weakness. MG has a prevalence of 150-250 and an annual incidence of 8-10 individuals per million. The majority has disease onset after age 50 years. Juvenile MG with onset in early childhood is more common in East Asia. MG is subgrouped according to type of pathogenic autoantibodies, age of onset, thymus pathology, and generalization of muscle weakness. More than 80% have antibodies against the acetylcholine receptor. The remaining have antibodies against MuSK, LRP4, or postsynaptic membrane antigens not yet identified. A thymoma is present in 10% of MG patients, and more than one-third of thymoma patients develop MG as a paraneoplastic condition. Immunosuppressive drug therapy, thymectomy, and symptomatic drug therapy with acetylcholine esterase inhibitors represent cornerstones in the treatment. The prognosis is good, with the majority of patients having mild or moderate symptoms only. Most congenital myasthenic syndromes are due to dysfunction in the postsynaptic membrane. Symptom debut is in early life. Symptomatic drug treatment has sometimes a positive effect.


Assuntos
Miastenia Gravis , Síndromes Miastênicas Congênitas , Timoma , Neoplasias do Timo , Pré-Escolar , Humanos , Pessoa de Meia-Idade , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Timoma/complicações , Miastenia Gravis/diagnóstico , Miastenia Gravis/genética , Miastenia Gravis/terapia , Debilidade Muscular/etiologia , Autoanticorpos , Neoplasias do Timo/complicações
4.
Adv Pediatr ; 70(1): 81-90, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422299

RESUMO

Myasthenia gravis (MG) is a rare condition that impairs function at the neuromuscular junction of skeletal muscles, seen less commonly in children. Causes include autoimmune MG, congenital myasthenic syndromes, and transient neonatal myasthenia gravis. Symptoms of weakness, hypotonia, and fatigability can be reasonably explained by more common causes, thus children with MG disorders commonly experience delays in treatment with severe consequences. This leads to the progression of disease and serious complications including myasthenic crises and exacerbations. We describe 5 cases of MG, which illustrate clinical and genetic challenges in establishing diagnosis and subsequent consequences of delayed diagnosis.


Assuntos
Miastenia Gravis , Síndromes Miastênicas Congênitas , Recém-Nascido , Lactente , Criança , Humanos , Miastenia Gravis/terapia , Miastenia Gravis/tratamento farmacológico , Síndromes Miastênicas Congênitas/terapia , Síndromes Miastênicas Congênitas/tratamento farmacológico , Fadiga
5.
J Clin Med ; 12(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176748

RESUMO

BACKGROUND: Congenital myasthenic syndromes (CMSs) and primary mitochondrial myopathies (PMMs) can present with ptosis, external ophthalmoplegia, and limb weakness. METHODS: Our method involved the description of three cases of CMS that were initially characterized as probable PMM. RESULTS: All patients were male and presented with ptosis and/or external ophthalmoplegia at birth, with proximal muscle weakness and fatigue on physical exertion. After normal repetitive nerve stimulation (RNS) studies performed on facial muscles, a muscle biopsy (at a median age of 9) was performed to rule out congenital myopathies. In all three cases, the biopsy findings (COX-negative fibers or respiratory chain defects) pointed to PMM. They were referred to our neuromuscular unit in adulthood to establish a genetic diagnosis. However, at this time, fatigability was evident in the physical exams and RNS in the spinal accessory nerve showed a decremental response in all cases. Targeted genetic studies revealed pathogenic variants in the MUSK, DOK7, and RAPSN genes. The median diagnostic delay was 29 years. Treatment resulted in functional improvement in all cases. CONCLUSIONS: Early identification of CMS is essential as medical treatment can provide clear benefits. Its diagnosis can be challenging due to phenotypic overlap with other debilitating disorders. Thus, a high index of suspicion is necessary to guide the diagnostic strategy.

6.
Handb Clin Neurol ; 189: 259-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36031308

RESUMO

In amyotrophic lateral sclerosis (ALS), Guillain-Barré syndrome (GBS), and neuromuscular junction disorders, three mechanisms may lead, singly or together, to respiratory emergencies and increase the disease burden and mortality: (i) reduced strength of diaphragm and accessory muscles; (ii) oropharyngeal dysfunction with possible aspiration of saliva/bronchial secretions/drink/food; and (iii) inefficient cough due to weakness of abdominal muscles. Breathing deficits may occur at onset or more often along the chronic course of the disease. Symptoms and signs are dyspnea on minor exertion, orthopnea, nocturnal awakenings, excessive daytime sleepiness, fatigue, morning headache, poor concentration, and difficulty in clearing bronchial secretions. The "20/30/40 rule" has been proposed to early identify GBS patients at risk for respiratory failure. The mechanical in-exsufflator is a device that assists ALS patients in clearing bronchial secretions. Noninvasive ventilation is a safe and helpful support, especially in ALS, but has some contraindications. Myasthenic crisis is a clinical challenge and is associated with substantial morbidity including prolonged mechanical ventilation and 5%-12% mortality. Emergency room physicians and consultant pulmonologists and neurologists must know such respiratory risks, be able to recognize early signs, and treat properly.


Assuntos
Esclerose Lateral Amiotrófica , Síndrome de Guillain-Barré , Miastenia Gravis , Doenças Neuromusculares , Doenças da Junção Neuromuscular , Insuficiência Respiratória , Humanos , Neurônios Motores , Nervos Periféricos
7.
Eur J Neurol ; 29(3): 833-842, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34749429

RESUMO

OBJECTIVES: To present phenotype features of a large cohort of congenital myasthenic syndromes (CMS) and correlate them with their molecular diagnosis. METHODS: Suspected CMS patients were divided into three groups: group A (limb, bulbar or axial weakness, with or without ocular impairment, and all the following: clinical fatigability, electrophysiology compatible with neuromuscular junction involvement and anticholinesterase agents response), group B (limb, bulbar or axial weakness, with or without ocular impairment, and at least one of additional characteristics noted in group A) and group C (pure ocular syndrome). Individual clinical findings and the clinical groups were compared between the group with a confirmed molecular diagnosis of CMS and the group without molecular diagnosis or with a non-CMS molecular diagnosis. RESULTS: Seventy-nine patients (68 families) were included in the cohort: 48 in group A, 23 in group B and 8 in group C. Fifty-one were considered confirmed CMS (30 CHRNE, 5 RAPSN, 4 COL13A1, 3 DOK7, 3 COLQ, 2 GFPT1, 1 CHAT, 1 SCN4A, 1 GMPPB, 1 CHRNA1), 7 probable CMS, 5 non-CMS and 16 unsolved. The chance of a confirmed molecular diagnosis of CMS was significantly higher for group A and lower for group C. Some individual clinical features, alterations on biopsy and electrophysiology enhanced specificity for CMS. Muscle imaging showed at least mild alterations in the majority of confirmed cases, with preferential involvement of soleus, especially in CHRNE CMS. CONCLUSIONS: Stricter clinical criteria increase the chance of confirming a CMS diagnosis, but may lose sensitivity, especially for some specific genes.


Assuntos
Síndromes Miastênicas Congênitas , Biópsia , Estudos de Coortes , Humanos , Músculo Esquelético/patologia , Mutação , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/patologia , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Fenótipo
8.
Front Mol Neurosci ; 14: 811220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002624

RESUMO

The neuromuscular junction (NMJ) is a tripartite synapse in which not only presynaptic and post-synaptic cells participate in synaptic transmission, but also terminal Schwann cells (TSC). Acetylcholine (ACh) is the neurotransmitter that mediates the signal between the motor neuron and the muscle but also between the motor neuron and TSC. ACh action is terminated by acetylcholinesterase (AChE), anchored by collagen Q (ColQ) in the basal lamina of NMJs. AChE is also anchored by a proline-rich membrane anchor (PRiMA) to the surface of the nerve terminal. Butyrylcholinesterase (BChE), a second cholinesterase, is abundant on TSC and anchored by PRiMA to its plasma membrane. Genetic studies in mice have revealed different regulations of synaptic transmission that depend on ACh spillover. One of the strongest is a depression of ACh release that depends on the activation of α7 nicotinic acetylcholine receptors (nAChR). Partial AChE deficiency has been described in many pathologies or during treatment with cholinesterase inhibitors. In addition to changing the activation of muscle nAChR, AChE deficiency results in an ACh spillover that changes TSC signaling. In this mini-review, we will first briefly outline the organization of the NMJ. This will be followed by a look at the role of TSC in synaptic transmission. Finally, we will review the pathological conditions where there is evidence of decreased AChE activity.

9.
J Peripher Nerv Syst ; 26(1): 113-117, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33320396

RESUMO

We report the case of a patient with a clinical phenotype characterized by distal lower limb weakness and pes cavus. The electrophysiological study showed slightly reduced or normal amplitude of motor potentials, a decremental response to repetitive nerve stimulation and post-exercise facilitation. Muscle biopsy showed only mild neurogenic features. Genetic analysis included a clinical exome sequencing, followed by Sanger analysis. Three-dimensional (3D) models were generated with a SwissModel (https://swissmodel.expasy.org/) to explain the clinical observations and reinforce the pathogenic nature of the genetic variant identified. Genetic analysis demonstrated a new de novo heterozygous in frame deletion of the SYT2 gene (NM_177402.4: c.1082_1096del), confirmed by Sanger sequencing, which removes five aminoacids in the C2B domain of synaptotagmin-2 protein, that cause a profound effect on the structure and function of this synaptic vesicle protein. We identified a de novo genetic variant in the SYT2 gene, further supporting its association with a highly stereotyped clinical and electrophysiological phenotype. Our case showed electrophysiological features consistent with a presynaptic dysfunction in the neuromuscular junction with normal post-exercise amplitudes, not supporting the presence of predominant axonal damage. Although the analysis of SYT2 gene should be included in genetic analysis of patients presenting with this clinical phenotype that mimics motor neuropathy, clinicians have to consider the study of neuromuscular transmission to early identify this potentially treatable condition.


Assuntos
Debilidade Muscular/fisiopatologia , Doenças Neuromusculares/diagnóstico , Junção Neuromuscular/fisiopatologia , Doenças do Sistema Nervoso Periférico/diagnóstico , Sinaptotagmina II/genética , Adulto , Eletrodiagnóstico , Mutação da Fase de Leitura , Humanos , Extremidade Inferior/fisiopatologia , Masculino , Doenças Neuromusculares/genética , Doenças Neuromusculares/fisiopatologia , Linhagem , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/fisiopatologia
10.
Brain Commun ; 2(2): fcaa174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33215087

RESUMO

Congenital myasthenic syndromes are inherited disorders characterized by fatiguable muscle weakness resulting from impaired signal transmission at the neuromuscular junction. Causative mutations have been identified in genes that can affect the synaptic function or structure. We identified a homozygous frameshift deletion c.127delC, p. Pro43fs in TOR1AIP1 in two siblings with limb-girdle weakness and impaired transmission at the neuromuscular synapse. TOR1AIP1 encodes the inner nuclear membrane protein lamin-associated protein 1. On muscle biopsy from the index case, lamin-associated protein 1 was absent from myonuclei. A mouse model with lamin-associated protein 1 conditionally knocked out in striated muscle was used to analyse the role of lamin-associated protein 1 in synaptic dysfunction. Model mice develop fatiguable muscle weakness as demonstrated by using an inverted screen hang test. Electromyography on the mice revealed a decrement on repetitive nerve stimulation. Ex vivo analysis of hemi-diaphragm preparations showed both miniature and evoked end-plate potential half-widths were prolonged which was associated with upregulation of the foetal acetylcholine receptor γ subunit. Neuromuscular junctions on extensor digitorum longus muscles were enlarged and fragmented, and the number of subsynaptic nuclei was significantly increased. Following these findings, electromyography was performed on cases of other nuclear envelopathies caused by mutations in LaminA/C or emerin, but decrement on repetitive nerve stimulation or other indications of defective neuromuscular transmission were not seen. Thus, this report highlights the first nuclear membrane protein in which defective function can lead to impaired synaptic transmission.

11.
Hum Mutat ; 41(3): 619-631, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31765060

RESUMO

MUSK encodes the muscle-specific receptor tyrosine kinase (MuSK), a key component of the agrin-LRP4-MuSK-DOK7 signaling pathway, which is essential for the formation and maintenance of highly specialized synapses between motor neurons and muscle fibers. We report a patient with severe early-onset congenital myasthenic syndrome and two novel missense mutations in MUSK (p.C317R and p.A617V). Functional studies show that MUSK p.C317R, located at the frizzled-like cysteine-rich domain of MuSK, disrupts an integral part of MuSK architecture resulting in ablated MuSK phosphorylation and acetylcholine receptor (AChR) cluster formation. MUSK p.A617V, located at the kinase domain of MuSK, enhances MuSK phosphorylation resulting in anomalous AChR cluster formation. The identification and evidence for pathogenicity of MUSK mutations supported the initiation of treatment with ß2-adrenergic agonists with a dramatic improvement of muscle strength in the patient. This work suggests uncharacterized mechanisms in which control of the precise level of MuSK phosphorylation is crucial in governing synaptic structure.


Assuntos
Mutação , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Sinapses/genética , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Alelos , Substituição de Aminoácidos , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Análise Mutacional de DNA , Feminino , Marcação de Genes , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Proteínas Musculares/metabolismo , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/metabolismo , Linhagem , Fosforilação , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/química , Receptores Colinérgicos/metabolismo , Relação Estrutura-Atividade , Sinapses/metabolismo
12.
Neuromolecular Med ; 20(2): 205-214, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29696584

RESUMO

Congenital myasthenic syndromes (CMS) are heterogeneous genetic diseases in which neuromuscular transmission is compromised. CMS resembling the Lambert-Eaton myasthenic syndrome (CMS-LEMS) are emerging as a rare group of distinct presynaptic CMS that share the same electrophysiological features. They have low compound muscular action potential amplitude that increment after brief exercise (facilitation) or high-frequency repetitive nerve stimulation. Although clinical signs similar to LEMS can be present, the main hallmark is the electrophysiological findings, which are identical to autoimmune LEMS. CMS-LEMS occurs due to deficits in acetylcholine vesicle release caused by dysfunction of different components in its pathway. To date, the genes that have been associated with CMS-LEMS are AGRN, SYT2, MUNC13-1, VAMP1, and LAMA5. Clinicians should keep in mind these newest subtypes of CMS-LEMS to achieve the correct diagnosis and therapy. We believe that CMS-LEMS must be included as an important diagnostic clue to genetic investigation in the diagnostic algorithms to CMS. We briefly review the main features of CMS-LEMS.


Assuntos
Síndrome Miastênica de Lambert-Eaton/diagnóstico , Síndromes Miastênicas Congênitas/diagnóstico , Acetilcolina/fisiologia , Agrina/genética , Autoimunidade , Sinalização do Cálcio , Eletrofisiologia , Exercício Físico , Exocitose , Humanos , Laminina/genética , Síndromes Miastênicas Congênitas/genética , Proteínas do Tecido Nervoso/genética , Condução Nervosa , Junção Neuromuscular/fisiopatologia , Proteínas SNARE/fisiologia , Transmissão Sináptica , Sinaptotagmina II/genética , Proteína 1 Associada à Membrana da Vesícula/genética
13.
Expert Opin Ther Targets ; 21(10): 949-958, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28825343

RESUMO

INTRODUCTION: Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including myasthenia gravis, Lambert-Eaton myasthenic syndrome, Isaacs' syndrome, congenital myasthenic syndromes, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. Except for sarcopenia, all are orphan diseases. In addition, the NMJ signal transduction is impaired by tetanus, botulinum, curare, α-bungarotoxin, conotoxins, organophosphate, sarin, VX, and soman to name a few. Areas covered: This review covers the agrin-LRP4-MuSK signaling pathway, which drives clustering of acetylcholine receptors (AChRs) and ensures efficient signal transduction at the NMJ. We also address diseases caused by autoantibodies against the NMJ molecules and by germline mutations in genes encoding the NMJ molecules. Expert opinion: Representative small compounds to treat the defective NMJ signal transduction are cholinesterase inhibitors, which exert their effects by increasing the amount of acetylcholine at the synaptic space. Another possible therapeutic strategy to enhance the NMJ signal transduction is to increase the number of AChRs, but no currently available drug has this functionality.


Assuntos
Terapia de Alvo Molecular , Miastenia Gravis/tratamento farmacológico , Doenças Neuromusculares/tratamento farmacológico , Agrina/metabolismo , Animais , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Mutação em Linhagem Germinativa , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo , Miastenia Gravis/genética , Miastenia Gravis/fisiopatologia , Doenças Neuromusculares/genética , Doenças Neuromusculares/fisiopatologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
J Child Neurol ; 32(8): 759-765, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28464723

RESUMO

Congenital myasthenic syndromes are clinically and genetically heterogeneous disorders of neuromuscular transmission. Most are treatable, but certain subtypes worsen with cholinesterase inhibitors. This underlines the importance of genetic diagnosis. Here, the authors report on cases with genetically proven congenital myasthenic syndromes from Turkey. The authors retrospectively reviewed their experience of all patients with congenital myasthenic syndromes, referred over a 5-year period (2011-2016) to the Child Neurology Department of Dokuz Eylül University, Izmir, Turkey. In addition, PubMed was searched for published cases of genetically proven congenital myasthenic syndromes originating from Turkey. In total, the authors identified 43 (8 new patients, 35 recently published patients) cases. Defects in the acetylcholine receptor (n = 15; 35%) were the most common type, followed by synaptic basal-lamina associated (n = 14; 33%) and presynaptic syndromes (n = 10; 23%). The authors had only 3 cases (7%) who had defects in endplate development. One patient had mutation GFPT1 gene (n = 1; 2%). Knowledge on congenital myasthenic syndromes and related genes in Turkey will lead to prompt diagnosis and treatment of these rare neuromuscular disorders.


Assuntos
Síndromes Miastênicas Congênitas/epidemiologia , Síndromes Miastênicas Congênitas/genética , Acetilcolinesterase/genética , Adolescente , Criança , Pré-Escolar , Colinesterases/genética , Colágeno/genética , Feminino , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Humanos , Lactente , Estudos Longitudinais , Masculino , Proteínas Musculares/genética , Mutação/genética , Síndromes Miastênicas Congênitas/diagnóstico , Miosinas/genética , PubMed/estatística & dados numéricos , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Receptores Nicotínicos/genética , Estudos Retrospectivos , Turquia/epidemiologia , Sequenciamento do Exoma
15.
Arq. neuropsiquiatr ; Arq. neuropsiquiatr;74(9): 750-760, Sept. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-796050

RESUMO

ABSTRACT Neuromuscular junction disorders represent a wide group of neurological diseases characterized by weakness, fatigability and variable degrees of appendicular, ocular and bulbar musculature involvement. Its main group of disorders includes autoimmune conditions, such as autoimmune acquired myasthenia gravis and Lambert-Eaton syndrome. However, an important group of diseases include congenital myasthenic syndromes with a genetic and sometimes hereditary basis that resemble and mimick many of the classic myasthenia neurological manifestations, but also have different presentations, which makes them a complex clinical, therapeutic and diagnostic challenge for most clinicians. We conducted a wide review of congenital myasthenic syndromes in their clinical, genetic and therapeutic aspects.


RESUMO Distúrbios da junção neuromuscular representam um grupo amplo de doenças neruológicas caracterizadas por fraqueza, fadigabilidade e graus variados de envolvimento das musculaturas apendicular, ocular e bulbar. Os principais grupos de doenças deste grupo incluem condições auto-imunes, como a miastenia gravis auto-imune adquirida e a síndrome de Lambert-Eaton. Entretanto, um outro grupo importante de doenças incluem as sindromes miastênicas congênitas com uma base genética e eventualmente hereditária que lembra e mimetiza muitas das manifestações neurológicas clássicas das miastenias, mas também se apresentam de diferentes formas tornando um desafio clínico, terapêutico e diagnóstico complexo para a maioria dos clínicos. Realizamos ampla revisão sobre as síndromes miastênicas congênitas em seus aspectos clínicos, genéticos e terapêuticos.


Assuntos
Humanos , Masculino , Feminino , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/patologia , Mutação , Fenótipo , Debilidade Muscular/genética , Debilidade Muscular/patologia , Diagnóstico Diferencial , Miastenia Gravis/genética , Miastenia Gravis/patologia
16.
J Neurol ; 263(3): 517-23, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26754003

RESUMO

Congenital myopathies are a group of inherited muscle disorders characterized by hypotonia, weakness and a non-dystrophic muscle biopsy with the presence of one or more characteristic histological features. Neuromuscular transmission defects have recently been reported in several patients with congenital myopathies (CM). Mutations in KLHL40 are among the most common causes of severe forms of nemaline myopathy. Clinical features of affected individuals include fetal akinesia or hypokinesia, respiratory failure, and swallowing difficulties at birth. Muscle weakness is usually severe and nearly half of the individuals have no spontaneous antigravity movement. The average age of death has been reported to be 5 months in a recent case series. Herein we present a case of a patient with a nemaline myopathy due to KLHL40 mutations (c.604delG, p.Ala202Argfs*56 and c.1513G>C, p.Ala505Pro) with an impressive and prolonged beneficial response to treatment with high-dose pyridostigmine. Myasthenic features or response to ACEI have not previously been reported as a characteristic of nemaline myopathy or KLHL40-related myopathy.


Assuntos
Inibidores da Colinesterase/uso terapêutico , Proteínas Musculares/genética , Miopatias da Nemalina/tratamento farmacológico , Miopatias da Nemalina/genética , Feminino , Humanos , Lactente , Estudos Longitudinais , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miopatias da Nemalina/patologia , Exame Neurológico
17.
Pediatr Neurol ; 54: 85-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26552645

RESUMO

BACKGROUND: Congenital myasthenic syndromes consist of rare disorders resulting from mutations in genes encoding for presynaptic, synaptic, and postsynaptic proteins that are involved in the signal transmission of the neuromuscular junction. They are characterized by fatigable weakness of the skeletal muscles with symptom onset from birth to early childhood. DOK7 (downstream of tyrosine kinase 7) congenital myasthenic syndrome was previously treated successfully with ephedrine and salbutamol; however, both are unavailable in the United States. METHODS: Case report of a child with muscle weakness. RESULTS: This report describes a boy who presented only with progressive limb-girdle muscle weakness since age 2 years. The muscle biopsy with extensive studies revealed no obvious etiologies. His muscle weakness rapidly worsened, requiring a wheelchair for daily activities. Expanded neuromuscular gene panel promptly led to the diagnosis of DOK7 congenital myasthenic syndrome, and his muscle strength dramatically and persistently improved in four weeks with albuterol treatment, allowing him to walk independently. In a brief literature review, 15 patients (five treated between ages 5 and 17 years) from the Mayo Clinic with DOK7 mutations were also successfully treated with albuterol. CONCLUSION: DOK7 congenital myasthenic syndrome often presents with limb-girdle muscle weakness, which can become progressive without proper treatment. If muscle biopsy reveals no obvious etiology, an expanded neuromuscular gene panel may lead to a specific diagnosis of congenital myasthenic syndrome such as those due to DOK7 mutation. Albuterol is often used to treat bronchial asthma; however, it can also dramatically and persistently improve the muscle strength of DOK7 congenital myasthenic syndrome.


Assuntos
Albuterol/uso terapêutico , Proteínas Musculares/genética , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Fármacos Neuromusculares/uso terapêutico , Criança , Humanos , Masculino , Síndromes Miastênicas Congênitas/fisiopatologia , Resultado do Tratamento
18.
Int J Biochem Cell Biol ; 60: 119-29, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25562515

RESUMO

Muscle, skeletal, receptor tyrosine kinase (MuSK) is a key organizer at the postsynaptic membrane and critical for proper development and maintenance of the neuromuscular junction. Mutations in MUSK result in congenital myasthenic syndrome (CMS). We hypothesized that the CMS-causing missense mutation (P344R), found within the cysteine-rich domain of the protein, will affect its conformational tertiary structure. Consequently, the protein will misfold, get retained in the endoplasmic reticulum (ER) and lose its biological function through degradation by the highly conserved ER associated degradation (ERAD) machinery. We report that P344R-MuSK mutant is trafficking-deficient when expressed at 37°C in HeLa, COS-7 and HEK293 cell lines. It colocalized with the ER marker calnexin in contrast to wild-type MuSK which localized to the plasma membrane. The N-glycosylation status of P344R-MuSK is that of an immature and not properly post-translationally modified protein. Inhibition of protein synthesis showed that the P344R mutant's half-life is shorter than wild-type MuSK protein. Proteasomal inhibition resulted in the stabilization of the mutant protein. The mutant protein is highly ubiquitinated compared to wild-type confirming targeting for proteasomal degradation. The mutant showed around 50% of its in vivo autophosphorylation activity. P344R-MuSK mutant's trafficking defect is correctable by culturing the expressing cells at 27°C. Moreover, chemical compounds namely 2.5% glycerol, 1% dimethyl sulfoxide, 10 µM thapsigargin and 1 µM curcumin improved the maturation and exit of the mutant protein from the ER. These findings open perspectives for potential therapeutic intervention for patients with CMS harboring the P344R-MuSK mutation.


Assuntos
Membrana Celular/enzimologia , Músculos/enzimologia , Síndromes Miastênicas Congênitas/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/metabolismo , Animais , Western Blotting , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Microscopia Confocal , Músculos/metabolismo , Mutação , Mutação de Sentido Incorreto/genética , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética
19.
Clin Genet ; 85(2): 166-71, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23488891

RESUMO

The term 'limb-girdle myasthenia' (LGM) was first used to describe three siblings with proximal limb weakness without oculobulbar involvement, but with EMG decrement and responsiveness to anticholinesterase medication. We report here that exome sequencing in the proband of this family revealed several sequence variations in genes linked to proximal limb weakness. However, the only mutations that cosegregated with disease were an intronic IVS7-8A>G mutation and the previously reported 3'-UTR c.*22C>A mutation in GFPT1, a gene linked to LGM. A minigene assay showed that IVS7-8A>G activates an alternative splice acceptor that results in retention of the last seven nucleotides of intron 7 and a frameshift leading to a termination codon 13 nucleotides downstream from the new splice site. An anconeus muscle biopsy revealed mild reduction of the axon terminal size and postsynaptic fold simplification. The amplitudes of miniature endplate potentials and quantal release were also diminished. The DNA of the mildly affected father of the proband showed only the intronic mutation along with sequence variations in other genes potentially relevant to LGM. Thus, this study performed in the family originally described with LGM showed two GFPT1 untranslated mutations, which may cause disease by reducing GFPT1 expression and ultimately impairing protein glycosylation.


Assuntos
Exoma/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Miastenia Gravis/genética , Síndromes Miastênicas Congênitas/genética , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/uso terapêutico , Idoso , Amifampridina , Sequência de Bases , Análise Mutacional de DNA , Eletromiografia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/patologia , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/patologia , Neostigmina/uso terapêutico , Junção Neuromuscular/ultraestrutura , Linhagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Rev Med Interne ; 35(7): 421-9, 2014 Jul.
Artigo em Francês | MEDLINE | ID: mdl-24112993

RESUMO

Myasthenia gravis is an autoimmune disease due to specific antibodies inducing a neuromuscular transmission defect causing muscle fatigability. If onset of the disease may be at any age, myasthenia gravis concerns mostly young adults, in majority females. The disease characteristic features are the following: ocular symptoms (ptosis or diplopia) as main initial manifestation, extension to other muscles in 80 % of the cases, variability of the deficit, effort induced worsening, successive periods of exacerbation during the disease course, severity depending on respiratory and swallowing impairment (if rapid worsening, a myasthenic crisis is to be suspected), association with thymoma in 20 % of patients and with other various autoimmune diseases, most commonly hyperthyroidism and Hashimoto's disease. Diagnosis relies on the clinical features, improvement with cholinesterase inhibitors, detection of specific autoantibodies (anti-AChR or anti-MuSK), and significant decrement evidenced by electrophysiological tests. The points concerning specifically the internist have been highlighted in this article: diagnostic traps, associated autoimmune diseases, including inflammatory myopathies that may mimic myasthenia gravis, adverse effects of medications commonly used in internal medicine, some of them inducing myasthenic syndromes. The treatment is well codified: the treatment is well codified: (1) respect of adverse drugs contra-indications, systematically use of cholinesterase inhibitors, (2) thymectomy if thymoma completed with radiotherapy if malignant, (3) corticosteroids or immunosuppressive agent in severe or disabling form, (4) intensive care unit monitoring, plasmapheresis or intravenous immunoglobulins for patients with myasthenic crisis.


Assuntos
Miastenia Gravis/complicações , Miastenia Gravis/diagnóstico , Autoanticorpos/sangue , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Miastenia Gravis/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA