Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Oral Dis ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121459

RESUMO

OBJECTIVE: Electronic cigarette (e-cigarette) use among adults in the United States continues to rise. Particularly concerning is the impact of e-cigarette aerosol inhalation on the oral mucosa. Aerosols are derived from a heated e-liquid base of propylene glycol/glycerin (PG/G) often mixed with nicotine and chemical flavors. Of note, harmful and potentially harmful constituents (HPHCs), including metals and volatile organic compounds, have been detected in e-cigarette aerosols. It remains unknown, however, whether aerosols exclusively derived from e-liquid PG/G are detrimental to oral keratinocytes. The present study analyzed toxicological outcomes in normal oral keratinocytes exposed to model nicotine-free, unflavored PG/G e-liquid aerosols. MATERIALS AND METHODS: Cell viability/cytotoxicity, genotoxicity, and immunoblotting assays were conducted in NOKSI, a gingiva-derived oral keratinocyte cell line, following exposure to model e-liquid aerosols or non-aerosolized controls. The HPHC acrolein, reported to form DNA adducts in the buccal mucosa from e-cigarette users, was also used in similar assays. RESULTS: PG/G e-liquid aerosol extracts significantly enhanced cytotoxic and DNA damaging responses in NOKSI cells when compared to non-aerosolized e-liquid treatment. Acrolein treatment led to similar results. CONCLUSIONS: The aerosolization process of PG/G e-liquid is a critical determinant of marked cytotoxic and genotoxic stimuli in oral keratinocytes.

2.
Harm Reduct J ; 21(1): 90, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702809

RESUMO

BACKGROUND: Although electronic cigarettes (e-cigarettes) appear to be effective in helping people who smoke to stop smoking, concerns about use of e-cigarettes among young people have led to restrictions on non-tobacco flavoured e-liquids in some countries and some US states. These restrictions could reduce the appeal of these products to non-smoking youth but could have negative consequences for people who smoke or use e-cigarettes. METHODS: In this mixed methods study, we recruited UK adults who smoked or used to smoke and subsequently vaped to explore their opinions of unflavoured e-liquids and their beliefs about how they would be impacted by hypothetical e-liquid flavour restrictions. Participants trialled an unflavoured e-liquid instead of their usual nicotine product for four hours and completed a survey and an online interview. RESULTS: Using Interpretive Phenomenological Analysis and graphically presented data, we found differences in participants' opinions of unflavoured e-liquid. If only unflavoured, tobacco flavoured, and menthol flavoured e-liquids remained on the UK market, some people who smoke or vape may be unaffected, but some may relapse to smoking or continue smoking. Despite most wanting to prevent young people from initiating vaping, participants had varying opinions on whether flavour restrictions would be an effective method. CONCLUSIONS: The findings highlight that people who smoke and vape could be impacted by flavour restrictions in a range of ways, some of which could have a potential adverse impact on harm reduction efforts in the UK (e.g., by making smoking more appealing than vaping).


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes , Abandono do Hábito de Fumar , Vaping , Humanos , Feminino , Masculino , Reino Unido , Adulto , Abandono do Hábito de Fumar/métodos , Abandono do Hábito de Fumar/psicologia , Vaping/psicologia , Adulto Jovem , Pessoa de Meia-Idade , Adolescente , Recidiva
3.
Online J Public Health Inform ; 16: e53245, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602734

RESUMO

This viewpoint aims to provide a comprehensive understanding of vaping from various perspectives that contribute to the invention, development, spread, and consequences of e-cigarette products and vaping. Our analysis showed that the specific characteristics of e-cigarette products as well as marketing strategies, especially social media marketing, fostered the spread of vaping and the subsequent effects on human health and toxicity. We analyzed the components of e-cigarette devices and e-liquids, including the latest variants whose impacts were often overlooked. The different forms of nicotine, including salts and freebase nicotine, tobacco-derived nicotine, tobacco-free nicotine, and cooling agents (WS3 and WS23), have brought more choices for vapers along with more ways for e-cigarette manufacturers to advertise false understandings and present a greater threat to vapers' health. Our work emphasized the products of brands that have gained significant influence recently, which are contributing to severe public health issues. On the other hand, we also discussed in detail the toxicity of e-liquid components and proposed a toxicity mechanism. We also noticed that nicotine and other chemicals in e-liquids promote each other's negative effects through the oxidative stress and inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, a mechanism leading to pulmonary symptoms and addiction. The impact of government regulations on the products themselves, including flavor bans or regulations, has been limited. Therefore, we proposed further interventions or harm reduction strategies from a public health perspective.

4.
Environ Pollut ; 348: 123888, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548156

RESUMO

Once littered, disposable e-cigarettes present a complex type of waste in the environment. They typically contain a lithium battery, electronics to produce vapour and remnant e-liquid, all of which could leach into the environment. The effects of littered e-cigarettes are not well understood, and they have not been tested in terrestrial ecosystems. To address this, an experiment was set up to assess how leachate from e-cigarettes with or without a battery, but also e-liquid on its own can alter fundamental physical characteristics of Lolium perenne (perennial ryegrass) when irrigated with contaminated water. After 31 days, shoot length of L. perenne was not measurably affected, but the biomass was significantly reduced by 30% when e-liquid, and 24% when leachate from intact e-cigarettes was present compared to control plants. Plants grown with leachate or e-liquid displayed a significant level of early senescence of leaf apices, and the chlorophyll content was increased. Furthermore, root biomass was significantly less (29-46%) compared to the control. Leachate from used disposable e-cigarettes can affect the performance of plants when entering the soil ecosystem, therefore stricter regulations are needed to prevent this new type of electronic litter from becoming more widespread.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Lolium , Ecossistema , Solo , Biomassa
5.
J Chromatogr A ; 1712: 464495, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37952386

RESUMO

Electronic cigarette (e-cigarette) usage has risen dramatically worldwide in recent years. It has been publicized as a safer alternative to the conventional combustible cigarette. This, however, has not yet been supported by robust toxicological research evidence. Analysis of the chemical compositions of e-liquids and generated aerosols is an important step in evaluating the toxicity effects of e-cigarettes. Currently, a broad spectrum of analytical methods have been employed for qualitative and quantitative analysis of chemical compositions of e-cigarette liquids and aerosols. The aim of this article is to review the advances in the chromatographic characterization of chemical composition of the latter in the recent five years. In addition, sample preparation methods for e-liquids and aerosols are surveyed and discussed. A study of the relevant literature indicates that, expectedly, gas chromatography and liquid chromatography with a variety of detection systems, particularly mass spectrometry, have been the main analytical techniques used in this field. Sample preparation procedures primarily include headspace sampling, dilute-and-shoot approach, liquid-liquid extraction and sorbent-based extraction for e-liquids and for aerosols (the latter usually with laboratory-built collection devices). Some challenges of current e-cigarette analytical research, and an overview on prospective work are also presented.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Estudos Prospectivos , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida , Aerossóis/análise
6.
Tob Induc Dis ; 21: 133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842544

RESUMO

INTRODUCTION: Evaluating anticipated responses to flavor bans in the context of vape shops is needed to inform legislation and enforcement. This cross-sectional study examined vape shop retailers' opinions about the potential impacts of an e-liquid flavor ban on shop sales and customer behavior-change intentions. METHODS: From December 2019 to October 2020 we conducted structured interviews over the phone with 46 brick-and-mortar vape shop retailers in the Greater Los Angeles Area. RESULTS: Most participants were managers (43.5%), followed by owners (26.1%) and clerks (26.1%). More than half (52.2%) reported that sales would drop a lot if flavored e-liquids were banned in all vape shops. Controlling for store position, multivariable linear regression showed that opposition to a hypothetical ban on non-tobacco flavored e-liquids was associated with participants' opinions that customers would likely not purchase tobacco flavored e-liquids (b= -0.44, p<0.01), and would likely use combustible tobacco products (b=0.47, p<0.05). CONCLUSIONS: In this cross-sectional study, vape shop retailers in the Greater Los Angeles Area reported that if a ban on non-tobacco e-liquid flavors occurred, they would oppose strongly, and that a ban would have a negative impact on their shop (e.g. loss in sales) and customer behavior (e.g. would replace vaping with smoking combustible tobacco products). Implications for research and practice are discussed.

7.
Sensors (Basel) ; 23(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37837050

RESUMO

To study and monitor the adverse health consequences of using electronic cigarettes, a user's puff topography, which are quantification parameters of the user's vaping habits, plays a central role. In this work, we introduce a topography sensor to measure the mass of total particulate matter generated in every puff and to estimate the nicotine yield. The sensor is compact and low-cost, and is integrated into the electronic cigarette device to promptly and conveniently monitor the user's daily puff topography. The topography sensor is comprised of a photometric sensor and a pressure sensor. The photometric sensor measures the mass concentration of the aerosol, based on scattering of near-infrared light from airborne particles, while the pressure sensor measures the flow rate. The topography sensor was tested under various conditions including a wide range of atomizer power, puff duration, and inhalation pressure. The sensor's accuracy was validated by comparing the sensor's readings with reference measurements, and the results matched closely with the trends reported by existing studies on electronic cigarettes. An example application for tracking a user's puff topography was also demonstrated. Our topography sensor holds great promise in mitigating the health risks of vaping, and in promoting quality control of electronic cigarette products.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Nicotina , Aerossóis , Nebulizadores e Vaporizadores
8.
J Biophotonics ; : e202300336, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851480

RESUMO

Ex vivo porcine lung immersed in e-liquid was investigated in-depth using confocal Raman micro-spectroscopy to assess the e-liquid influence on the lung. It was found that lung-related Raman band intensities at 1002, 1548, 1618 and 1655 cm-1 increased after first and second treatments except the surface, which was attributed to the well-known optical clearing (OC) effect due to alveoli filling with e-liquid resulting in light scattering reduction. The autofluorescence enhancement was explained by oxidative stress induced in lung during exposure to e-liquid. Moreover, e-liquid induced collagen dehydration was revealed by the I937 /I926 Raman band intensity ratio change. The effect was enhanced after the second treatment of the same lung tissue that indicates the possibility of multi-step OC treatment. We hypothesize that the nicotine-flavour-free e-liquids containing glycerol and propylene glycol could potentially be used in clinical protocols as OC agent for enhanced in-depth Raman-guided bronchoscopy.

9.
Toxicology ; 496: 153617, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595738

RESUMO

Electronic cigarettes (ECs) are considered a less hazardous alternative to tobacco smoking but are not harmless. Growing concerns about the safety profiles of flavors in e-liquids underpin the need for this study. Here, we screened 53 nicotine-free flavored e-liquids (across 15 flavor categories) across a 3-point concentration range (0.25%, 0.5%, and 1% v/v) in a high-throughput fashion in human bronchial epithelial (HBEC-3KT) submerged cell cultures to identify 'toxic hits' using in vitro endpoint assays comprising cell count, cell viability, and lactate dehydrogenase (LDH). We observed significant, dose-dependent adverse effects only with cinnamon, vanilla tobacco, and hazelnut e-liquids compared to media-only and PG/VG vehicle controls. Hence, we further analyzed these three flavors for their effects on HBEC-3KT proliferation, mitochondrial health, and oxidative stress. A significant decrease in cell proliferation after 36 h was observed for each e-liquid toxic hit compared to media-only and PG/VG controls. Hazelnut (at all concentrations) and vanilla tobacco (1%) increased cytoplasmic reactive oxygen species generation compared to media-only and PG/VG controls. Conversely, all three flavors at 0.5% and 1% significantly decreased mitochondrial membrane potential compared to PG/VG and media-only controls. Chemical analysis revealed that all three flavors contained volatile organic compounds. We hypothesized that the cytotoxicity of cinnamon might be mediated via TRPA1; however, TRPA1 antagonist AP-18 (10 µM) did not mitigate these effects, and cinnamon significantly increased TRPA1 transcript levels. Therefore, pathways mediating cinnamon's cytotoxicity warrant further investigations. This study could inform public health authorities on the relative health risks assessment following exposure to EC flavor ingredients.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Brônquios , Contagem de Células , Cinnamomum zeylanicum , Células Epiteliais , Aromatizantes/efeitos adversos , Aromatizantes/toxicidade , Canal de Cátion TRPA1
10.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373356

RESUMO

Despite claims of safety or harm reduction for electronic cigarettes (E-cig) use (also known as vaping), emerging evidence indicates that E-cigs are not likely safe, or necessarily safer than traditional cigarettes, when considering the user's risk of developing vascular dysfunction/disease. E-cigs are different from regular cigarettes in that E-cig devices are highly customizable, and users can change the e-liquid composition (such as the base solution, flavors, and nicotine level). Since the effects of E-cigs on the microvascular responses in skeletal muscle are poorly understood, we used intravital microscopy with an acute (one-time 10 puff) exposure paradigm to evaluate the individual components of e-liquid on vascular tone and endothelial function in the arterioles of the gluteus maximus muscle of anesthetized C57Bl/6 mice. Consistent with the molecular responses seen with endothelial cells, we found that the peripheral vasoconstriction response was similar between mice exposed to E-cig aerosol or cigarette smoke (i.e., 3R4F reference cigarette); this response was not nicotine dependent, and endothelial cell-mediated vasodilation was not altered within this acute exposure paradigm. We also report that, regardless of the base solution component [i.e., vegetable glycerin (VG)-only or propylene glycol (PG)-only], the vasoconstriction responses were the same in mice with inhalation exposure to 3R4F cigarette smoke or E-cig aerosol. Key findings from this work reveal that some component other than nicotine, in inhaled smoke or aerosol, is responsible for triggering peripheral vasoconstriction in skeletal muscle, and that regardless of one's preference for an E-cig base solution composition (i.e., ratio of VG-to-PG), the acute physiological response to blood vessels appears to be the same. The data suggest that vaping is not likely to be 'safer' than smoking towards blood vessels and can be expected to produce and/or result in the same adverse vascular health outcomes associated with smoking cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Animais , Camundongos , Nicotina/efeitos adversos , Vaping/efeitos adversos , Células Endoteliais , Aerossóis , Camundongos Endogâmicos C57BL , Músculo Esquelético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA