Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cancer Immunol Immunother ; 73(2): 34, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280067

RESUMO

Immune checkpoint inhibitors (ICIs) have demonstrated efficacy and improved survival in a growing number of cancers. Despite their success, ICIs are associated with immune-related adverse events that can interfere with their use. Therefore, safer approaches are needed. CD6, expressed by T-lymphocytes and human NK cells, engages in cell-cell interactions by binding to its ligands CD166 (ALCAM) and CD318 (CDCP1). CD6 is a target protein for regulating immune responses and is required for the development of several mouse models of autoimmunity. Interestingly, CD6 is exclusively expressed on immune cells while CD318 is strongly expressed on most cancers. Here we demonstrate that disrupting the CD6-CD318 axis with UMCD6, an anti-CD6 monoclonal antibody, prolongs survival of mice in xenograft mouse models of human breast and prostate cancer, treated with infusions of human lymphocytes. Analysis of tumor-infiltrating immune cells showed that augmentation of lymphocyte cytotoxicity by UMCD6 is due to effects of this antibody on NK, NKT and CD8 + T cells. In particular, tumor-infiltrating cytotoxic lymphocytes from UMCD6-treated mice expressed higher levels of perforin and were found in higher proportions than those from IgG-treated mice. Moreover, RNA-seq analysis of human NK-92 cells treated with UMCD6 revealed that UMCD6 up-regulates the NKG2D-DAP10 receptor complex, important in NK cell activation, as well as its downstream target PI3K. Our results now describe the phenotypic changes that occur on immune cells upon treatment with UMCD6 and further confirm that the CD6-CD318 axis can regulate the activation state of cytotoxic lymphocytes and their positioning within the tumor microenvironment.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Antígenos CD , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Neoplasias , Moléculas de Adesão Celular , Linfócitos/metabolismo , Microambiente Tumoral
2.
Res Sq ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37886483

RESUMO

Immune checkpoint inhibitors (ICIs) have demonstrated efficacy and improved survival in a growing number of cancers. Despite their success, ICIs are associated with immune-related adverse events that can interfere with their use. Therefore, safer approaches are needed. CD6, expressed by T-lymphocytes and human NK cells, engages in cell-cell interactions by binding to its ligands CD166 (ALCAM) and CD318 (CDCP1). CD6 is a target protein for regulating immune responses and is required for the development of several mouse models of autoimmunity. Interestingly, CD6 is exclusively expressed on immune cells while CD318 is strongly expressed on most cancers. Here we demonstrate that disrupting the CD6-CD318 axis with UMCD6, an anti-CD6 monoclonal antibody, prolongs survival of mice in xenograft models of human breast and prostate cancer, treated with infusions of human lymphocytes. Analysis of tumor-infiltrating immune cells showed that augmentation of lymphocyte cytotoxicity by UMCD6 is due to effects of this antibody on NK, NKT and CD8+ T cells. Tumor-infiltrating cytotoxic lymphocytes were found in higher proportions and were activated in UMCD6-treated mice compared to controls. Similar changes in gene expression were observed by RNA-seq analysis of NK cells treated with UMCD6. Particularly, UMCD6 up-regulated the NKG2D-DAP10 complex and activated PI3K. Thus, the CD6-CD318 axis can regulate the activation state of cytotoxic lymphocytes and their positioning within the tumor microenvironment.

3.
Cancer Sci ; 114(6): 2622-2633, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36898851

RESUMO

Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma associated with chronic inflammation (DLBCL-CI) develops in the setting of long-standing inflammation. This type of lymphoma may have specific expression profiles of chemokines involved in the pathogenesis of DLBCL-CI. EBV-positive pyothorax-associated lymphoma (PAL) is a prototype of DLBCL-CI and represents a valuable model for the study of this disease category. Using a panel of PAL cell lines, we found that PAL cells expressed and secreted C-X-C motif chemokine ligands 9 and 10 (CXCL9 and CXCL10), the ligands of CXCR3, in contrast to EBV-negative DLBCL cell lines, which did not. Culture supernatants from PAL cell lines attracted CXCR3-expressing CD4+ T cells, CD8+ T cells, and CD56+ natural killer cells from human peripheral blood mononuclear cells. PAL cells injected into mice also attracted CXCR3-positive cytotoxic lymphocytes that expressed interferon-γ. The expression of CXCL9 and CXCL10 was detected in PAL tumor biopsy samples from patients, and CXCR3-positive lymphocytes were abundant in the tissue samples. Collectively, these findings suggest that CXCL9 and CXCL10 are produced by PAL cells and can elicit cytotoxic responses via CXCR3. This chemokine system is also likely to contribute to tissue necrosis, which is a signature histological feature of DLBCL-CI. Further studies are warranted to determine whether the CXCL9-CXCL10/CXCR3 axis exerts antitumor effects in DLBCL-CI.


Assuntos
Empiema Pleural , Infecções por Vírus Epstein-Barr , Linfoma Difuso de Grandes Células B , Camundongos , Animais , Humanos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Herpesvirus Humano 4/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Leucócitos Mononucleares/metabolismo , Ligantes , Inflamação , Células Matadoras Naturais/metabolismo , Quimiocina CXCL9 , Receptores CXCR3/genética
4.
Front Immunol ; 14: 1147603, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969228

RESUMO

Familial hemophagocytic lymphohistiocytosis (fHLH) encompasses a group of rare inherited immune dysregulation disorders characterized by loss-of-function mutations in one of several genes involved in the assembly, exocytosis, and function of cytotoxic granules within CD8+ T cells and natural killer (NK) cells. The resulting defect in cytotoxicity allows these cells to be appropriately stimulated in response to an antigenic trigger, and also impairs their ability to effectively mediate and terminate the immune response. Consequently, there is sustained lymphocyte activation, resulting in the secretion of excessive amounts of pro-inflammatory cytokines that further activate other cells of the innate and adaptive immune systems. Together, these activated cells and pro-inflammatory cytokines mediate tissue damage that leads to multi-organ failure in the absence of treatment aimed at controlling hyperinflammation. In this article, we review these mechanisms of hyperinflammation in fHLH at the cellular level, focusing primarily on studies performed in murine models of fHLH that have provided insight into how defects in the lymphocyte cytotoxicity pathway mediate rampant and sustained immune dysregulation.


Assuntos
Linfo-Histiocitose Hemofagocítica , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Células Matadoras Naturais , Citotoxicidade Imunológica , Citocinas/metabolismo
5.
Adv Healthc Mater ; 12(11): e2202757, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36652763

RESUMO

Immunotherapy has been regarded as a breakthrough in cancer treatment and achieved great success. However, the poor response rate is still a formidable challenge of current immunotherapies, especially in solid tumors without sufficient infiltration of immune cells, also known as "cold tumor." SAR405 is a highly specific VPS34 inhibitor and has been suggested as a potential approach converting "cold tumor" into "hot tumor" by inhibiting autophagy. In this study, a tri-functional doxorubicin (DOX) plus SAR405 liposome system is established and further modified with a novel anti-PD-L1 peptide JY4 for targeted delivery (DOX-SAR-JY4LIPO ). The data here demonstrate that in a lung cancer xenograft mouse model, by facilitating the tumoral enrichment of both SAR405 and DOX, DOX-SAR-JY4LIPO effectively increases the infiltration of cytotoxic lymphocytes in the tumor by synergizing DOX-induced immunogenic cell death (ICD) and SAR405-mediated upregulation of chemokines including CCL5 and CXCL10. As results, DOX-SAR-JY4LIPO significantly inhibits tumor growth, metastasis, and resurrection by re-educating immunosuppressive tumor microenvironment. In conclusion, this study not only proves the concept of inhibiting autophagy for better immune infiltration in the tumor but also presents a novel tri-functional liposomal system that overcomes the deficiencies of current therapies and holds great promise in cancer immunotherapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Animais , Camundongos , Lipossomos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Doxorrubicina/uso terapêutico , Imunoterapia/métodos , Autofagia , Linhagem Celular Tumoral , Microambiente Tumoral , Antígeno B7-H1/uso terapêutico
6.
Cancer Immunol Immunother ; 72(6): 1823-1834, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36688996

RESUMO

BACKGROUND: Ectopic lymphoid formations are called tertiary lymphoid structures (TLSs). TLSs in cancer have been reported to be associated with good prognosis and immunotherapy response. However, the relationship between TLSs and lymph node (LN) metastasis is unclear. METHODS: We analyzed 218 patients with radically resected lung adenocarcinoma. TLSs were defined as the overlap of T cell zone and B cell zone. Granzyme B + cells were defined as cytotoxic lymphocytes. We evaluated phenotypes of lymphocytes in TLSs, tumor-infiltrating lymphocytes (TILs) and LNs by immunohistochemistry. We divided the patients into mature TLS (DC-Lamp high) and immature TLS (DC-Lamp low) groups. The relationship between TLS maturation and clinicopathological factors was analyzed. RESULTS: The mature TLS group was associated with significantly lower frequency of LN metastasis (P < 0.0001) and early cancer stage (P = 0.0049). The mature TLS group had significantly more CD8 + (P = 0.0203) and Foxp3 + (P = 0.0141) cells in TILs than the immature TLS group had. Mature TLSs were independently associated with a favorable overall survival (hazard ratio [HR] = 0.17, P = 0.0220) and disease-free survival (HR = 0.54, P = 0.0436). Multivariate analysis showed that mature TLS was an independent low-risk factor for LN metastasis (odds ratio = 0.06, P = 0.0003). The number of cytotoxic lymphocytes in LNs was higher in the mature TLS group than in the immature group (20.0 vs. 15.1, P = 0.017). CONCLUSION: Mature TLSs were associated with an increased number of cytotoxic lymphocytes in draining LNs, a lower frequency of LN metastasis, and favorable outcomes. Mature TLSs may support antitumor immunity by lymphocyte activation.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Estruturas Linfoides Terciárias , Humanos , Prognóstico , Metástase Linfática , Microambiente Tumoral
7.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361783

RESUMO

Irradiated murine induced-pluripotent stem cells (iPSCs) elicit the antitumor response in vivo. However, it is unclear whether human iPSCs would elicit antitumor effects. In the present study, we investigated the capability of human iPSC lysate (iPSL)-pulsed dendritic cells (DCs) (iPSL/DCs) to induce cancer-responsive cytotoxic T lymphocytes (CTLs) in vitro. iPSCs and DCs were induced from peripheral blood mononuclear cells isolated from a human leukocyte antigen (HLA)-A33 homozygous donor. The iPSL was pulsed with immature DCs, which were then stimulated to allow full maturation. The activated DCs were co-cultured with autologous CTLs and their responses to SW48 colorectal carcinoma cells (HLA-A32/A33), T47D breast cancer cells (HLA-A33/A33), and T98G glioblastoma cells (HLA-A02/A02) were tested with enzyme-linked immunospot (ELISPOT) assays. Comprehensive gene expression analysis revealed that the established iPSCs shared numerous tumor-associated antigens with the SW48 and T47D cells. Immunofluorescent analysis demonstrated that the fluorescent-labeled iPSL was captured by the immature DCs within 2 h. iPSL/DCs induced sufficient CTL numbers in 3 weeks for ELISPOT assays, which revealed that the induced CTLs responded to SW48 and T47D cells. Human iPSL/DCs induced cancer-responsive CTLs on HLA-A33-matched cancer cells in vitro and could be a promising universal cancer vaccine for treating and preventing cancer.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Humanos , Camundongos , Animais , Linfócitos T Citotóxicos , Leucócitos Mononucleares/metabolismo , Células Dendríticas , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos HLA/metabolismo , Neoplasias/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(33): e2208522119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939714

RESUMO

Apoptosis is a genetically regulated program of cell death that plays a key role in immune disease processes. We identified EBF4, a little-studied member of the early B cell factor (EBF) family of transcription factors, in a whole-genome CRISPR screen for regulators of Fas/APO-1/CD95-mediated T cell death. Loss of EBF4 increases the half-life of the c-FLIP protein, and its presence in the Fas signaling complex impairs caspase-8 cleavage and apoptosis. Transcriptome analysis revealed that EBF4 regulates molecules such as TBX21, EOMES, granzyme, and perforin that are important for human natural killer (NK) and CD8+ T cell functions. Proximity-dependent biotin identification (Bio-ID) mass spectrometry analyses showed EBF4 binding to STAT3, STAT5, and MAP kinase 3 and a strong pathway relationship to interleukin-2 regulated genes, which are known to govern cytotoxicity pathways. Chromatin immunoprecipitation and DNA sequencing analysis defined a canonical EBF4 binding motif, 5'-CCCNNGG/AG-3', closely related to the EBF1 binding site; using a luciferase-based reporter, we found a dose-dependent transcriptional response of this motif to EBF4. We also conducted assay for transposase-accessible chromatin sequencing in EBF4-overexpressing cells and found increased chromatin accessibility upstream of granzyme and perforin and in topologically associated domains in human lymphocytes. Finally, we discovered that the EBF4 has basal expression in human but not mouse NK cells and CD8+ T cells and vanishes following activating stimulation. Together, our data reveal key features of a previously unknown transcriptional regulator of human cytotoxic immune function.


Assuntos
Apoptose , Linfócitos T CD8-Positivos , Citotoxicidade Imunológica , Proteína Ligante Fas , Linfócitos T Citotóxicos , Fatores de Transcrição , Animais , Apoptose/fisiologia , Cromatina/metabolismo , Citotoxicidade Imunológica/genética , Proteína Ligante Fas/metabolismo , Granzimas/genética , Humanos , Camundongos , Perforina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Clin Rev Allergy Immunol ; 63(1): 1-8, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34169440

RESUMO

There are now more than 450 described monogenic germline mutations for inborn errors of immunity that result in the loss of expression, loss of function (LOF), or gain in function (GOF) of the encoded protein. Molecular characterization of these inborn errors of immunity has not only allowed us to characterize on a genetic basis these immune deficiency disorders but has provided a better understanding of the immunobiology of these inborn errors of immunity. More recently, these advances have allowed us to apply targeted therapy or precision medicine in their treatment. Of particular interest related to this review are those inborn errors of immunity that result in gain-of-function (GOF) genetic abnormalities. Many of these inborn errors of immunity fall into a new category referred to as diseases of immune dysregulation in which many of the patients not only exhibit an increased susceptibility to infection but also have a clinical phenotype associated with autoimmune processes and lymphoproliferative disease.


Assuntos
Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Humanos , Síndromes de Imunodeficiência/tratamento farmacológico , Síndromes de Imunodeficiência/terapia , Fenótipo , Medicina de Precisão , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/terapia
10.
Front Immunol ; 12: 777851, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868048

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disorder characterized by the inability to properly terminate an immune response. Familial HLH (FHLH) and related immune dysregulation syndromes are associated with mutations in the genes PRF1, UNC13D, STX11, STXBP2, LYST, AP3B1, and RAB27A, all of which are required for the assembly, exocytosis, and function of cytotoxic granules within CD8+ T cells and natural killer (NK) cells. Loss-of-function mutations in these genes render the cytotoxicity pathway ineffective, thereby failing to eradicate immune stimuli, such as infectious pathogens or malignant cells. The resulting persistent immune system stimulation drives hypercytokinemia, ultimately leading to severe tissue inflammation and end-organ damage. Traditionally, a diagnosis of FHLH requires the identification of biallelic loss-of-function mutations in one of these degranulation pathway genes. However, this narrow definition fails to encompass patients with other genetic mechanisms underlying degranulation pathway dysfunction. In particular, mounting clinical evidence supports a potential digenic mode of inheritance of FHLH in which single loss-of-function mutations in two different degranulation pathway genes cooperate to impair pathway activity. Here, we review the functions of the FHLH-associated genes within the degranulation pathway and summarize clinical evidence supporting a model in which cumulative defects along this mechanistic pathway may underlie HLH.


Assuntos
Degranulação Celular/genética , Hereditariedade , Células Matadoras Naturais/imunologia , Linfo-Histiocitose Hemofagocítica/genética , Herança Multifatorial , Mutação , Vesículas Secretórias/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Predisposição Genética para Doença , Humanos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/metabolismo , Linfo-Histiocitose Hemofagocítica/patologia , Fenótipo , Prognóstico , Fatores de Risco , Vesículas Secretórias/metabolismo , Vesículas Secretórias/patologia , Transdução de Sinais , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia
11.
Clin Transl Immunology ; 10(7): e1320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336208

RESUMO

OBJECTIVES: A congenital loss of cytotoxic lymphocyte activity leads to a potentially fatal immune dysregulation, familial haemophagocytic lymphohistiocytosis. Until recently, this disease was uniformly associated with infants or very young children, but it appears now that the onset may be delayed for decades. As a result, some adults are being mis- or under-diagnosed because of their 'atypical' symptoms that are not recognised as immunodeficiency. The clinical picture and histopathology can overlap with those of haematologic malignancy, further complicating the diagnostic thought process. The spectrum of atypical symptoms is poorly defined, and therefore, it is important to describe these cases and the attendant immunological and cellular changes associated with familial haemophagocytic lymphohistiocytosis, in order to improve diagnosis and prevent unintended consequences of symptomatic therapies. METHODS: A 45-year-old patient presented with suspected T-cell lymphoma and was treated with combination chemotherapy (cyclophosphamide, doxorubicin, vincristine, prednisolone) supplemented with granulocyte-colony stimulating factor (G-CSF). To mobilise stem cells for autologous transplantation, the patient was then treated with high-dose G-CSF and rapidly developed haemophagocytic lymphohistiocytosis. Symptoms resolved temporarily with intensive immunosuppression with alemtuzumab and durably with a subsequent allograft. RESULTS: The patient was found to be a carrier of bi-allelic mutations in the STXBP2 protein that is essential for cytotoxic lymphocyte function, and the initial diagnosis has been revised as familial haemophagocytic lymphohistiocytosis. CONCLUSION: This case highlights the difficulty in distinguishing atypical/late-onset familial haemophagocytic lymphohistiocytosis from a malignant process as well as a possible exacerbation of the disease with G-CSF therapy.

12.
J Immunol Methods ; 497: 113100, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270976

RESUMO

In recent years, adoptive cell therapy of immune effector cells, such as chimeric antigen receptor-T (CAR-T) cells, natural killer (NK) cells, and epitope-specific cytotoxic T lymphocyte (CTL) cells have been employed in clinical trials. In addition, CD19 CAR-T cells have been approved by the FDA for treatment of non-Hodgkin lymphoma and diffuse large B-cell lymphoma. In this context, it is vital to detect cellular cytotoxicity and monitor the quality of ex vivo expanded immune cells before product release and patient infusion. Target cells could proliferate in parallel with effector cells during the cytotoxicity assay, making it difficult to estimate the death ratio using conventional approaches. Meanwhile, non-specific dyes or non-homogeneous biomarkers for target cells may interfere with the final readout post addition of effector cells. Here, we modified a component of the coincubation medium to suppress the spontaneous release of bis(acetoxymethyl)2,2':6',2″-terpyridine-6,6″-dicarboxylate and sustained the window at a stable range (~70%). Further, the optimized Eu-TDA method presented reliable outcomes compared with lactate dehydrogenase detection and was compatible with cytotoxicity tests for NK cells and specific CTLs. Finally, the reported assay can accurately detect death of target cells depending on the amount of hydrophilic complex and can be reliably applied in quality control and cell activity evaluation tests on co-suspended effector and target cells. SUMMARY: A medium component for cellular coincubations (and associated protocols) have been optimized and validated for cytotoxicity assays, which can reliably evaluate the potency of engineered CD19 CAR-T cells, NK cells, and specific CTLs. In particular, the reported method can be applied widely in routine assays for bi-suspended effector and target cells with a stable window.


Assuntos
Citotoxicidade Imunológica , Imuno-Histoquímica , Imunoterapia Adotiva , Células Matadoras Naturais/transplante , Leucemia Eritroblástica Aguda/terapia , Linfócitos T Citotóxicos/transplante , Antígenos CD19/genética , Antígenos CD19/imunologia , Sobrevivência Celular , Técnicas de Cocultura , Epitopos , Citometria de Fluxo , Humanos , Células K562 , Células Matadoras Naturais/imunologia , Leucemia Eritroblástica Aguda/imunologia , Leucemia Eritroblástica Aguda/patologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T Citotóxicos/imunologia
13.
J Hematol Oncol ; 14(1): 13, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436042

RESUMO

Several targeted therapies have shown efficacy in patients with advanced gastric cancer (GC) and gastroesophageal junction adenocarcinoma (GEJC), including anti-angiogenic agents and immune checkpoint inhibitors. Ramucirumab, an anti-VEGFR2 antibody, has shown efficacy in GC, but the benefits are limited, in part due to MET-mediated resistance. Other VEGF targeted agents like VEGF tyrosine kinase inhibitors (TKIs) with broad multi-kinase inhibitory spectrum like regorafenib and cabozantinib have also shown modest single agent activity in early phase trials. For immune checkpoint inhibitors, pembrolizumab (anti-PD-1) monotherapy confers survival advantage as 3rd line therapy for the PD-L1 expressing GC and GEJC population and has been approved for use in this setting. Extensive tumor microenvironment immune modulatory effects from antiangiogenic agents have been demonstrated from preclinical data which support the clinical study rationale of dual blockade of VEGF and immune checkpoint. In addition, FDA has approved combinations of anti-VEGF/VEGFR with anti-PD-1/PD-L1 agents in hepatocellular carcinoma and renal cell carcinoma. Promising clinical activity has been demonstrated in patients with refractory GC/GEJC when treated with dual blockade combination with antiangiogenic agents and immune checkpoint inhibitors like PD-1/PD-L1 inhibitors in several phase I/II trials. This review highlights the trials investigating these novel combinations as well as their preclinical rationale.


Assuntos
Adenocarcinoma/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Adenocarcinoma/patologia , Animais , Progressão da Doença , Neoplasias Esofágicas/patologia , Humanos , Terapia de Alvo Molecular , Neoplasias Gástricas/patologia , Microambiente Tumoral/efeitos dos fármacos
14.
Bioact Mater ; 6(7): 1973-1987, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33426371

RESUMO

The tumor development and metastasis are closely related to the structure and function of the tumor microenvironment (TME). Recently, TME modulation strategies have attracted much attention in cancer immunotherapy. Despite the preliminary success of immunotherapeutic agents, their therapeutic effects have been restricted by the limited retention time of drugs in TME. Compared with traditional delivery systems, nanoparticles with unique physical properties and elaborate design can efficiently penetrate TME and specifically deliver to the major components in TME. In this review, we briefly introduce the substitutes of TME including dendritic cells, macrophages, fibroblasts, tumor vasculature, tumor-draining lymph nodes and hypoxic state, then review various nanoparticles targeting these components and their applications in tumor therapy. In addition, nanoparticles could be combined with other therapies, including chemotherapy, radiotherapy, and photodynamic therapy, however, the nanoplatform delivery system may not be effective in all types of tumors due to the heterogeneity of different tumors and individuals. The changes of TME at various stages during tumor development are required to be further elucidated so that more individualized nanoplatforms could be designed.

15.
Anim Feed Sci Technol ; 261: 114392, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32288071

RESUMO

Nutritional intervention in older dogs aims to increase lifespan and improve life quality as well as delay the development of diseases related to ageing. It is believed that active fractions of mannoproteins (AFMs) obtained through extraction and fractionation of yeast cell walls (Saccharomyces cerevisiae) may beneficially modulate the immune system. However, studies that have evaluated this component and the effects of ageing on the immune system of dogs are scarce. This study aimed to evaluate the immunological effects of AFMs in adult and elderly dogs. Three extruded iso-nutrient experimental diets were formulated: without addition of AFM (T0); with AFM at 400 mg/kg (T400); and with AFM at 800 mg/kg (T800). Thirty-six beagle dogs were used, and six experimental treatments, resulting in combinations of age (adult and elderly) and diet (T0, T400, and T800), were evaluated. On days zero, 14, and 28, blood samples were obtained for leucocyte phenotyping and phagocytosis assays. On days zero and 28, a lymphoproliferation test, quantification of reactive oxygen (H2O2) and nitrogen (NO) intermediate production, evaluation of faecal immunoglobulin A (IgA) content, and a delayed cutaneous hypersensitivity test (DCHT) were performed. Statistical analyses were performed with SAS software. Repeated measure variance analyses were performed, and means were compared by the Tukey test. Values of P ≤ 0.05 were considered significant, and values of P ≤ 0.10 were considered tendencies. Dogs fed T400 tended to have higher neutrophilic phagocytic activity than dogs fed T800 (P = 0.073). Regarding reactive oxygen intermediates, bacterial lipopolysaccharide (LPS)-stimulated neutrophils from animals that were fed T400 had a tendency to produce more H2O2 than those from animals fed the control diet (P = 0.093). Elderly dogs, when compared to adult dogs, had lower absolute T and B lymphocyte counts, lower auxiliary T lymphocyte counts, and higher cytotoxic T lymphocyte counts (P < 0.05). A significant effect of diet, age, and time with saline inoculation was noted for the DCHT. There was no effect of diet or age on faecal IgA content in dogs. This study suggests beneficial effects of mannoproteins on the specific and nonspecific immune responses in adult and elderly dogs.

16.
Adv Exp Med Biol ; 1248: 547-618, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32185725

RESUMO

After decades of intense effort, immune checkpoint inhibitors have been conclusively demonstrated to be effective in cancer treatments and thus are revolutionizing the concepts in the treatment of cancers. Immuno-oncology has arrived and will play a key role in cancer treatment in the foreseeable future. However, efforts to find novel methods to improve the immune response to cancer have not ceased. Small-molecule approaches offer inherent advantages over biologic immunotherapies since they can cross cell membranes, penetrate into tumor tissue and tumor microenvironment more easily, and are amenable to be finely controlled than biological agents, which may help reduce immune-related adverse events seen with biologic therapies and provide more flexibility for the combination use with other therapies and superior clinical benefit. On the one hand, small-molecule therapies can modulate the immune response to cancer by restoring the antitumor immunity, promoting more effective cytotoxic lymphocyte responses, and regulating tumor microenvironment, either directly or epigenetically. On the other hand, the combination of different mechanisms of small molecules with antibodies and other biologics demonstrated admirable synergistic effect in clinical settings for cancer treatment and may expand antibodies' usefulness for broader clinical applications. This chapter provides an overview of small-molecule immunotherapeutic approaches either as monotherapy or in combination for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/imunologia , Humanos , Neoplasias/patologia , Microambiente Tumoral
17.
Mol Ther ; 28(5): 1238-1250, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32208168

RESUMO

The management of men with prostate cancer (PCa) with biochemical recurrence following local definitive therapy remains controversial. Early use of androgen deprivation therapy (ADT) leads to significant side effects. Developing an alternative, clinically effective, and well-tolerated therapy remains an unmet clinical need. INO-5150 is a synthetic DNA therapy that includes plasmids encoding for prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA), and INO-9012 is a synthetic DNA plasmid encoding for interleukin-12 (IL-12). This phase 1/2, open-label, multi-center study enrolled men with PCa with rising PSA after surgery and/or radiation therapy. Patients were enrolled into one of four treatment arms: arm A, 2 mg of INO-5150; arm B, 8.5 mg of INO-5150; arm C, 2 mg of INO-5150 + 1 mg of INO-9012; and arm D, 8.5 mg of INO-5150 + 1 mg of INO-9012. Patients received study drug with electroporation on day 0 and on weeks 3, 12, and 24, and they were followed for up to 72 weeks. Sixty-two patients were enrolled. Treatment was well tolerated. 81% (50/62) of patients completed all visits. 85% (53/62) remained progression-free at 72 weeks. PSA doubling time (PSADT) was increased when assessed in patients with day 0 PSADT ≤12 months. Immunogenicity was observed in 76% (47/62) of patients by multiple assessments. Analysis indicated that CD38 and perforin co-positive CD8 T cell frequency correlated with attenuated PSA rise (p = 0.05, n = 50).


Assuntos
Terapia Genética/métodos , Imunidade , Imunoterapia/métodos , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/terapia , Antígeno Prostático Específico/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Linfócitos T Citotóxicos/imunologia , Idoso , Idoso de 80 Anos ou mais , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Seguimentos , Glutamato Carboxipeptidase II/genética , Glutamato Carboxipeptidase II/imunologia , Humanos , Interleucina-12/genética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/induzido quimicamente , Plasmídeos/genética , Plasmídeos/uso terapêutico , Intervalo Livre de Progressão , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/genética , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia
18.
Annu Rev Immunol ; 38: 455-485, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32004099

RESUMO

Immune cells use a variety of membrane-disrupting proteins [complement, perforin, perforin-2, granulysin, gasdermins, mixed lineage kinase domain-like pseudokinase (MLKL)] to induce different kinds of death of microbes and host cells, some of which cause inflammation. After activation by proteolytic cleavage or phosphorylation, these proteins oligomerize, bind to membrane lipids, and disrupt membrane integrity. These membrane disruptors play a critical role in both innate and adaptive immunity. Here we review our current knowledge of the functions, specificity, activation, and regulation of membrane-disrupting immune proteins and what is known about the mechanisms behind membrane damage, the structure of the pores they form, how the cells expressing these lethal proteins are protected, and how cells targeted for destruction can sometimes escape death by repairing membrane damage.


Assuntos
Citotoxicidade Imunológica , Interações Hospedeiro-Patógeno/imunologia , Imunidade , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Apoptose/genética , Apoptose/imunologia , Biomarcadores , Membrana Celular/imunologia , Membrana Celular/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Regulação da Expressão Gênica , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Metabolismo dos Lipídeos , Necroptose/genética , Necroptose/imunologia , Necrose/genética , Necrose/imunologia , Necrose/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Relação Estrutura-Atividade
19.
Hum Vaccin Immunother ; 16(3): 654-663, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31567046

RESUMO

For the development of safe and effective EBV (Epstein-Barr virus) vaccines, the Ag85A signal peptide from M. tuberculosis H37Rv was used to construct a recombinant secretory BCG (Bacillus Chalmette-Guérin) plasmid. The Ag85A gene, fused to the EBV LMP2A (latent membrane protein) and hGM-CSF (human granulocyte/macrophage colony-stimulating factor) genes, was inserted into the pMV261 vector (secretory BCG plasmid). The expression levels of the hGM-CSF and LMP2A proteins in rBCG (recombinant BCG) were measured by Western blot analysis. Humoral immunity, cellular immunity, and antitumor effects were determined by a series of experiments. The recombinant pMVGCA plasmid effectively expressed GCA (hGM-CSF and LMP2A fusion protein) in BCG after transformation, and the rBCG proteins were recognized by antibodies against hGM-CSF and LMP2A. Six weeks after immunization, the maximum dose of rBCG resulted in antibody titers of 1:19,800 (hGM-CSF antibody) and 1:21,800 (LMP2A antibody). When the effector:target ratio was 40:1, specific lysis was maximal and approximately two times stronger than that in mice immunized with the control. Tumorigenicity was lower in the rBCG treatment group, with a tumor inhibition rate of 0.81 ± 0.09 compared with the control groups. EB virus-positive tumors are inhibited by rBCG expressing an hGM-CSF and LMP2A fusion protein.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Herpesvirus Humano 4 , Camundongos , Neoplasias/terapia , Proteínas Recombinantes de Fusão/genética
20.
Front Immunol ; 10: 2693, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849934

RESUMO

Immunotherapy, which is seen as a major tool for cancer treatment, requires, in some cases, the presence of several agents to maximize its effects. Adjuvants can enhance the effect of other agents. However, despite their long-time use, only a few adjuvants are licensed today, and their use in cancer treatment is rare. Azoximer bromide, marketed under the trade name Polyoxidonium® (PO), is a copolymer of N-oxidized 1,4-ethylenepiperazine and (N-carboxyethyl)-1,4-ethylene piperazinium bromide. It has been described as an immune adjuvant and immunomodulator that is clinically used with excellent tolerance. PO is used in the treatment and prophylaxis of diseases connected with damage to the immune system, and there is interest in testing it in antitumor therapy. We show here that PO treatment for 1 week induced positive pathological changes in 6 out of 20 patients with breast cancer, including complete response in a triple-negative patient. This correlated with an increased tumor CD4+ T-lymphocyte infiltration. The immune effects of PO are associated with myeloid cell activation, and little is known about the action of PO on lymphocyte lineages, such as natural killer (NK) and T cells. We reveal that PO increases T-cell proliferation in vitro without negative effects on any activation marker. PO does not affect dendritic cell (DC) viability and increases the expansion of immature DC (iDC) and mature DC (mDC) at 100 µg/ml, and it stimulates expression of several DC co-stimulatory molecules, inducing the proliferation of allogeneic T cells. In contrast, PO decreases DC viability when added at day 5 post-expansion. PO is not toxic for NK cells at doses up to 100 µM and does not affect their activation, maturation, and cytotoxicity but tends to increase degranulation. This could be beneficial against target cells that show low sensitivity to NK cells, e.g., solid tumor cells. Finally, we have found great variability in PO response between donors. In summary, our in vitro results show that PO increases the number of costimulatory molecules on DC that prime T cells, favoring the production of effector T cells. This may support the future clinical development of PO in cancer treatment.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adjuvantes Imunológicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Células Dendríticas/efeitos dos fármacos , Piperazinas/uso terapêutico , Polímeros/uso terapêutico , Adenocarcinoma/imunologia , Adulto , Idoso , Neoplasias da Mama/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Quimioterapia Adjuvante/métodos , Células Dendríticas/imunologia , Feminino , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA