RESUMO
The integrated behaviour of multiple senescent cell types within a single human tissue leading to the development of malignancy is unclear. Patients with Familial Melanoma Syndrome (FMS) have heterozygous germline defects in the CDKN2A gene coding for the cyclin inhibitor p16INK4a. Melanocytes within skin biopsies from FMS patients express significantly less p16INK4a but express higher levels of the DNA-damage protein ð¾H2AX a than fibroblastic cells. However, patient fibroblasts also exhibit defects since senescent cells do not increase in the skin during ageing and fibroblasts isolated from the skin of patients have increased replicative capacity compared to control fibroblasts in vitro, culminating in abnormal nuclear morphology. Patient derived fibroblasts also secreted less SASP than control cells. Predisposition of FMS patients to melanoma may therefore result from integrated dysregulation of senescence in multiple cell types in vivo. The inherently greater levels of DNA damage and the overdependence of melanocytes on p16 for cell cycle inhibition after DNA damage makes them exquisitely susceptible to malignant transformation. This may be accentuated by senescence-related defects in fibroblasts, in particular reduced SASP secretion that hinders recruitment of T cells in the steady state and thus reduces cutaneous immunosurveillance in vivo.
RESUMO
POT1 variants have been identified in familial melanoma (FM) as well as a number of other germline and somatic malignancies. The functional validation of variants identified from the screening of patients with melanoma gene susceptibility panels is key to understanding the clinical significance of identified variants. Here we report a novel, likely pathogenic POT1 missense variant (p.G95V) in FM and investigate its functional impact. We demonstrate loss of function owing to the inability of the mutant POT1 protein to bind telomeric DNA compared to its wild-type counterpart. This study provides important functional validation of a novel POT1 variant in FM.
RESUMO
Melanoma, a malignant neuroectodermic tumor originating from the neural crest, presents a growing global public health challenge and is anticipated to become the second most prevalent malignancy in the USA by 2040. The CDKN2A gene, particularly p16INK4a, plays a pivotal role in inhibiting the cell cycle via the cyclin D/CDK2-pRb pathway in certain tumors. In familial melanomas (FM), 40% exhibit CDKN2A mutations affecting p16INK4a, impacting checkpoint G1, and stabilizing p53 expression. This study aims to establish a scoring system using immunohistochemical antibodies, providing a cost-saving approach to classify multiple primary melanomas (MPM) and FM patients based on their mutational status, thus mitigating genetic testing expenses. This retrospective study included 23 patients with MPM and FM, assessing the p16, CD8, and Ki67 immunohistochemical status. Analyses of each parameter and associations between their value intervals and genetic CDKN2A status were conducted. A total score of at least 9 out of 10 points per tumor defined melanomas with homozygous CDKN2A deletions, exhibiting a sensitivity of 100% and specificity of 94.11%. In conclusion, p16, CD8, and Ki67 individually serve as valuable indicators for predicting melanoma evolution. The algorithm, comprising these three immunohistochemical parameters based on their prognostic and evolutionary significance, proves to be a valuable auxiliary diagnostic tool for cost-effective prediction of mutational status in detecting multiple and familial primary melanomas with CDKN2A homozygous deletion.
RESUMO
BACKGROUND: Prior studies have estimated a small number of individuals with melanoma (2%-2.5%) have germline cancer predisposition, yet a recent twin study suggested melanoma has the highest hereditability among cancers. OBJECTIVE: To determine the incidence of hereditary melanoma and characterize the spectrum of cancer predisposition genes that may increase the risk of melanoma. METHODS: Four hundred individuals with melanoma and personal or family history of cancers underwent germline testing of >80 cancer predisposition genes. Comparative analysis of germline data was performed on 3 additional oncologic and dermatologic data sets. RESULTS: Germline pathogenic/likely pathogenic (P/LP) variants were identified in 15.3% (61) individuals with melanoma. Most variants (41, 67%) involved genes considered unrelated to melanoma (BLM, BRIP1, CHEK2, MLH1, MSH2, PMS2, RAD51C). A third (20, 33%) were in genes previously associated with familial melanoma (BAP1, BRCA2, CDKN2A, MITF, TP53). Nearly half (30, 46.9%) of P/LP variants were in homologous repair deficiency genes. Validation cohorts demonstrated P/LP rates of 10.6% from an unselected oncologic cohort, 15.8% from a selected commercial testing cohort, and 14.5% from a highly selected dermatologic study. LIMITATIONS: Cohorts with varying degrees of selection, some retrospective. CONCLUSION: Germline predisposition in individuals with melanoma is common, with clinically actionable findings diagnosed in 10.6% to 15.8%.
Assuntos
Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/epidemiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Testes Genéticos , Adulto Jovem , IncidênciaRESUMO
Background and Objectives: In the realm of the rising incidence of cutaneous and mucous melanoma, CDKN2A mutations characterize familial and multiple primary melanoma cases. The involvement of tumor-infiltrating lymphocytes (TILs) is interconnected with survival rates, but may extend even further. The aim of this study is to verify the accuracy of the classical "naked eye" count of CD8-positive T cells comprised within the tumoral population and peritumoral infiltrate versus that obtained via a special software run by the aid of artificial intelligence (AI), used to determine the percentage of CD8-positive TILs. Materials and Methods: The present retrospective cross-sectional study conducted over a period of 5 years (2018-2022) focused on patients diagnosed with mucous and/or cutaneous melanoma, with a positive family history for melanoma, or personal antecedents of primary malignant melanocytic lesions. The 23 selected cases were diagnosed histopathologically, tested for CDKN2A mutations through fluorescent hybridization in situ, and CD8 immunohistochemistry was performed. The included slides were evaluated both manually (naked-eye examination) and automatically (via QuPath platform) for quantifying the CD8-positive TILs. Results: The number of CD8-positive TILs in melanoma samples has been more accurately identified through the use of an AI-mediated software as compared to the human-eye evaluation performed by experimental pathologists. A higher percentage of CD8-positive intratumoral lymphocytes versus stromal lymphocytes was positively associated with more numerous metastatic sites. Conclusions: The CD8 lymphocytic phenotype harbors major significance in the context of familial and multiple primary melanoma and may comprise a cost-effective investigation meant to help in the establishment of melanoma prognosis and response to immunotherapy.
Assuntos
Melanoma , Neoplasias Primárias Múltiplas , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Estudos Retrospectivos , Melanoma Maligno Cutâneo , Inteligência Artificial , Estudos Transversais , Linfócitos T CD8-Positivos/patologia , Linfócitos do Interstício Tumoral , Prognóstico , Fenótipo , Neoplasias Primárias Múltiplas/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genéticaRESUMO
Increased genetic risk for melanoma can occur in the context of germline pathogenic variants in high-penetrance genes, such as CDKN2A and CDK4, risk variants in low- to moderate-penetrance genes (MC1R and MITF), and possibly due to variants in emerging genes, such as ACD, TERF2IP, and TERT. We aimed to identify germline variants in high- and low- to moderate-penetrance melanoma risk genes in Brazilian patients with clinical criteria for familial melanoma syndrome. We selected patients with three or more melanomas or melanoma patients from families with three tumors (melanoma and pancreatic cancer) in first- or second-degree relatives. Genetic testing was performed with a nine-gene panel (ACD, BAP1, CDK4, CDKN2A, POT1, TERT, TERF2IP, MC1R, and MITF). In 36 patients, we identified 2 (5.6%) with germline pathogenic variants in CDKN2A and BAP1 and 4 (11.1%) with variants of uncertain significance in the high-penetrance genes. MC1R variants were found in 86.5%, and both red hair color variants and unknown risk variants were enriched in patients compared to a control group. The low frequency of germline pathogenic variants in the high-penetrance genes and the high prevalence of MC1R variants found in our cohort show the importance of the MC1R genotype in determining the risk of melanoma in the Brazilian melanoma-prone families.
Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Brasil/epidemiologia , Predisposição Genética para Doença , Melanoma/epidemiologia , Melanoma/genética , Melanoma/patologia , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Testes Genéticos , Mutação em Linhagem Germinativa , Inibidor p16 de Quinase Dependente de Ciclina/genética , Receptor Tipo 1 de Melanocortina/genéticaRESUMO
Cutaneous melanoma is a highly aggressive skin cancer. It is estimated that 5% to 10% of the underlying mutations are hereditary and responsible for familial (or hereditary) melanoma. These patients are prone to the early development and higher risk of multiple melanomas. In recent years, an increasing number of genes have been identified thanks to genetic testing, allowing the subsequent surveillance of individuals at risk, yet it is still difficult to predict the presence of these mutations on a clinical basis. In this scenario, specific phenotypic and dermoscopic features could help clinicians in their identification. The aim of this work has been to correlate mutations to prevalent dermoscopic patterns, paving the way for reference models useful in clinical practice. In our cohort, out of 115 patients referred to genetic counseling for melanoma, 25 tested positive (21.7%) for critical mutations: CDKN2A (n = 12), MITF (n = 3), BAP1 (n = 1), MC1R (n = 3), PTEN (n = 1), TYR (n = 2), OCA2 (n = 1), and SLC45A2 (n = 2). The phenotype profiles obtained through the digital acquisition, analysis, and description of both benign and malignant pigmented lesions showed a predominance of the type II skin phenotype, with an elevated mean total nevus number (182 moles, range 75-390). As for dermoscopic features, specific mutation-related patterns were described in terms of pigmentation, areas of regression, and vascular structures. Although further studies with larger cohorts are needed, our work represents the beginning of a new approach to the study and diagnosis of familial melanoma, underlining the importance of clinical and dermoscopic patterns, which may constitute a reference model for each gene, enabling comparison.
RESUMO
Background: Spitzoid morphology in familial melanoma has been associated with germline variants in POT1, a telomere maintenance gene (TMG), suggesting a link between telomere biology and spitzoid differentiation. Objective: To assess if familial melanoma cases associated with germline variants in TMG (POT1, ACD, TERF2IP, and TERT) commonly exhibit spitzoid morphology. Methods: In this case series, melanomas were classified as having spitzoid morphology if at least 3 of 4 dermatopathologists reported this finding in ≥25% of tumor cells. Logistic regression was used to calculate odds ratios (OR) of spitzoid morphology compared to familial melanomas from unmatched noncarriers that were previously reviewed by a National Cancer Institute dermatopathologist. Results: Spitzoid morphology was observed in 77% (23 of 30), 75% (3 of 4), 50% (2 of 4), and 50% (1 of 2) of melanomas from individuals with germline variants in POT1, TERF2IP, ACD, and TERT, respectively. Compared to noncarriers (n = 139 melanomas), POT1 carriers (OR = 225.1, 95% confidence interval: 51.7-980.5; P < .001) and individuals with TERF2IP, ACD, and TERT variants (OR = 82.4, 95% confidence interval: 21.3-494.6; P < .001) had increased odds of spitzoid morphology. Limitations: Findings may not be generalizable to nonfamilial melanoma cases. Conclusion: Spitzoid morphology in familial melanoma could suggest germline alteration of TMG.
RESUMO
Background: Melanoma genetic testing reportedly increases preventative behaviour without causing psychological harm. Genetic testing for familial melanoma risk is now available, yet little is known about dermatologists' perceptions regarding the utility of testing and genetic testing ordering behaviours. Objectives: To survey Australasian Dermatologists on the perceived utility of genetic testing, current use in practice, as well as their confidence and preferences for the delivery of genomics education. Methods: A 37-item survey, based on previously validated instruments, was sent to accredited members of the Australasian College of Dermatologists in March 2021. Quantitative items were analysed statistically, with one open-ended question analysed qualitatively. Results: The response rate was 56% (256/461), with 60% (153/253) of respondents between 11 and 30 years post-graduation. While 44% (112/252) of respondents agreed, or strongly agreed, that genetic testing was relevant to their practice today, relevance to future practice was reported significantly higher at 84% (212/251) (t = -9.82, p < 0.001). Ninety three percent (235/254) of respondents reported rarely or never ordering genetic testing. Dermatologists who viewed genetic testing as relevant to current practice were more likely to have discussed (p < 0.001) and/or offered testing (p < 0.001). Respondents indicated high confidence in discussing family history of melanoma, but lower confidence in ordering genetic tests and interpreting results. Eighty four percent (207/247) believed that genetic testing could negatively impact life insurance, while only 26% (63/244) were aware of the moratorium on using genetic test results in underwriting in Australia. A minority (22%, 55/254) reported prior continuing education in genetics. Face-to-face courses were the preferred learning modality for upskilling. Conclusion: Australian Dermatologists widely recognise the relevance of genetic testing to future practice, yet few currently order genetic tests. Future educational interventions could focus on how to order appropriate genetic tests and interpret results, as well as potential implications on insurance.
RESUMO
Around 10% of melanoma occurs in patients with a suspected familial predisposition. TERT promoter mutations are the most common somatic hotspot mutations in human cancers. However, only two families with germline mutations have been identified to date. We present detailed histological, clinical, and molecular pathologic analyses of affected patients and details of newly identified individuals in one of these previously reported families. TERT (NM_198253.3) Chr.5:1,295,161T>C (c.-57 T>C) promoter variants were detected in all melanoma-affected (n = 18) and one non-diseased family member. The median age at diagnosis was 30 years (n = 18, range 16-46 years, 2 unknown). While most primary melanomas arose on the upper extremities (n = 7, 21%) and were superficial spreading melanoma (SSM, n = 8, 24%), many primary melanomas also originated from non-UV-exposed mucosal (n = 2, 6%) and acral (n = 4, 12%) locations. One SSM sample harbored a Chr.5:1,295,228C>T TERT promoter mutation in addition to the germline Chr.5:1,295,161T>C variant, arguing additional pathway activation can support tumor pathogenesis. Patients treated with BRAF inhibitor and/or immune checkpoint inhibition (ICI) showed responses, although of limited duration. One mucosal melanoma harbored both a KIT copy number gain and an activating c.1727 p.Leu576Pro mutation. Following the modest response to ICI, subsequent KIT inhibitor (imatinib) therapy demonstrated an ongoing complete pathological response (currently 7 months).
Assuntos
Melanoma , Neoplasias Cutâneas , Telomerase , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas B-raf/genética , Inibidores de Checkpoint Imunológico , Mesilato de Imatinib , Telomerase/genética , Telomerase/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/patologia , Mutação/genética , Melanoma Maligno CutâneoRESUMO
BACKGROUND: Little is known about how members of cancer-prone families think about genetic determinism and whether personal behavior can amplify or counter genetic risk for disease. PURPOSE: Understanding how people think about the impact of personal behavior on disease risk may inform communications about genetic risks and their management. METHODS: We assessed three sets of beliefs about the impact of behavior on genetic risk-interactive (unhealthful behaviors can amplify genetic risk), subtractive (healthful behaviors can reduce genetic risk), and deterministic (genes primarily determine health outcomes)-among 114 unaffected members of melanoma-prone families receiving genetic counseling (51.6% men, average age = 35.3). We examined whether these beliefs predicted changes in perceived control, motivation to manage melanoma risk, and sun-protection behavior one year later. RESULTS: Participants strongly endorsed interactive and subtractive beliefs, but not deterministic beliefs. These beliefs generally did not change, even among those who received positive CDKN2A/p16 genetic test results conferring up to 76% lifetime melanoma risk. Controlling for age, sex, education, skin type, and genetic test result, interactive beliefs predicted sustained increases in perceptions of personal control, motivation to reduce sun exposure, use of multiple sun-protection methods, and reduction in objectively assessed tanning at the wrist one year following genetic counseling. Subtractive beliefs predicted increased personal control, motivation to manage risk, and sunscreen use, while deterministic beliefs were generally unrelated to outcomes. CONCLUSIONS: Among people at highly elevated hereditary cancer risk, beliefs that unhealthful behaviors can amplify genetic risk seem to be especially motivating of behavioral risk-reduction efforts.
Assuntos
Melanoma , Neoplasias Cutâneas , Queimadura Solar , Adulto , Feminino , Aconselhamento Genético/psicologia , Testes Genéticos , Comportamentos Relacionados com a Saúde , Humanos , Masculino , Melanoma/genética , Melanoma/prevenção & controle , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/prevenção & controle , Queimadura Solar/prevenção & controle , Protetores SolaresRESUMO
Malignant melanoma is one of the most highly ranked cancers in terms of years of life lost. Hereditary melanoma with its increased familial susceptibility is thought to affect up to 12% of all melanoma patients. In the past, only a few high-penetrance genes associated with familial melanoma, such as CDKN2A and CDK4, have been clinically tested. However, findings now indicate that melanoma is a cancer most likely to develop not only due to high-penetrance variants but also due to polygenic inheritance patterns, leaving no clear division between the hereditary and sporadic development of malignant melanoma. Various pathogenic low-penetrance variants were recently discovered through genome-wide association studies, and are now translated into polygenic risk scores. These can show superior sensitivity rates for the prediction of melanoma susceptibility and related mixed cancer syndromes than risk scores based on phenotypic traits of the patients, with odds ratios of up to 5.7 for patients in risk groups. In addition to describing genetic findings, we also review the first results of epigenetic research showing constitutional methylation changes that alter the susceptibility to cutaneous melanoma and its risk factors.
RESUMO
Familial melanoma accounts for 10% of cases, being CDKN2A the main high-risk gene. However, the mechanisms underlying melanomagenesis in these cases remain poorly understood. Our aim was to analyze the transcriptome of melanocyte-keratinocyte co-cultures derived from healthy skin from familial melanoma patients vs. controls, to unveil pathways involved in melanoma development in at-risk individuals. Accordingly, primary melanocyte-keratinocyte co-cultures were established from the healthy skin biopsies of 16 unrelated familial melanoma patients (8 CDKN2A mutant, 8 CDKN2A wild-type) and 7 healthy controls. Whole transcriptome was captured using the SurePrint G3 Human Microarray. Transcriptome analyses included: differential gene expression, functional enrichment, and protein-protein interaction (PPI) networks. We identified a gene profile associated with familial melanoma independently of CDKN2A germline status. Functional enrichment analysis of this profile showed a downregulation of pathways related to DNA repair and immune response in familial melanoma (P < 0.05). In addition, the PPI network analysis revealed a network that consisted of double-stranded DNA repair genes (including BRCA1, BRCA2, BRIP1, and FANCA), immune response genes, and regulation of chromosome segregation. The hub gene was BRCA1. In conclusion, the constitutive deregulation of BRCA1 pathway genes and the immune response in healthy skin could be a mechanism related to melanoma risk.
RESUMO
Genetic susceptibility to nevi may affect the risk of developing melanoma, since common and atypical nevi are the main host risk factors implicated in the development of cutaneous melanoma. Recent genome-wide studies defined a melanoma polygenic risk score based on variants in genes involved in different pathways, including nevogenesis. Moreover, a predisposition to nevi is a hereditary trait that may account for melanoma clustering in some families characterized by cases with a high nevi density. On the other hand, familial melanoma aggregation may be due to a Mendelian inheritance of high/moderate-penetrance pathogenic variants affecting melanoma risk, regardless of the nevus count. Based on current knowledge, this review analyzes the complex interplay between nevi and melanoma predisposition in a familial context. We review familial melanoma, starting from Whiteman's divergent pathway model to overall melanoma development, distinguishing between nevi-related (cases with a high nevus count and a high polygenic risk score) and nevi-resistant (high/moderate-penetrance variant-carrier cases) familial melanoma. This distinction could better direct future research on genetic factors useful to identify high-risk subjects.
Assuntos
Melanoma/metabolismo , Nevo/genética , Predisposição Genética para Doença/genética , Humanos , Melanoma/genética , Penetrância , Fenótipo , Fatores de Risco , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Melanoma Maligno CutâneoRESUMO
A family history of melanoma greatly increases the risk of developing cutaneous melanoma, a highly aggressive skin cancer whose incidence has been steadily increasing worldwide. Familial melanomas account for about 10% of all malignant melanomas and display an inheritance pattern consistent with the presence of pathogenic germline mutations, among which those involving CDKN2A are the best characterized. In recent years, a growing number of genes, such as MC1R, MITF, CDK4, POT1, TERT, ACD, TERF2IP, and BAP1, have been implicated in familial melanoma. The fact that individuals harboring these germline mutations along with their close blood relatives have a higher risk of developing multiple primary melanomas as well as other internal organ malignancies, especially pancreatic cancer, makes cascade genetic testing and surveillance of these families of the utmost importance. Unfortunately, due to a polygenic inheritance mechanism involving multiple low-risk alleles, genetic modifiers, and environmental factors, it is still very difficult to predict the presence of these mutations. It is, however, known that germline mutation carriers can sometimes develop specific clinical traits, such as high atypical nevus counts and specific dermoscopic features, which could theoretically help clinicians predict the presence of these mutations in prone families. In this review, we provide a comprehensive overview of the high- and intermediate-penetrance genes primarily linked to familial melanoma, highlighting their most frequently associated non-cutaneous malignancies and clinical/dermoscopic phenotypes.
RESUMO
Melanoma is considered the most lethal skin cancer and its incidence has increased during the past decades. About 10 % of cases are classified as hereditary melanoma. Genetic predisposition usually manifests itself clinically as early onset and multiple cutaneous melanomas. Several genes have been identified as involved to melanoma susceptibility, some of them still with unknown clinical relevance. Beyond melanoma, the affected families are also more prone to develop other malignancies, such as pancreatic cancer. The identification of risk families and involved genes is of great importance, since different forms of oncological surveillance are recommended. However, well established guidelines to standardize both the selection of individuals and the genetic panel to be requested are still lacking. Given the importance of the genetic counseling and testing in the context of clinical suspicion of hereditary melanoma, this paper aims to review the literature regarding genetic panel indications worldwide.
Assuntos
Melanoma , Síndromes Neoplásicas Hereditárias , Neoplasias Pancreáticas , Neoplasias Cutâneas , Aconselhamento Genético , Predisposição Genética para Doença , Humanos , Melanoma/diagnóstico , Melanoma/epidemiologia , Melanoma/genética , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/genéticaRESUMO
Dysplastic nevi are distinctive melanocytic lesions in the larger group of atypical nevi. They often are multiple and sporadic with genetic features intermediate between common acquired nevi and melanoma. Dysplastic nevi may be multiple, familial, and seen in patients with familial melanoma syndrome. Although their behavior is benign, they rarely represent a precursor to melanoma. If clinically suspicious, dysplastic nevi should be removed for adequate histopathologic examination and to exclude possibility of melanoma. Partial sampling should be avoided because reliable separation from melanoma requires visualization of the entire lesion to allow for examination of architectural histopathologic features and avoid sampling error.
Assuntos
Síndrome do Nevo Displásico , Melanoma , Nevo Pigmentado , Neoplasias Cutâneas , Síndrome do Nevo Displásico/diagnóstico , Síndrome do Nevo Displásico/genética , Humanos , Melanoma/genética , Neoplasias Cutâneas/genéticaRESUMO
Background: Inherited pathogenic variants (PVs) in the CDKN2A gene are among the strongest known risk factors for cutaneous melanoma. Carriers are at high risks to develop multiple primary melanomas and other cancers, in particular pancreatic cancer. In this study, the CDKN2A testing, carried out in Sweden in the years 2015-2020, was evaluated.Materials and methods: Included families had (1) three or more cases of melanoma and/or pancreatic cancer, (2) two melanomas in first-degree relatives, the youngest case <55 years or (3) individuals with three or more multiple primary melanomas, the first before the age of 55 years, and no other affected family members. The included families had at least one affected member that had been tested for CDKN2A PVs.Results: In total, 403 families were included, whereof 913 family members had been diagnosed with cutaneous melanoma and 129 with pancreatic cancer, 33 (8.2%) were found to have PVs in CDKN2A. Frequencies ranged from 0.9% in families with only two melanomas to 43.2% in families with three or more melanoma cases and pancreatic cancer (p < 0.001). The frequency of PVs ranged from 2.1% to 16.5% in families where the youngest case was ≥55 years or <35 years (p = 0.040). In families with or without CDKN2A PVs, 37.6% and 10.0% had melanoma cases that had died from melanoma, respectively (p < 0.001).Discussion: Significant differences were seen in the frequencies of CDKN2A PVs, dependent on numbers or age at diagnosis of melanomas and diagnoses of pancreatic cancers in the family. Further, melanoma cases belonging to families that tested positive for CDKN2A PVs had a significantly higher mortality. To summarize, the current evaluation shows that, with adequately selected criteria to guide genetic testing, CDKN2A PVs are identified at significant frequencies. Identification of carrier families is of importance to ensure that members are enrolled in a preventive surveillance program.
Assuntos
Melanoma , Neoplasias Cutâneas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Genes p16 , Predisposição Genética para Doença , Testes Genéticos , Mutação em Linhagem Germinativa , Humanos , Melanoma/diagnóstico , Melanoma/epidemiologia , Melanoma/genética , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/genética , Suécia/epidemiologiaRESUMO
Germline mutations in CDKN2A greatly increase risk of developing cutaneous melanoma. We have constructed a risk prediction model, Familial Risk Assessment of Melanoma (FRAMe), for estimating the likelihood of carrying a heritable CDKN2A mutation among Australian families, where the prevalence of these mutations is low. Using logistic regression, we analysed characteristics of 299 Australian families recruited through the Sydney site of GenoMEL (international melanoma genetics consortium) with at least three cases of cutaneous melanoma (in situ and invasive) among first-degree blood relatives, for predictors of the presence of a pathogenic CDKN2A mutation. The final multivariable prediction model was externally validated in an independent cohort of 61 melanoma kindreds recruited through GenoMEL Queensland. Family variables independently associated with the presence of a CDKN2A mutation in a multivariable model were number of individuals diagnosed with melanoma under 40 years of age, number of individuals diagnosed with more than one primary melanoma, and number of individuals blood related to a melanoma case in the first degree diagnosed with any cancer excluding melanoma and non-melanoma skin cancer. The number of individuals diagnosed with pancreatic cancer was not independently associated with mutation status. The risk prediction model had an area under the receiver operating characteristic curve (AUC) of 0.851 (95% CI 0.793, 0.909) in the training dataset, and 0.745 (95%CI 0.612, 0.877) in the validation dataset. This model is the first to be developed and validated using only Australian data, which is important given the higher rate of melanoma in the population. This model will help to effectively identify families suitable for genetic counselling and testing in areas of high ambient ultraviolet radiation. A user-friendly electronic nomogram is available at www.melanomarisk.org.au .