RESUMO
Although the association between high-sugar diets and depression has been verified, few studies have explored the antidepressant mechanisms of apple polyphenol extracts (APE). Therefore, fifty-four C57BL/6 male mice aged 5 weeks were randomly assigned into five groups: the control group with the standard diet (CON), the constant high-sucrose diet group (HSD), the "2 + 5" alternate diet group (A-HSD), and the 500 mg/(kg·bw) APE treatment for the HSD group (APE) and the A-HSD group (A-APE), respectively. The data of hypothalamic-pituitary-adrenal (HPA) axis function and behavioral experiments confirmed the success in the establishment of depression-like mouse models in both HSD and A-HSD groups, which were significantly alleviated after APE treatment. Meanwhile, APE reduced serum levels of corticosterone and adrenocorticotrophic hormone, alleviated histopathological damage of the liver, colon, and brain, respectively, elevated the protein expressions of Occludin, ZO-1, and MUC-2, and decreased Firmicutes/Bacteroidota ratio and Dubosiella abundance with the increased microbiota of Tannerellaceae_unclassified, Muribaculum, and Lachnospiraceae_unclassified. Moreover, APE treatment reduced Farnesoid X receptor (FXR) protein levels along with the increased expressions of CYP7A1 and TGR5, lowered the contents of serum and fecal total bile acids, and modulated fecal BA compositions, particularly glycocholic acid (GCA) and isolithocholic acid (ILCA). Thus, both the constant and alternate high-sucrose diets successfully induced depression-like behaviors in mice, and APE might be a potential nutraceutical to attenuate high-sucrose diet-induced depression by regulating BAs circulation within the liver-gut-brain axis mediated by FXR.
RESUMO
The efficacy and tolerability of current antidepressants for adolescent depression are inadequate. S-adenosylmethionine (SAMe), known for its effectiveness and minimal side effects in adult depression, remains unstudied in adolescents. This study explored the potential of SAMe to address depression-like behaviors in juvenile rats induced by chronic unpredictable mild stress (CUMS), with a focus on gut microbiome interactions. Adolescent male Wistar rats were subjected to a 4-week CUMS regimen and received daily intraperitoneal injections of 300 mg/kg SAMe. Behavioral assessments included the sucrose preference test, elevated plus maze test, open field test, and Y-maze test. Histopathological changes of the hippocampus and colon were observed by Nissl staining and hematoxylin and eosin staining, respectively. Gut microbiome composition was analyzed using Accurate 16S absolute quantification sequencing. The results showed that SAMe significantly improved behavioral outcomes, reduced histopathological damages in hippocampal neurons and colon tissues, and modulated the gut microbiota of depressed rats. It favorably altered the ratio of Bacteroidetes to Firmicutes, decreased the absolute abundance of Deferribacteres, and adjusted levels of key microbial genera associated with depression-like behaviors. These results suggested that SAMe could effectively counter depression-like behaviors in CUMS-exposed adolescent rats by mitigating hippocampal neuronal and colon damage and modulating the gut microbiota. This supports SAMe as a viable and tolerable treatment option for adolescent depression, highlighting the importance of the gut-brain axis in therapeutic strategies.
Assuntos
Comportamento Animal , Depressão , Microbioma Gastrointestinal , Hipocampo , Ratos Wistar , S-Adenosilmetionina , Estresse Psicológico , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Depressão/tratamento farmacológico , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , S-Adenosilmetionina/farmacologia , S-Adenosilmetionina/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Ratos , Comportamento Animal/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/patologia , Colo/microbiologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Modelos Animais de DoençasRESUMO
Military personnel, firefighters, and fire survivors exhibit a higher prevalence of mental health conditions such as depression and post-traumatic stress disorder (PTSD) compared to the general population. While numerous studies have examined the neurological impacts of physical trauma and psychological stress, research on acute neurobehavioral effects of gas inhalation from explosions or fires is limited. This study investigates the early-stage neurobehavioral and neuronal consequences of acute explosion gas inhalation in Sprague-Dawley rats. Rats were exposed to simulated explosive gas and subsequently assessed using behavioral tests and neurobiological analyses. The high-dose exposure group demonstrated significant depression-like behaviors, including reduced mobility and exploration. However, neuronal damage was not evident in histological analyses. Immunofluorescence revealed increased density of radial glia and oligodendrocytes in specific brain regions, suggesting hypoxia and axon damage induced by gas inhalation as a potential mechanism for the observed neurobehavioral changes. These findings underscore the acute impact of explosion gas inhalation on mental health, highlighting the habenula and dentate gyrus of hippocampus as the possible target regions. The findings are expected to support early diagnosis and treatment strategies for brain injuries caused by explosion gas, offering insights into early intervention for depression and PTSD in affected populations.
Assuntos
Comportamento Animal , Explosões , Neuroglia , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Gases/toxicidade , Depressão/induzido quimicamenteRESUMO
The aim of this study is to investigate the role of estrogen receptor ß (ERß) in nonylphenol (NP) - induced depression - like behavior in rats and its impact on the regulation of the TPH2/5-HT pathway. In the in vitro experiment, rat basophilic leukaemia cells (RBL-2H3) cells were divided into the four groups: blank group, NP group (20⯵M), ERß agonist group (0.01⯵M), and NPï¼ERß agonist group (20⯵Mï¼0.01⯵M). For the in vivo experiment, 72 adult male Sprague-Dawley rats were randomly divided into following six groups: the Control, NP (40â¯mg/kg) group, ERß agonist (2â¯mg/kg, Diarylpropionitrile (DPN)) group, ERß inhibitor (0.1â¯mg/kg, 4-(2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl) phenol (PHTPP)) group, NP+ERß agonist (40â¯mg/kg NP ï¼ 2â¯mg/kg DPN) group, and NP+ERß inhibitor (40â¯mg/kg NP + 0.1â¯mg/kg PHTPP) group, with 12 rats in each group. Each rat in drug group were given NP by gavage and/or received a single intraperitoneal injection of DPN 2â¯mg/kg or PHTPP 0.1â¯mg/kg. Both in vivo and in vitro, NP group showed a decrease in the expression levels of ERß, tryptophan hydroxylase (TPH1), and tryptophan hydroxylase-2 (TPH2) genes and proteins, and reduced levels of DA, NE, and 5-hydroxytryptophan (5-HT) neurotransmitters. RBL-2H3 cells showed signs of cell shrinkage, with rounded cells, increased suspension and more loosely arranged cells. The effectiveness of the ERß agonist stimulation exhibited an increase exceeding 60% in RBL-2H3 cells. The application of ERß agonist resulted in an alleviation the aforementioned alterations. ERß agonist activated the TPH2/5-HT signaling pathways. Compared to the control group, the NP content in the brain tissue of the NP group was significantly increased. The latency to eat for the rats was longer and the amount of food consumed was lower, and the rats had prolonged immobility time in the behavioral experiment of rats. The expression levels of ERß, TPH1, TPH2, 5-HT and 5-HITT proteins were decreased in the NP group, suggesting NP-induced depression-like behaviours as well as disturbances in the secretion of serum hormones and monoamine neurotransmitters. In the NP group, the midline raphe nucleus showed an elongated nucleus with a dark purplish-blue colour, nuclear atrophy, displacement and pale cytoplasm. ERß might ameliorate NP-induced depression-like behaviors, and secretion disorders of serum hormones and monoamine neurotransmitters via activating TPH2/5-HT signaling pathways.
Assuntos
Depressão , Receptor beta de Estrogênio , Fenóis , Serotonina , Triptofano Hidroxilase , Animais , Masculino , Ratos , Linhagem Celular Tumoral , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , Receptor beta de Estrogênio/metabolismo , Neurotransmissores/metabolismo , Nitrilas/toxicidade , Nitrilas/farmacologia , Fenóis/toxicidade , Propionatos/toxicidade , Propionatos/farmacologia , Pirazóis , Pirimidinas , Ratos Sprague-Dawley , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triptofano Hidroxilase/metabolismoRESUMO
TMP269, a class IIA histone deacetylase inhibitor with selectivity, that has a protective effect on the central nervous system, yet its specific mechanism of action remains ambiguous. Although major depressive disorder (MDD) is highly prevalent, its pathophysiology is poorly understood. Recent evidence suggests that histone deacetylase 5 plays a key role in the pathological process of depression and the fact that preclinical studies have shown HDAC5 to be a potential antidepressant target, the search for natural drugs or small molecule compounds that can target HDAC5 may be a potential therapeutic strategy for the treatment of depression. In addition, we examined the role of the Brain-derived neurotrophic factor (BDNF), an important neurotrophic factor for neuronal survival and growth, as a potential downstream target of HDAC5. We found downward revision of HDAC5 levels in the hippocampus ameliorated depressive-like behavior in LH (Learned helplessness) mice. Furthermore, injection of HDAC5 overexpressing adenoviral vectors in the hippocampal dentate gyrus of wild-type mice produced a somewhat depressive-like phenotype. Pharmacological, immunofluorescence and biochemical experiments showed that TMP269 could produce antidepressant effects by inhibiting mouse hippocampal HDAC5 and thus modulating its downstream BDNF. Over all, TMP269 mitigated LH-induced depressive-like behaviors and abnormalities in synapse formation and neurogenesis within the hippocampus. These findings suggest potential beneficial effects of TMP269 on depression.
Assuntos
Antidepressivos , Depressão , Camundongos Endogâmicos C57BL , Estresse Psicológico , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Camundongos , Masculino , Depressão/tratamento farmacológico , Depressão/metabolismo , Estresse Psicológico/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Histona Desacetilases/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Comportamento Animal/efeitos dos fármacosRESUMO
OBJECTIVE: To investigate the effect of tea polyphenols(TP) on improving depression-like behavior in aged type 2 diabetes(T2DM) model rats. METHODS: A total of 40 8-week-old SD male rats were randomly divided into the control group(n=10) and the modeling group(n=30) according to the body weight. The rats in the modeling group were fed with high-glucose and high-fat diet and treated with 50 mg/kg D-galactose by intraperitoneal injection daily until the end of the experiment, while the rats in the control group were fed with the standard diet and treated with an equal volume of saline by intraperitoneal injection. After 4 weeks, the rats in the modeling group were injected with 25 mg/kg STZ, meanwhile the rats in the control group were injected with an equal volume of citric acid buffer. The level of fasting blood glucose(FBG) was measured on the 14~(th) day. When FBG≥16.7 mmol/L, the rats were identified as successful model of the T2DM rats. Then, the model rats were randomly divided into the model group, 150, 300 mg/kg TP groups(n=10, respectively), and the rats were given intragastric intervention for 8 weeks. The levels of the FBG were detected, and the depression-like behavior of rats was assessed by the open field test(OFT) and forced swimming test(FST). The density of microglia in hippocampus CA1 region was assessed by immunofluorescence staining, and protein expressions of P53, Iba1, iNOS, Arg-1 and BDNF were determined by western blot. RESULTS: Compared with the control group, the levels of FBG in the rats of the model group were obviously increased(P<0.01). In the OFT, the frequencies of rearing and grooming in the rats of model group markedly was decreased, while in the FST, the immobility time extensively was increased(P<0.01). The density of microglia in hippocampus CA1 region was increased(P<0.01). The expressions of P53, Iba1 and iNOS were increased, and the expressions of Arg-1 and BDNF were decreased(P<0.01). Additionally, compared with the model group, in the OFT, the frequencies of rearing and grooming were increased in the rats in 150 and 300 mg/kg TP group(P<0.01). The density of microglia in hippocampus CA1 region was decreased(P<0.01). The expressions of P53, Iba1 and iNOS were down-regulated, and the expression of BDNF was up-regulated(P<0.01). Additionally, compared with the model group, the levels of FBG was decreased in the rats in the 300 mg/kg TP group(P<0.01). The immobility time was decreased in the FST(P<0.01). The expression of Arg-1 was down-regulated(P<0.01). CONCLUSION: TP can improve depression-like behavior in aged T2DM model rats, and its mechanism may be related to regulate microglia M1/M2 polarization and up-regulate expression of BDNF in hippocampus.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Diabetes Mellitus Tipo 2 , Masculino , Animais , Ratos , Depressão/tratamento farmacológico , Microglia , Proteína Supressora de Tumor p53 , Polifenóis/farmacologia , Polifenóis/uso terapêutico , CháRESUMO
Neuronal activity is modulated not only by inputs from other neurons but also by various factors, such as bioactive substances. Noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons) are involved in diverse physiological functions, including sleep/wakefulness and stress responses. Previous studies have identified various substances and receptors that modulate LC-NA neuronal activity through techniques including electrophysiology, calcium imaging, and single-cell RNA sequencing. However, many substances with unknown physiological significance have been overlooked. Here, we established an efficient screening method for identifying substances that modulate LC-NA neuronal activity through intracellular calcium ([Ca2+]i) imaging using brain slices. Using both sexes of mice, we screened 53 bioactive substances, and identified five novel substances: gastrin-releasing peptide, neuromedin U, and angiotensin II, which increase [Ca2+]i, and pancreatic polypeptide and prostaglandin D2, which decrease [Ca2+]i Among them, neuromedin U induced the greatest response in female mice. In terms of the duration of [Ca2+]i change, we focused on prostaglandin E2 (PGE2), since it induces a long-lasting decrease in [Ca2+]i via the EP3 receptor. Conditional knock-out of the receptor in LC-NA neurons resulted in increased depression-like behavior, prolonged wakefulness in the dark period, and increased [Ca2+]i after stress exposure. Our results demonstrate the effectiveness of our screening method for identifying substances that modulate a specific neuronal population in an unbiased manner and suggest that stress-induced prostaglandin E2 can suppress LC-NA neuronal activity to moderate the behavioral response to stressors. Our screening method will contribute to uncovering previously unknown physiological functions of uncharacterized bioactive substances in specific neuronal populations.SIGNIFICANCE STATEMENT Bioactive substances modulate the activity of specific neuronal populations. However, since only a limited number of substances with predicted effects have been investigated, many substances that may modulate neuronal activity have gone unrecognized. Here, we established an unbiased method for identifying modulatory substances by measuring the intracellular calcium signal, which reflects neuronal activity. We examined noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons), which are involved in diverse physiological functions. We identified five novel substances that modulate LC-NA neuronal activity. We also found that stress-induced prostaglandin E2 (PGE2) may suppress LC-NA neuronal activity and influence behavioral outcomes. Our screening method will help uncover previously overlooked functions of bioactive substances and provide insight into unrecognized roles of specific neuronal populations.
Assuntos
Neurônios Adrenérgicos , Locus Cerúleo , Masculino , Camundongos , Feminino , Animais , Locus Cerúleo/fisiologia , Cálcio/farmacologia , Norepinefrina/farmacologia , ProstaglandinasRESUMO
Depression is a common mental disorder with an increasing incidence. Several studies have demonstrated that cortical DNA hypomethylation is associated with depression-like behaviors. This study aims to investigate whether maternal vitamin D deficiency (VDD) induces depression-like behaviors and to explore the effects of folic acid supplement on VDD-induced cortical DNA hypomethylation in adult offspring. Female mice were fed with a VDD diet, beginning at 5 weeks of age and throughout pregnancy. Depression-like behaviors were evaluated, and cortical 5-methylcytosine (5mC) content was detected in adult offspring. Results showed that depression-like behaviors were observed in adult offspring of the VDD group. Cortical Ache and Oxtr mRNAs were upregulated in female offspring of the VDD group. Cortical Cpt1a and Htr1b mRNAs were increased in male offspring of the VDD group. Moreover, cortical 5mC content was reduced in offspring of VDD-fed dams. The additional experiment showed that serum folate and cortical S-adenosylmethionine (SAM) contents were decreased in the offspring of the VDD group. Folic acid supplement attenuated VDD-induced SAM depletion and reversed cortical DNA methylation. Moreover, folic acid supplement attenuated VDD-induced upregulation of depression-related genes. In addition, folic acid supplement alleviated maternal VDD-induced depression-like behaviors in adult offspring. These results suggest that maternal VDD induces depression-like behavior in adult offspring by reducing cortical DNA methylation. The gestational folic acid supplement prevents VDD-induced depression-like behavior by reversing cortical DNA hypomethylation in adult offspring.
Assuntos
Ácido Fólico , Deficiência de Vitamina D , Gravidez , Animais , Masculino , Feminino , Camundongos , Ácido Fólico/farmacologia , Metilação de DNA , Depressão/etiologia , Depressão/prevenção & controle , DNARESUMO
Destruction of the blood-brain barrier is a critical component of epilepsy pathology. Several studies have demonstrated that sphingosine 1-phosphate receptor 1 contributes to the modulation of vascular integrity. However, its effect on blood-brain barrier permeability in epileptic mice remains unclear. In this study, we prepared pilocarpine-induced status epilepticus models and pentylenetetrazol-induced epilepsy models in C57BL/6 mice. S1P1 expression was increased in the hippocampus after status epilepticus, whereas tight junction protein expression was decreased in epileptic mice compared with controls. Intraperitoneal injection of SEW2871, a specific agonist of sphingosine-1-phosphate receptor 1, decreased the level of tight junction protein in the hippocampus of epileptic mice, increased blood-brain barrier leakage, and aggravated the severity of seizures compared with the control. W146, a specific antagonist of sphingosine-1-phosphate receptor 1, increased the level of tight junction protein, attenuated blood-brain barrier disruption, and reduced seizure severity compared with the control. Furthermore, sphingosine 1-phosphate receptor 1 promoted the generation of interleukin-1ß and tumor necrosis factor-α and caused astrocytosis. Disruption of tight junction protein and blood-brain barrier integrity by sphingosine 1-phosphate receptor 1 was reversed by minocycline, a neuroinflammation inhibitor. Behavioral tests revealed that sphingosine 1-phosphate receptor 1 exacerbated epilepsy-associated depression-like behaviors. Additionally, specific knockdown of astrocytic S1P1 inhibited neuroinflammatory responses and attenuated blood-brain barrier leakage, seizure severity, and epilepsy-associated depression-like behaviors. Taken together, our results suggest that astrocytic sphingosine 1-phosphate receptor 1 exacerbates blood-brain barrier disruption in the epileptic brain by promoting neuroinflammation.
RESUMO
OBJECTIVE: Under physiological conditions, astrocytes produce lactate to meet the increased synaptic energy demand due to neuronal activity. In the light of the findings showing that this process is disrupted in the pathophysiology of major depression, the aim of this study is to investigate the effect of pharmacological inhibition of perisynaptic astrocyte glycogen utilization on anxiety-like behavior and depression-like behavior in female and male mice. METHODS: In this study, DAB (1,4-dideoxy-1,4-imino-D-arabinitol), which is an inhibitor of glycogen breaking enzyme glycogen phosphorylase, was intrahippocampally administered to 15 female and 14 male Swiss albino mice, while 15 female and 12 male Swiss albino mice received intrahippocampal saline injections. Three and five days after the injections, the anxiety-like and depression-like behaviors of the mice were assessed by locomotor activity, open-field test, light-dark box test, tail suspension test and sucrose preference test. RESULTS: Three days after injection, neither depression-like nor anxietylike significant behavioral changes were detected in the male experimental group mice compared to the control group; but an increase in locomotor activity (p=0.05) and time spent in the open-field (p=0.01) were observed on the fifth day. In evaluations of the female experimental group mice on the third and fifth days, depression-like and anxiety-like behaviors were found similar to the control group, as seen in the male mice. The only significant difference in the experimental group female mice was found in the sucrose preference test, which revealed an increased tendency to prefer sucrose (p=0.003) compared to the control group. CONCLUSION: The inhibition of glycogen use in the hippocampus by DAB did not affect anxiety-like and depression-like behaviors 3 and 5 days after injection in both female and male mice. The increase in the time spent in the open-field by male experimental group mice was associated not with anxiety, but with increase in the locomotor activity. The fact that no significant difference was observed in the light-dark box test, which is another test used to evaluate anxiety, supported this opinion. The increase seen in the sucrose preference test in female experimental group mice was not interpreted as an increase in hedonic behavior because prevention of glycogen breakdown in the hypothalamus might have homeostatically increased sugar-craving and therefore resulted in an increase in sucrose preference. Different set of tests better targeting the energy and glucose metabolism and applied at farther time points than surgery are recommended for future studies.
Assuntos
Depressão , Glicogênio , Humanos , Camundongos , Animais , Masculino , Feminino , Glicogênio/metabolismo , Astrócitos/metabolismo , Ansiedade , Sacarose/metabolismoRESUMO
Purpose: This study aimed to examine whether aerobic exercise exerts mood-modulating effects through an estrogen signaling mechanism. Method: The experiment was divided into two parts. The first part is to compare the three modeling methods to obtain the most obvious method of depression-like phenotype for further study in the second part. The first part of ovariectomized rats (age, 13 weeks) was tested when rats were 14 or 22 weeks old or in the sixth week after 3 weeks of chronic restraint stress. The second part was to treat the animals with the most obvious depression-like phenotype in different ways, placebo treatment or estradiol (E2) replacement therapy was administered, aerobic training, or estrogen receptor antagonist treatment. The cognitive (Barnes maze and 3-chamber social tests), anxiety-like (open-field and elevated plus maze tests) and depression-like (sucrose preference and forced swim tests) behaviors of rats in both parts were analyzed to study the effects of estrogen depletion and aerobic exercise. Results: Rats did not develop depressive symptoms immediately after ovariectomy, however, the symptoms became more pronounced with a gradual decrease in ovarian hormone levels. Compared with the placebo or control groups, the exercise and E2 groups showed improved performance in all behavioral test tasks, and the antidepressant effects of aerobic exercise were comparable to those of estrogen. Moreover, the estrogen receptor antagonist has markedly inhibited the antidepressant effects of aerobic exercise. Conclusion: Estrogen receptors may mediate the antidepressant effects of aerobic exercise. In addition, an increasingly fragile ovarian hormonal environment may underlies chronic restraint stress-induced depression.
RESUMO
Fluoxetine (Flx) is the most commonly used antidepressant to treat major depressive disorder. However, its molecular mechanisms of action are not defined as yet. A comparative proteomic approach was used to identify proteome changes in the prefrontal cortex (PFC) cytosolic and non-synaptic mitochondria (NSM)-enriched fractions of adult male Wistar rats following chronic social isolation (CSIS), a rat model of depression, and Flx treatment in CSIS and control rats, using liquid chromatography online tandem mass spectrometry. Flx reversed CSIS-induced depressive - like behavior according to preference for sucrose and immobility in the forced swim test, indicating its antidepressant effect. Flx treatment in controls led to an increase of the expression of cytosolic proteins involved in the microtubule cytoskeleton and intracellular calcium homeostasis and of enzymes involved in bioenergetic and transmembrane transport in NSM. CSIS downregulated the cytosolic proteins involved in proteasome pathway, and glutathione antioxidative system, and upregulated the expression of enzymes participating in mitochondrial-energy metabolism and transport. The presence of cytochrome c in the cytosol may suggest compromised mitochondrial membrane integrity. Flx treatment in CSIS rats downregulated protein involved in oxidative phosphorylation, such as complex III and manganese superoxide dismutase, and upregulated vesicle-mediated transport and synaptic signaling proteins in the cytosol, and neuronal calcium-binding protein 1 in NSM. Our study identified PFC modulated proteins and affected biochemical pathways that may represent potential markers/targets underlying CSIS-induced depression and effective Flx treatment, and highlights the role of protein systems involved in NSM and various metabolic pathways potentially involved in neuronal plasticity.
Assuntos
Transtorno Depressivo Maior , Fluoxetina , Animais , Antidepressivos/uso terapêutico , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Citocromos c/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/farmacologia , Fluoxetina/farmacologia , Glutationa/metabolismo , Hipocampo/metabolismo , Masculino , Córtex Pré-Frontal/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma , Proteômica , Ratos , Ratos Wistar , Sacarose/metabolismo , Superóxido Dismutase/metabolismoRESUMO
Anxiety- and depression-like behavior following chemotherapy treatment occurs in cancer patients with high probability and no specific therapeutics are available for treatment and prevention of this complication. Here, tilapia skin peptides (TSP), a novel enzymatically hydrolyzed bioactive peptide mixture, obtained from tilapia (Oreochromis mossambicus) scraps, were studied on cyclophosphamide (CP)-induced anxiety- and depression-like behavior in mice. Mice were received intraperitoneal injection of CP for 2 weeks, while TSP was administered for 4 weeks. After the end of the animal experiment, behavioral, biochemical, and molecular tests were carried out. The mice decreased preference for sugar water, increased immobility time in the forced swimming and tail suspension test, and decreased travel distance in the open field test in the Model group, compared with the Control group. Abnormal changes in behavioral tests were significantly improved after the TSP treatment. Additionally, abnormalities on superoxide dismutase, malondialdehyde, glutathione peroxidase were rescued by administration of 1000 mg/kg/d TSP in mice than that of the Model group. TSP has normalized the expression of Iba-1 and the levels of TNF-α and IL-1ß in the hippocampus of mice, which indicated that TSP could observably ameliorate neuroinflammatory response in the hippocampus of mice. TSP ameliorated the apoptosis of hippocampal neurons of CA1 and CA3 regions in the TSP group vs. the Model group. The number of doublecortin positive cells was drastically increased by administering 1000 mg/kg/d TSP in mice vs. the Model group. Furthermore, TSP reversed the Nrf2/HO-1 signaling pathway, BDNF/TrkB/CREB signaling pathway, and reduced the Bcl-2/Bax/caspase-3 apoptosis pathway. In conclusion, TSP could restore CP-induced anxiety- and depression-like behavior via improving oxidative stress, neuroinflammation, neuron apoptosis, and neurogenesis in mice hippocampus.
RESUMO
Chronic stress is an important risk factor for mood disorders including depression. The decreased level of CREB (cAMP-responsive element binding)-regulated transcription coactivator 1 (CRTC1) expression in hippocampus may be involved in depression-like behavior in some stress-induced depression models. But the mechanism of CRTC1 in mediating depression-like behavior remains unknown. In this study, chronic unpredictable mild stress (CUMS)-treated mice showed depression-like behavior accompanied by the downregulation of CRTC1 in the hippocampus. Adeno-associated virus (AAV)-CRTC1-mediated overexpression of CRTC1 in the hippocampus by stereotactic brain injection could significantly prevent depression-like behavior in CUMS-treated mice. The above data reveal that the downregulation of hippocampal CRTC1 expression participates in CUMS-induced depression-like behavior. In order to explore the key targets regulated by CRTC1, AAV-mediated CRTC1 short hairpin (shRNA) was constructed to achieve knockdown of CRTC1 in the hippocampus, and then the hippocampi were collected for RNA-sequencing (RNA-seq). The RNA-seq data show that upregulated genes were enriched in stress and immune system-associated GO terms and pathways such as response to stress and external stimulus and regulation of immune response and that downregulated genes were enriched in neural activity such as synaptic transmission and cognitive behavior. We further provided RT-qPCR data that the inflammation-related factors including Gpr84, Tlr2, Lyz2, and Icam1 were significantly upregulated in the hippocampus of both CUMS- and CRTC1 shRNA-induced models, some of them were also validated in protein levels by Western blotting. We propose a hypothesis that CUMS induces downregulation of CRTC1, which might lead to depression-like behavior via neuroinflammation pathway. This study provides new explanation for the inflammatory hypothesis of depression and some clues for exploring the molecular mechanism of CRTC1 regulation.
Assuntos
Depressão , Hipocampo , Animais , Depressão/complicações , Depressão/genética , Depressão/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/genética , Hipocampo/metabolismo , Camundongos , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análise de Sequência de RNA , Estresse Psicológico/complicações , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Although cerebellar alterations have been implicated in stress symptoms, the exact contribution of the cerebellum to stress symptoms remains to be elucidated. Here, we demonstrated the crucial role of cerebellar neurons projecting to the ventral tegmental area (VTA) in the development of chronic stress-induced behavioral alterations in mice. Chronic chemogenetic activation of inhibitory Purkinje cells in crus I suppressed c-Fos expression in the DN and an increase in immobility in the tail suspension test or forced swimming test, which were triggered by chronic stress application. The combination of adeno-associated virus-based circuit mapping and electrophysiological recording identified network connections from crus I to the VTA via the dentate nucleus (DN) of the deep cerebellar nuclei. Furthermore, chronic inhibition of specific neurons in the DN that project to the VTA prevented stressed mice from showing such depression-like behavior, whereas chronic activation of these neurons alone triggered behavioral changes that were comparable with the depression-like behaviors triggered by chronic stress application. Our results indicate that the VTA-projecting cerebellar neurons proactively regulate the development of depression-like behavior, raising the possibility that cerebellum may be an effective target for the prevention of depressive disorders in human.
Assuntos
Cerebelo/citologia , Depressão , Neurônios/metabolismo , Estresse Fisiológico , Área Tegmentar Ventral/fisiologia , Animais , Comportamento Animal , Feminino , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICRRESUMO
Neurofibromatosis type 1 (NF1) is associated with behavioral alterations and cognitive impairments. There is a genetic interaction between NF1 and the receptor tyrosine kinase Alk. Short-term pharmacological Alk inhibition, with a compound FDA-approved for cancer starting 10 days prior to cognitive testing, was shown to improve cognitive performance of NF1 heterozygous (HET) mice. However, effects of long-term Alk inhibition on behavioral cognitive performance are not known. Therefore, in the study described below we determine the effects of prolonged pharmacological Alk inhibition for 24 weeks on behavioral and cognitive performance of NF1 HET mice. As these studies have the ultimate objective of developing a treatment for humans with neurofibromatosis and acceptable side effects in the context of cancer are not acceptable in the context of long-term treatment of patients with neurofibromatosis, we included additional behavioral tests of anxiety-like and depressive-like behaviors as well. Long-term effects of Alk inhibition had genotype-dependent effects, consistent with a specific interaction between Alk and NF1. Beneficial effects of long-term Alk inhibition in NF1 HET mice included rescue of impairments in object recognition in NF1 HET males and females, and improved cognitive performance of NF1 HET males and females in the water maze test. In contrast, long-term Alk inhibition had detrimental effects in WT mice not seen after short-term treatments. As longer treatments are translationally more relevant for NF1 patients, these data highlight the important to assess long-term effects of drugs, especially of repurposed drugs used originally as part of cancer therapy.
Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Disfunção Cognitiva/tratamento farmacológico , Neurofibromatose 1/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Neurofibromatose 1/complicaçõesRESUMO
Introducción: Existen plantas que se usan desde tiempos ancestrales con efecto alucinógeno y alteraciones al sistema nervioso central, debido a la presencia principalmente de mezcalina son usadas para cumplir objetivos tradicionales asociados a la adivinación, curandería, divinidad y otros. Objetivos: Determinar el efecto del extracto acuoso de Trichocereus pachanoi a dosis de 10 por ciento, 20 por ciento y 30 por ciento sobre el comportamiento exploratorio de carácter depresivo en Rattus rattus var. albinus. Material y métodos: El presente estudio experimental es de carácter exploratorio aplicado, constructivo y prospectivo, se formaron 4 grupos de 10 ratas cada uno a las que se les administró extracto acuoso de Trichocereus pachanoi en dosis creciente, luego fueron sometidas a natación forzada con entrenamiento previo de 15 minutos. Resultados: El grupo que no recibió tratamiento alguno posee la más baja respuesta en gasto de tiempo para el escalamiento, comparado con los grupos B, C y D que presentan 13,5 min. 17,17 min. y 24,37 min. respectivamente. También en la evaluación de la movilidad, el grupo A posee en valor más bajo, comparado con los grupos B, C y D que presentan 13,42 min. 17,62 min. y 23,12 min., respectivamente. Conclusiones: El tratamiento en ratas con extracto acuoso de Trichocereus pachanoi a concentraciones de 10 por ciento, 20 por ciento y 30 por ciento ha sido eficaz en producir un efecto tranquilizante en el comportamiento exploratorio de carácter depresivo en el sujeto(AU)
Introduction: Since ancient times, some mescaline containing plants that have hallucinogen effects and cause alterations in the central nervous system have been used to fulfill traditional objectives associated with divination, healing, spirituality and others. Objective: To determine the effect of the aqueous extract of Trichocereus pachanoi at doses of 10 %, 20 % and 30 % solution on depression-like exploratory behavior in Rattus rattus var. albinus. Material and Methods: The present experimental study, which is exploratory, constructive and prospective in nature, was conducted in 4 groups of 10 rats. The rats were administered increasing doses of aqueous extract of Trichocereus pachanoi; then, they underwent forced swimming with a previous 15-minute training. Results: The group that did not receive any treatment had the lowest response to the duration of time spent at scaling compared to groups B, C and D that spent 13.5 min., 17.17 min., and 24.37 min., respectively. Also, in the evaluation of mobility, group A showed the lowest value compared to groups B, C and D that recorded 13.42 min., 17.62 min., and 23.12 min., respectively. Conclusions: The treatment with aqueous extract of Trichocereus pachanoi at concentrations of 10 percent, 20 percent and 30 percent applied to rats has been effective in producing a tranquilizer effect on the depression-like exploratory behavior in rats(AU)
Assuntos
Ratos , Tranquilizantes , Sistema Nervoso Central , Comportamento Exploratório , Alucinógenos , MescalinaRESUMO
Individuals who regularly shift their sleep timing, like night and/or shift-workers suffer from circadian desynchrony and are at risk of developing cardiometabolic diseases and cancer. Also, shift-work is are suggested to be a risk factor for the development of mood disorders such as the burn out syndrome, anxiety, and depression. Experimental and clinical studies provide evidence that food intake restricted to the normal activity phase is a potent synchronizer for the circadian system and can prevent the detrimental health effects associated with circadian disruption. Here, we explored whether adult male Wistar rats exposed to an experimental model of shift-work (W-AL) developed depressive and/or anxiety-like behaviors and whether this was associated with neuroinflammation in brain areas involved with mood regulation. We also tested whether time-restricted feeding (TRF) to the active phase could ameliorate circadian disruption and therefore would prevent depressive and anxiety-like behaviors as well as neuroinflammation. In male Wistar rats, W-AL induced depressive-like behavior characterized by hypoactivity and anhedonia and induced increased anxiety-like behavior in the open field test. This was associated with increased number of glial fibrillary acidic protein and IBA-1-positive cells in the prefrontal cortex and basolateral amygdala. Moreover W-AL caused morphological changes in the microglia in the CA3 area of the hippocampus indicating microglial activation. Importantly, TRF prevented behavioral changes and decreased neuroinflammation markers in the brain. Present results add up evidence about the importance that TRF in synchrony with the light-dark cycle can prevent neuroinflammation leading to healthy mood states in spite of circadian disruptive conditions.
Assuntos
Ansiedade/prevenção & controle , Encéfalo/patologia , Depressão/prevenção & controle , Comportamento Alimentar , Jornada de Trabalho em Turnos/efeitos adversos , Animais , Ansiedade/etiologia , Ansiedade/patologia , Astrócitos/patologia , Complexo Nuclear Basolateral da Amígdala/patologia , Região CA3 Hipocampal/patologia , Proteínas de Ligação ao Cálcio/análise , Ritmo Circadiano , Depressão/etiologia , Depressão/patologia , Modelos Animais de Doenças , Ingestão de Energia , Preferências Alimentares , Proteína Glial Fibrilar Ácida/análise , Inflamação , Fígado/metabolismo , Masculino , Proteínas dos Microfilamentos/análise , Microglia/ultraestrutura , Teste de Campo Aberto , Córtex Pré-Frontal/patologia , Distribuição Aleatória , Ratos , Ratos Wistar , Reconhecimento Psicológico , Jornada de Trabalho em Turnos/psicologia , Fatores de Tempo , Aumento de PesoRESUMO
Fibromyalgia is characterized by the amplification of central nervous system pain with concomitant fatigue, sleep, mood disorders, depression, and anxiety. It needs extensive pharmacological therapy. In the present study, Swiss mice were treated with reserpine (0.25 mg/kg, s.c.) over three consecutive days, in order to reproduce the pathogenic process of fibromyalgia. On day 4, the administrations of the Tx3-3 toxin produced significant antinociception in the mechanical allodynia (87.16% ±12.7%) and thermal hyperalgesia (49.46% ± 10.6%) tests when compared with the PBS group. The effects produced by the classical analgesics (duloxetine 30 mg/kg, pramipexole 1 mg/kg, and pregabalin 30 mg/kg, p.o., respectively) in both of the tests also demonstrated antinociception. The administrations were able to increase the levels of the biogenic amines (5-HTP and DE) in the brain. The treatments with pramipexole and pregabalin, but not duloxetine, decreased the immobility time in the FM-induced animals that were submitted to the forced swimming test; however, the Tx3-3 toxin (87.45% ± 4.3%) showed better results. Taken together, the data has provided novel evidence of the ability of the Tx3-3 toxin to reduce painful and depressive symptoms, indicating that it may have significant potential in the treatment of FM.
Assuntos
Analgésicos/administração & dosagem , Fibromialgia/tratamento farmacológico , Neuropeptídeos/administração & dosagem , Anestésicos/administração & dosagem , Animais , Modelos Animais de Doenças , Fibromialgia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Reserpina/administração & dosagemRESUMO
OBJECTIVES: Cerebral ischemia/reperfusion (I/R) causes brain inflammation that ultimately causes long time brain function disturbances. We aimed to evaluate the effect of ellagic acid (EA) on anxiety, depression, locomotion behaviors, blood-brain barrier (BBB) permeability, brain edema, and inflammation in male rats with cerebral I/R. MATERIALS AND METHODS: Sixty male Wistar rats (250-300 g) divided into 6 groups randomly with 10 in each: 1) Sham+Veh; rats submitted to the surgery without any I/R and received vehicle (10% DMSO in normal saline 5 ml/kg, gavages). 2) I/R+Veh; 3-5) I/R+EA; I/R rats received 50, 75 and 100 EA mg/kg, by gavages 3 times daily for one week. The cerebral I/R injury was induced by clamping the bilateral common carotid arteries for 20 minutes followed by reperfusion. Behaviors were tested one week after treatment, and brain tissue cytokines were measured by special ELISA kits. RESULTS: Cerebral I/R disrupted BBB function (P<0.001), increased brain water content (P<0.01), anxiety-like (P<0.001), depression-like (P<0.001) behaviors and cytokines in the brain tissue (P<0.001), while decreased locomotion and exploratory behaviors significantly (P<0.01 and P<0.001, respectively). Administration of EA (100 mg/kg but not other doses) could improve post-ischemic complications such as clinical signs (P<0.01), BBB function (P<0.001), brain edema (P<0.01), brain tissue cytokines (P<0.001), locomotion and exploratory behaviors significantly (P<0.05 and P<0.001, respectively). CONCLUSION: The results suggest that EA could be a potential therapeutic agent against cerebral I/R, possibly through its intertwined anti-inflammatory effects. Further research is required to investigate the involved mechanisms in details.