Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(28): 15715-15724, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38961631

RESUMO

Neohesperidin dihydrochalcone (NHDC) is a citrus-originated, seminatural sweetener. There is no investigation concerning the effect of NHDC on ulcerative colitis. The purpose of this study was to determine the therapeutic and protective effects of NHDC in Wistar Albino rats. NHDC was given for 7 days after or before colitis induction. The results showed that NHDC significantly reduced the interleukin-6 (IL-6), interleukin-10 (IL-10), transforming growth factor-ß1 (TGF-ß1), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) levels. Catalase levels did not show a significant difference between the groups. NHDC provided a remarkable decrease in the expression levels of cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and nuclear factor kappa B (NF-κB). Total antioxidant status (TAS) levels were significantly elevated in NHDC treatment groups, while total oxidant status (TOS) and oxidative stress index (OSI) levels were significantly decreased. NHDC provided remarkable improvement in histological symptoms such as epithelial erosion, edema, mucosal necrosis, inflammatory cell infiltration, and hemorrhage. Also, caspase-3 expression levels were statistically decreased in NHDC treatment groups. The results indicated that NHDC might be a protection or alternative treatment for ulcerative colitis.


Assuntos
Anti-Inflamatórios , Antioxidantes , Apoptose , Chalconas , Hesperidina , NF-kappa B , Ratos Wistar , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/administração & dosagem , Ratos , Antioxidantes/farmacologia , Masculino , Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Chalconas/administração & dosagem , Hesperidina/análogos & derivados , Hesperidina/farmacologia , Hesperidina/administração & dosagem , NF-kappa B/genética , NF-kappa B/metabolismo , Humanos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Malondialdeído/metabolismo , Peroxidase/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Interferon gama/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética
2.
New Phytol ; 242(3): 1238-1256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426393

RESUMO

Biosynthesis of flavonoid aglycones and glycosides is well established. However, key genes involved in their catabolism are poorly understood, even though the products of hydrolysis and oxidation play important roles in plant resistance to biotic stress. Here, we report on catabolism of dihydrochalcones (DHCs), the most abundant flavonoids in domesticated apple and wild Malus. Two key genes, BGLU13.1 and PPO05, were identified by activity-directed protein purification. BGLU13.1-A hydrolyzed phlorizin, (the most abundant DHC in domesticated apple) to produce phloretin which was then oxidized by PPO05. The process differed in some wild Malus, where trilobatin (a positional isomer of phlorizin) was mainly oxidized by PPO05. The effects of DHC catabolism on apple resistance to biotic stresses was investigated using transgenic plants. Either directly or indirectly, phlorizin hydrolysis affected resistance to the phytophagous pest two-spotted spider mite, while oxidation of trilobatin was involved in resistance to the biotrophic fungus Podosphaera leucotricha. DHC catabolism did not affect apple resistance to necrotrophic pathogens Valsa mali and Erwinia amylovara. These results suggest that different DHC catabolism pathways play different roles in apple resistance to biotic stresses. The role of DHC catabolism on apple resistance appeared closely related to the mode of invasion/damage used by pathogen/pest.


Assuntos
Malus , Polifenóis , Malus/metabolismo , Florizina/metabolismo , Flavonoides/metabolismo , Estresse Fisiológico/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Nat Prod Res ; : 1-6, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353156

RESUMO

A new compound, conamonin A (1), was isolated from the whole plants of Conamomum rubidum with eight known dihydrochalcones (2-9). Their structures were elucidated by a combination of spectroscopic methods as well as by comparison with previously reported data. The absolute configuration of 1 was assigned by TDDFT-ECD method. Compounds 1 and 8 showed inhibitory activity against LPS-induced NO production in the RAW 264.7 cells, with IC50 values of 58.29 ± 2.88 and 81.77 ± 5.99 µM, respectively. Compounds 3/4 and 5/6 exhibited inhibitory effects, with IC50 values of 28.76 ± 1.16 and 29.89 ± 1.79 µg/mL, respectively. Compounds 2, 7-9 exhibited significant cytotoxic activity against human lung carcinoma (the SK-LU-1 cell line) with IC50 values ranging from 9.87 to 17.99 µM. This study offers valuable insights into the chemical constituents and biological activities of Conamomum rubidum, highlighting its potential as a source for discovering new anti-inflammatory and cytotoxic agents.

4.
Rev. bras. farmacogn ; 28(2): 192-197, Mar.-Apr. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-958852

RESUMO

ABSTRACT The secondary metabolites of the aerial parts of Zornia brasiliensis Vogel, Fabaceae, and the biological activity of one of these secondary metabolites were characterized in this study. A phytochemical investigation was performed using chromatographic techniques including analytical and preparative reverse-phase HPLC column sequences, which resulted in the isolation of fourteen compounds: one previously undescribed C-glycosylated dihydrochalcone (zornioside), one cyclitol (D-pinitol), one glycosylated megastigmane (roseoside) and eleven phenolic compounds: 7-methoxyflavanone, 7,4'-dimethoxyisoflavone, medicarpin, 2'-4'-dihydroxychalcone, onionin, isoorientin-3'-O-methyl ether, isovitexin, glycosylated (Z)-O-coumaric acid, glycosylated (E)-O-coumaric acid, dihydromelilotoside, and isoorientin. The structures of the isolated compounds were determined based on 1D and 2D-NMR, HRESIMS, IR and CD spectroscopic analyses. The cytotoxic activity of zornoside was assessed against tumor cell lines (MCF-7, HCC1954, T-47D, 4T1, HL60), and a non-tumor cell line (RAW264.7) using MTT assay. The compound zornioside was selectively cytotoxic for HL60 leukemia cells (IC50: 37.26 µM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA