Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Radiopharm ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693733

RESUMO

OBJECTIVE: Traditional cell-based radiobiological methods are inadequate for assessing the toxicity of ionizing radiation exposure in relation to the microstructure of the extracellular matrix. Organotypic tissue slices preserve the spatial organization observed in vivo, making the tissue easily accessible for visualization and staining. This study aims to explore the use of fluorescence microscopy of physiologically compatible 3D tissue cultures to assess the effects of ionizing radiation. METHODS: Organotypic tissue slices were obtained by vibratome, and their mechanical properties were studied. Slices were exposed by two ionizing radiation sources; electron beams (80 Gy and 4 Gy), and soft gamma irradiation (80 Gy and 4 Gy). Two tissue culture protocols were used: the standard (37°C), and hypothermic (30°C) conditions. A qualitative analysis of cell viability in organotypic tissue slices was performed using fluorescent dyes and standard laser confocal microscopy. RESULTS: Biological dosimetry is represented by differentially stained 200-µm thick organotypic tissue sections related to living and dead cells and cell metabolic activity. CONCLUSION: Our results underscore the ability of fluorescence laser scanning confocal microscopy to rapidly assess the radiobiological effects of ionizing radiation in vitro on 3D organotypic tissue slices.

2.
Methods Mol Biol ; 2775: 157-169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758317

RESUMO

Monocyte/macrophage cells play a central role in innate immunity against C. neoformans and C. gattii, species known to cause human disease. Cryptococcus is the only fungal genus known to possess such a large extracellular polysaccharide capsule, which impacts interactions of innate cells with the yeast. This interaction results in different fates, such as phagocytosis and intracellular proliferation and, as the interaction progresses, vomocytosis, cell-to-cell transfer, lysis of macrophages, or yeast killing. Differentiating internalized versus external Cryptococcus cells is thus essential to evaluate monocyte-macrophage phagocytosis. We describe here a protocol that allows quantification of Cryptococcus spp. phagocytosis using quantitative flow cytometry in human monocytes and a murine macrophage cell line (J774).


Assuntos
Cryptococcus neoformans , Citometria de Fluxo , Macrófagos , Monócitos , Fagocitose , Cryptococcus neoformans/imunologia , Animais , Camundongos , Humanos , Monócitos/imunologia , Monócitos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Citometria de Fluxo/métodos , Linhagem Celular , Criptococose/imunologia , Criptococose/microbiologia
3.
J Hazard Mater ; 471: 134332, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643578

RESUMO

Microplastics can cause environmental pollution and ecosystem destruction as well as human health problems. Among the types of microplastics, polyurethane (PU) is particularly resistant to heat and difficult to decompose, causing disposal problems, and is evaluated as one of the most hazardous polymers. We present a novel colorimetric and near-infrared (NIR) fluorescence dye, (E)-N-(2-((4-(diphenylamino)benzylidene)amino)phenyl)- 7-nitrobenzo[c][1,2,5]oxadiazol-4-amine (DPNA), designed for selective visual PU microplastic staining. The intramolecular charge transfer (ICT) properties of DPNA are demonstrated through density functional theory (DFT) calculations along with solvatochromic shift. DPNA exhibits red color and red fluorescence emission, showing promising potential as a staining dye. To achieve selective PU microplastic staining, we establish an optimized experimental procedure with the staining dye DPNA by evaluating the staining efficiency under different staining solvent compositions and staining times. DPNA can distinguish PU by both red fluorescence signal and red coloration among different types of microplastics. In addition, DPNA well stain fresh PUs with diverse sizes and at various pH range of 5-9, and the aged PUs can also be dyed as effectively as the fresh PU. Most importantly, DPNA selectively stains PU among 11 types of microplastics and 5 types of natural particles in environmental water and soil with and without any pre-treatments. The adsorption mechanism of DPNA on PU microplastic is demonstrated through field emission scanning electron microscopes (FE-SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and non-covalent interaction (NCI)-reduced density gradient (RDG) analyses, and proposed that intermolecular hydrogen bonding has a significant effect.

4.
Microsc Res Tech ; 87(7): 1627-1639, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38450823

RESUMO

This contribution insight on the cytotoxic and anticancer activities and molecular mechanism of phyto-reduced silver nanoparticles (AgNPs) in MCF-7 breast cancer cell lines. A simple, entirely green synthesis process was optimized for the phyto-reduction of AgNP (~12.7 nm) using aqueous leaf extracts of Indigofera heterantha. The structural and vibrational properties of biosynthesized AgNPs were extensively characterized using UV-Vis spectrophotometer, x-ray diffraction (XRD), dynamic light scattering (DLS), and Fourier transform Infrared spectroscopy (FTIR), while their shape and morphology was studied through scanning electron microscopy (SEM). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay indicates concentration dependent inhibition with IC50, 27.93 ± 2.10 µg/mL against MCF-7 cells and 294.38 ± 3.87 µg/mL against L929 cells. The manifested anticancer mechanism in MCF-7 cells was extensively studied using Acridine orange/ethidium bromide (AO/EB), 4',6-diamidino-2-phenylindole (DAPI) and Annexin-V/propedium iodide fluorescence microscopic assays. The level of reactive oxygen species (ROS) was measured using DCFH-DA fluorescent spectroscopy. Overall, the results show that AgNPs exhibit cytotoxic and apoptotic effect on breast cancer MCF-7 cells by damaging membrane integrity and nuclear fragmentation due to oxidative stress generated by elevated level of ROS. RESEARCH HIGHLIGHTS: Biomimetic synthesis of nano dimension size silver nanoparticles (AgNPs). Characterization of AgNPs through UV-Vis, DLS, XRD, FTIR, and SEM. Cytotoxic and anticancer effects of the biosynthesized AgNPs in L929 fibroblast cells and MCF7 breast cancer respectively. Determination of morphological, and nuclear changes triggered by AgNPs in MCF 7 breast cancer cells using fluorescent microscopy and flow cytometry. Apoptosis induction by AgNPs in cancer cells through oxidative stress generated by reactive oxygen species (ROS).


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Sobrevivência Celular , Nanopartículas Metálicas , Extratos Vegetais , Espécies Reativas de Oxigênio , Prata , Humanos , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Células MCF-7 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Folhas de Planta/química , Química Verde , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA