Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
Biochem Biophys Res Commun ; 734: 150774, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39366175

RESUMO

The dynamic and versatile group of enzymes referred to as glutathione S-transferases (GSTs) play diverse roles in cellular detoxification, safeguarding hosts from oxidative damage, and performing various other functions. This review explores different classes of GST, existence of polymorphisms in GST, functions of GST and utilizations of GST inhibitors in treatment of human diseases. The study indicates that the cytosolic GSTs, mitochondrial GSTs, microsomal GSTs, and bacterial proteins that provide resistance to Fosfomycin are the major classes. Given a GST, variation in its expression and function among individuals is due to the presence of polymorphic alleles that encode it. Genetic polymorphism might result in the modification of GST activity, thereby increasing individuals' vulnerability to harmful chemical compounds. GSTs have been demonstrated to play a regulatory function in cellular signalling pathways through kinases, S-Glutathionylation, and in detoxification processes. Various applications of bacterial GSTs and their potential roles in plants were examined. Targeting GSTs, especially GSTP1-1, is considered a potential therapeutic strategy for treating cancer and diseases linked to abnormal cell proliferation. Their role in cancer cell growth, differentiation, and resistance to anticancer agents makes them promising targets for drug development, offering prospects for the future.

2.
J Biol Chem ; : 107784, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303918

RESUMO

Redox signaling is a fundamental mechanism that controls all major biological processes partly via protein cysteine oxidations, including S-glutathionylation. Despite over 2,000 cysteines identified to form S-glutathionylation in databases, the identification of redox cysteines functionally linked to a biological process of interest remains challenging. Here, we demonstrate a strategy combining glutathionylation proteomic database, bioinformatics, and biological screening, which resulted in the identification of S-glutathionylated proteins, including PP2Cα, as redox players of cell migration. We showed that PP2Cα, a prototypical magnesium-dependent serine/threonine phosphatase, is susceptible to S-glutathionylation selectively at non-conserved C314. PP2Cα glutathionylation causes increased migration and invasion of breast cancer cell lines in oxidative stress or upon hydrogen peroxide production. Mechanistically, PP2Cα glutathionylation modulates its protein-protein interactions, activating c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways to elevate migration and invasion. In addition, PP2Cα glutathionylation occurs in response to epidermal-growth factor, supporting a serine/threonine phosphatase PP2Cα as a new redox player in growth factor signal transduction.

3.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125992

RESUMO

The most abundant tripeptide-glutathione (GSH)-and the major GSH-related enzymes-glutathione peroxidases (GPxs) and glutathione S-transferases (GSTs)-are highly significant in the regulation of tumor cell viability, initiation of tumor development, its progression, and drug resistance. The high level of GSH synthesis in different cancer types depends not only on the increasing expression of the key enzymes of the γ-glutamyl cycle but also on the changes in transport velocity of its precursor amino acids. The ability of GPxs to reduce hydroperoxides is used for cellular viability, and each member of the GPx family has a different mechanism of action and site for maintaining redox balance. GSTs not only catalyze the conjugation of GSH to electrophilic substances and the reduction of organic hydroperoxides but also take part in the regulation of cellular signaling pathways. By catalyzing the S-glutathionylation of key target proteins, GSTs are involved in the regulation of major cellular processes, including metabolism (e.g., glycolysis and the PPP), signal transduction, transcription regulation, and the development of resistance to anticancer drugs. In this review, recent findings in GSH synthesis, the roles and functions of GPxs, and GST isoforms in cancer development are discussed, along with the search for GST and GPx inhibitors for cancer treatment.


Assuntos
Glutationa Transferase , Glutationa , Neoplasias , Transdução de Sinais , Humanos , Glutationa/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Glutationa Transferase/metabolismo , Animais , Glutationa Peroxidase/metabolismo
4.
Redox Biol ; 75: 103297, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39127015

RESUMO

Cardiovascular disease (CVD) is one of the leading causes of mortality in humans, and oxidative stress plays a pivotal role in disease progression. This phenomenon typically arises from weakening of the cellular antioxidant system or excessive accumulation of peroxides. This review focuses on a specialized form of oxidative stress-disulfide stress-which is triggered by an imbalance in the glutaredoxin and thioredoxin antioxidant systems within the cell, leading to the accumulation of disulfide bonds. The genesis of disulfide stress is usually induced by extrinsic pathological factors that disrupt the thiol-dependent antioxidant system, manifesting as sustained glutathionylation of proteins, formation of abnormal intermolecular disulfide bonds between cysteine-rich proteins, or irreversible oxidation of thiol groups to sulfenic and sulfonic acids. Disulfide stress not only precipitates the collapse of the antioxidant system and the accumulation of reactive oxygen species, exacerbating oxidative stress, but may also initiate cellular inflammation, autophagy, and apoptosis through a cascade of signaling pathways. Furthermore, this review explores the detrimental effects of disulfide stress on the progression of various CVDs including atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, cardiac hypertrophy, and heart failure. This review also proposes several potential therapeutic avenues to improve the future treatment of CVDs.


Assuntos
Doenças Cardiovasculares , Dissulfetos , Estresse Oxidativo , Humanos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/patologia , Dissulfetos/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Antioxidantes/metabolismo , Oxirredução , Tiorredoxinas/metabolismo
5.
Nutrients ; 16(16)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39203889

RESUMO

Protein glutathionylation is a reversible post-translational modification that involves the attachment of glutathione to cysteine residues. It plays a role in the regulation of several cellular processes and protection against oxidative damage. Glutathionylation (GS-ylation) modulates protein function, inhibits or enhances enzymatic activity, maintains redox homeostasis, and shields several proteins from irreversible oxidative stress. Aberrant GS-ylation patterns are thus implicated in various diseases, particularly those associated with oxidative stress and inflammation, such as cardiovascular diseases, neurodegenerative disorders, cancer, and many others. Research in the recent years has highlighted the potential to manipulate protein GS-ylation for therapeutic purposes with strategies that imply both its enhancement and inhibition according to different cases. Moreover, it has become increasingly evident that monitoring the GS-ylation status of selected proteins offers diagnostic potential in different diseases. In this review, we try to summarize recent research in the field with a focus on our current understanding of the molecular mechanisms related to aberrant protein GS-ylation.


Assuntos
Glutationa , Doenças Neurodegenerativas , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Humanos , Glutationa/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Oxirredução , Neoplasias/metabolismo , Inflamação/metabolismo
6.
Sci Total Environ ; 947: 174534, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986690

RESUMO

Arsenic, a toxicant widely distributed in the environment, is considered as a risk factor for liver fibrosis. At present, the underlying mechanism still needs to be explored. In the present study, we found that, for mice, chronic exposure to arsenic induced liver fibrosis, activated the NLRP3 inflammasome, and increased the levels of reactive oxygen species (ROS). After hepatocytes were co-cultured with hepatic stellate cells (HSCs), we observed the arsenic-activated NLRP3 inflammasome in hepatocytes, and the co-cultured HSCs were activated. Further, we found that, in livers of mice, arsenic disturbed GSH metabolism and promoted protein S-glutathionylation. A 3D molecular docking simulation suggested that NLRP3 binds with GSH, which was confirmed by immunoprecipitation experiments. N-acetylcysteine (NAC) increased the levels of GSH in hepatocytes, which suppressed the S-glutathionylation of NLRP3 and blocked arsenic-induced activation of the NLRP3 inflammasome. Mechanistically, an imbalance of the redox state induced by arsenic promotes the S-glutathionylation of NLRP3, which regulates activation of the NLRP3 inflammasome, leading into the activation of HSCs. Moreover, NAC increases the levels of GSH to block arsenic-induced S-glutathionylation of NLRP3, thereby blocking arsenic-induced liver fibrosis. Thus, via activating HSCs, the S-glutathionylation of NLRP3 in hepatocytes is involved in arsenic-induced liver fibrosis, and, for hepatocytes, NAC alleviates these effects by increasing the levels of GSH. These results reveal a new mechanism and provide a possible therapeutic target for the liver fibrosis induced by environmental factors.


Assuntos
Arsênio , Glutationa , Hepatócitos , Inflamassomos , Cirrose Hepática , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cirrose Hepática/induzido quimicamente , Camundongos , Hepatócitos/efeitos dos fármacos , Animais , Inflamassomos/metabolismo , Glutationa/metabolismo , Arsênio/toxicidade , Acetilcisteína/farmacologia , Espécies Reativas de Oxigênio/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-39042020

RESUMO

Changes in the oxidative (redox) environment accompany idiopathic pulmonary fibrosis (IPF). S-glutathionylation of reactive protein cysteines is a post-translational event that transduces oxidant signals into biological responses. We recently demonstrated that increases in S-glutathionylation promote pulmonary fibrosis, which was mitigated by the deglutathionylating enzyme glutaredoxin (GLRX). However, the protein targets of S-glutathionylation that promote fibrogenesis remain unknown. In the present study we addressed whether the extracellular matrix is a target for S-glutathionylation. We discovered increases in collagen 1A1 S-glutathionylation (COL1A1-SSG) in lung tissues from IPF subjects compared to control subjects in association with increases in ER oxidoreductin 1 (ERO1A) and enhanced oxidation of ER-localized peroxiredoxin 4 (PRDX4) reflecting an increased oxidative environment of the endoplasmic reticulum (ER). Human lung fibroblasts exposed to transforming growth factor beta 1 (TGFB1) show increased secretion of COL1A1-SSG. Pharmacologic inhibition of ERO1A diminished oxidation of PRDX4, attenuated COL1A1-SSG and total COL1A1 levels and dampened fibroblast activation. Absence of Glrx enhanced COL1A1-SSG and overall COL1A1 secretion and promoted activation of mechanosensing pathways. Remarkably, COL1A1-SSG resulted in marked resistance to collagenase degradation. Compared to COL1, lung fibroblasts plated on COL1-SSG proliferated more rapidly, and increased expression of genes encoding extracellular matrix crosslinking enzymes and genes linked to mechanosensing pathways. Overall, these findings suggest that glutathione-dependent oxidation of COL1A1 occurs in settings of IPF in association with enhanced ER oxidative stress and may promote fibrotic remodeling due to increased resistance to collagenase-mediated degradation and fibroblast activation.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38970427

RESUMO

Significance: Both redox and pH are important regulatory processes that underpin cell physiological functions, in addition to influencing cancer cell development and tumor progression. The thioredoxin (Trx) and glutathione redox systems and the carbonic anhydrase (CA) proteins are considered key regulators of cellular redox and pH, respectively, with components of the Trx system and CAs regarded as cancer therapeutic targets. However, the redox and pH axis in cancer cells is an underexplored topic of research. Recent Advances: Structural studies of a CA family member, CA3, localized two of its five cysteine residues to the protein surface. Redox-regulated modifications to CA3 have been identified, including glutathionylation. CA3 has been shown to bind to other proteins, including B cell lymphoma-2-associated athanogene 3, and squalene epoxidase, which can modulate autophagy and proinflammatory signaling, respectively, in cancer cells. Critical Issues: CA3 has also been associated with epithelial-mesenchymal transition processes, which promote cancer cell metastasis, whereas CA3 overexpression activates the phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, which upregulates cell growth and inhibits autophagy. It is not yet known if CA3 modulates cancer progression through its reported antioxidant functions. Future Directions: CA3 is one of the least studied CA isozymes. Further studies are required to assess the cellular antioxidant role of CA3 and its impact on cancer progression. Identification of other binding partners is also required, including whether CA3 binds to Trx in human cells. The development of specific CA3 inhibitors will facilitate these functional studies and allow CA3 to be investigated as a cancer therapeutic target.

9.
Antioxidants (Basel) ; 13(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38671848

RESUMO

Glutathione (GSH), a robust endogenous antioxidant, actively participates in the modulation of the redox status of cysteine residues in proteins. Previous studies have indicated that GSH can prevent ß-cell failure and prediabetes caused by chronic oscillating glucose (OsG) administration. However, the precise mechanism underlying the protective effect is not well understood. Our current research reveals that GSH is capable of reversing the reduction in Nrf2 levels, as well as downstream genes Grx1 and HO-1, in the islet ß-cells of rats induced by chronic OsG. In vitro experiments have further demonstrated that GSH can prevent ß-cell dedifferentiation, apoptosis, and impaired insulin secretion caused by OsG. Additionally, GSH facilitates the translocation of Nrf2 into the nucleus, resulting in an upregulation of Nrf2-targeted genes such as GCLC, Grx1, HO-1, and NQO1. Notably, when the Nrf2 inhibitor ML385 is employed, the effects of GSH on OsG-treated ß-cells are abrogated. Moreover, GSH enhances the S-glutathionylation of Keap1 at Cys273 and Cys288, but not Cys151, in OsG-treated ß-cells, leading to the dissociation of Nrf2 from Keap1 and facilitating Nrf2 nuclear translocation. In conclusion, the protective role of GSH against OsG-induced ß-cell failure can be partially attributed to its capacity to enhance Keap1 S-glutathionylation, thereby activating the Nrf2 signaling pathway. These findings provide novel insights into the prevention and treatment of ß-cell failure in the context of prediabetes/diabetes, highlighting the potential of GSH.

10.
Redox Biol ; 69: 103015, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38183796

RESUMO

Redox status of protein cysteinyl residues is mediated via glutathione (GSH)/glutaredoxin (GRX) and thioredoxin (TRX)-dependent redox cascades. An oxidative challenge can induce post-translational protein modifications on thiols, such as protein S-glutathionylation. Class I GRX are small thiol-disulfide oxidoreductases that reversibly catalyse S-glutathionylation and protein disulfide formation. TRX and GSH/GRX redox systems can provide partial backup for each other in several subcellular compartments, but not in the plastid stroma where TRX/light-dependent redox regulation of primary metabolism takes place. While the stromal TRX system has been studied at detail, the role of class I GRX on plastid redox processes is still unknown. We generate knockout lines of GRXC5 as the only chloroplast class I GRX of the moss Physcomitrium patens. While we find that PpGRXC5 has high activities in GSH-dependent oxidoreductase assays using hydroxyethyl disulfide or redox-sensitive GFP2 as substrates in vitro, Δgrxc5 plants show no detectable growth defect or stress sensitivity, in contrast to mutants with a less negative stromal EGSH (Δgr1). Using stroma-targeted roGFP2, we show increased protein Cys steady state oxidation and decreased reduction rates after oxidative challenge in Δgrxc5 plants in vivo, indicating kinetic uncoupling of the protein Cys redox state from EGSH. Compared to wildtype, protein Cys disulfide formation rates and S-glutathionylation levels after H2O2 treatment remained unchanged. Lack of class I GRX function in the stroma did not result in impaired carbon fixation. Our observations suggest specific roles for GRXC5 in the efficient transfer of electrons from GSH to target protein Cys as well as negligible cross-talk with metabolic regulation via the TRX system. We propose a model for stromal class I GRX function in efficient catalysis of protein dithiol/disulfide equilibria upon redox steady state alterations affecting stromal EGSH and highlight the importance of identifying in vivo target proteins of GRXC5.


Assuntos
Glutarredoxinas , Peróxido de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Oxirredução , Glutationa/metabolismo , Estresse Oxidativo , Cloroplastos/metabolismo , Dissulfetos/química
11.
J Leukoc Biol ; 115(2): 322-333, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726110

RESUMO

Scavenger receptor A (SRA) is preferentially expressed in macrophages and implicated as a multifunctional pattern recognition receptor for innate immunity. Hepatic macrophages play a primary role in the pathogenesis of alcoholic liver disease. Herein, we observed that SRA expression was significantly increased in the liver tissues of mice with alcohol-related liver injury. SRA-deficient (SRA-/-) mice developed more severe alcohol-induced liver disease than wild-type mice. Enhanced liver inflammation existed in alcohol-challenged SRA-/- mice and was associated with increased Notch activation in hepatic macrophages compared with wild-type control animals. Mechanistically, SRA directly bound with Notch1 and suppressed its S-glutathionylation, thereby inhibiting Notch pathway activation. Further, we determined that the SRA interacted with thioredoxin-1 (Trx-1), a redox-active protein. SRA inhibited Trx-1 dimerization and facilitated the interaction of Trx-1 with Notch1. Application of a Trx-1-specific inhibitory agent during macrophage stimulation abolished SRA-mediated regulation of the Notch pathway and its downstream targets. In summary, our study revealed that SRA plays a critical role in macrophage inflammatory response by targeting Notch1 for its glutathionylation. SRA-mediated negative regulation of Notch activation might serve as a novel therapeutic strategy for alcohol-induced liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Camundongos , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Receptores Depuradores Classe A/metabolismo , Macrófagos/metabolismo , Receptores Depuradores/metabolismo , Fígado/metabolismo , Fatores Imunológicos , Etanol/toxicidade , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Mol Biol (Mosk) ; 57(6): 1188-1198, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38062968

RESUMO

Metabolic stress caused by a lack of glucose significantly affects the state of red blood cells, where glycolysis is the main pathway for the production of ATP. Hypoglycemia can be both physiological (occurring during fasting and heavy physical exertion) and pathological (accompanying a number of diseases, such as diabetes mellitus). In this study, we have characterized the state of isolated erythrocytes under metabolic stress caused by the absence of glucose. It was established that 24 h of incubation of the erythrocytes in a glucose-free medium to simulate blood plasma led to a two-fold decrease in the ATP level into them. The cell size, as well as intracellular sodium concentration increased. These findings could be the result of a disruption in ion transporter functioning because of a decrease in the ATP level. The calcium level remained unchanged. With a lack of glucose in the medium of isolated erythrocytes, there was no increase in ROS and a significant change in the level of nitric oxide, while the level of the main low-molecular weight thiol of cells, glutathione (GSH) decreased by almost 2 times. It was found that the metabolic stress of isolated red blood cells induced hemoglobin glutathionylation despite the absence of ROS growth. The cause was the lack of ATP, which led to a decrease in the level of GSH because of the inhibition of its synthesis and, probably, due to a decrease in the NADPH level required for glutathione (GSSG) reduction and protein deglutathionylation. Thus, erythrocyte metabolic stress induced hemoglobin glutathionylation, which is not associated with an increase in ROS. This may have an important physiological significance, since glutathionylation of hemoglobin changes its affinity for oxygen.


Assuntos
Glutationa , Hemoglobinas , Dissulfeto de Glutationa/análise , Dissulfeto de Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Glutationa/análise , Glutationa/metabolismo , Hemoglobinas/análise , Hemoglobinas/metabolismo , Eritrócitos/química , Eritrócitos/metabolismo , Estresse Oxidativo , Glucose/análise , Glucose/metabolismo , Trifosfato de Adenosina
13.
Plants (Basel) ; 12(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960101

RESUMO

12-oxo-phytodienoic acid (OPDA) is a primary precursor of jasmonates, able to trigger autonomous signaling cascades that activate and fine-tune plant defense responses, as well as growth and development. However, its mechanism of actions remains largely elusive. Here we describe a dual-function messenger of OPDA signaling, reduced glutathione (GSH), that cross-regulates photosynthesis machinery and stress protection/adaptation in concert, optimizing plant plasticity and survival potential. Under stress conditions, the rapid induction of OPDA production stimulates GSH accumulation in the chloroplasts, and in turn leads to protein S-glutathionylation in modulating the structure and function of redox-sensitive enzymes such as 2-cysteine (Cys) peroxiredoxin A (2CPA), a recycler in the water-water cycle. GSH exchanges thiol-disulfides with the resolving CysR175, while donating an electron (e-, H+) to the peroxidatic CysP53, of 2CPA, which revives its reductase activity and fosters peroxide detoxification in photosynthesis. The electron flow protects photosynthetic processes (decreased total non-photochemical quenching, NPQ(T)) and maintains its efficiency (increased photosystem II quantum yield, ΦII). On the other hand, GSH also prompts retrograde signaling from the chloroplasts to the nucleus in adjusting OPDA-responsive gene expressions such as Glutathione S-Transferase 6 (GST6) and GST8, and actuating defense responses against various ecological constraints such as salinity, excess oxidants and light, as well as mechanical wounding. We thus propose that OPDA regulates a unique metabolic switch that interfaces light and defense signaling, where it links cellular and environmental cues to a multitude of plant physiological, e.g., growth, development, recovery, and acclimation, processes.

14.
Biotechnol Biofuels Bioprod ; 16(1): 159, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891614

RESUMO

BACKGROUND: Filamentous fungi possess a rich CAZymes system, which is widely studied and applied in the bio-conversion of plant biomass to alcohol chemicals. Carbon source acquisition is the fundamental driver for CAZymes-producing sustainability and secondary metabolism, therefore, a deeper insight into the regulatory network of sugar transport in filamentous fungi has become urgent. RESULTS: This study reports an important linkage of sulfur assimilation to lignocellulose response of filamentous fungus. Inorganic sulfur addition facilitated biodegradation of rice straw by Trichoderma guizhouense NJAU4742. Cysteine and glutathione were revealed as major intracellular metabolites responsive to sulfur addition by metabolomics, cysteine content was increased in this process and glutathione increased correspondingly. Two membrane sugar transporter genes, Tgmst1 and Tgmst2, were identified as the critical response genes significantly up-regulated when intracellular cysteine increased. Tgmst1 and Tgmst2 were both positively regulated by the glucose regulation-related protein (GRP), up-regulation of both Tgmst1 and Tggrp can cause a significant increase in intracellular glucose. The transcriptional regulatory function of GRP mainly relied on GSH-induced glutathionylation, and the transcription activating efficiency was positively related to the glutathionylation level, furthermore, DTT-induced deglutathionylation resulted in the down-regulation of downstream genes. CONCLUSIONS: Inorganic sulfur addition induces a rise in intracellular Cys content, and the conversion of cysteine to glutathione caused the increase of glutathionylation level of GRP, which in turn up-regulated Tgmst1 and Tgmst2. Subsequently, the sugar transport efficiency of single cells was improved, which facilitated the maintenance of vigorous CAZymes metabolism and the straw-to-biomass conversion.

15.
Curr Protoc ; 3(10): e907, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818879

RESUMO

Clickable glutathione is a glutathione-derived chemical probe designed to identify and analyze protein S-glutathionylation, a major cysteine oxidation in redox signaling. An engineered glutathione synthetase mutant (GS M4) is used to synthesize clickable glutathione in cells or in vitro, which affords utility via click chemistry to detect, identify, and quantify glutathionylation on individual or global proteins in biochemical and mass spectrometric analyses. The clickable glutathione approach is valuable for the unequivocal identification of glutathionylated cysteines, among many reversible cysteine oxoforms, via the direct enrichment and detection of glutathionylated proteins or peptides. Clickable glutathione, in combination with GS M4, has demonstrated utility in the mass-spectrometry-based discovery and profiling of new proteins and cysteines for glutathionylation in cell lines in response to physiologic and oxidative stress. The approach is versatile and applicable to validating the glutathionylation of proteins and cysteines in other biochemical analysis beside mass spectrometry. Here, we describe the applications of clickable glutathione and provide detailed protocols for the identification, profiling, and detection of glutathionylated proteins and cysteines. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Identification of glutathionylated cysteine in individual proteins in vitro Basic Protocol 2: Proteomic identification and quantification of glutathionylation Basic Protocol 3: Biochemical validation of glutathionylation in cells.


Assuntos
Cisteína , Proteômica , Cisteína/metabolismo , Proteômica/métodos , Processamento de Proteína Pós-Traducional , Glutationa/química , Glutationa/metabolismo , Proteínas/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/química , Glutationa Sintase/metabolismo
16.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834470

RESUMO

S-glutathionylation is an oxidative post-translational modification, which is involved in the regulation of many cell signaling pathways. Increasing amounts of studies show that it is crucial in cell homeostasis and deregulated in several pathologies. However, the effect of S-glutathionylation on proteins' structure and activity is poorly understood, and a drastic lack of structural information at the atomic scale remains. Studies based on the use of molecular dynamics simulations, which can provide important information about modification-induced modulation of proteins' structure and function, are also sparse, and there is no benchmarked force field parameters for this modified cysteine. In this contribution, we provide robust AMBER parameters for S-glutathionylation, which we tested extensively against experimental data through a total of 33 µs molecular dynamics simulations. We show that our parameter set efficiently describes the global and local structural properties of S-glutathionylated proteins. These data provide the community with an important tool to foster new investigations into the effect of S-glutathionylation on protein dynamics and function, in a common effort to unravel the structural mechanisms underlying its critical role in cellular processes.


Assuntos
Cisteína , Glutationa , Cisteína/metabolismo , Glutationa/metabolismo , Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Oxirredução
17.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686361

RESUMO

Hemoglobin is the main protein of red blood cells that provides oxygen transport to all cells of the human body. The ability of hemoglobin to bind the main low-molecular-weight thiol of the cell glutathione, both covalently and noncovalently, is not only an important part of the antioxidant protection of red blood cells, but also affects its affinity for oxygen in both cases. In this study, the properties of oxyhemoglobin in complex with reduced glutathione (GSH) and properties of glutathionylated hemoglobin bound to glutathione via an SS bond were characterized. For this purpose, the methods of circular dichroism, Raman spectroscopy, infrared spectroscopy, tryptophan fluorescence, differential scanning fluorimetry, and molecular modeling were used. It was found that the glutathionylation of oxyhemoglobin caused changes in the secondary structure of the protein, reducing the alpha helicity, but did not affect the heme environment, tryptophan fluorescence, and the thermostability of the protein. In the noncovalent complex of oxyhemoglobin with reduced glutathione, the secondary structure of hemoglobin remained almost unchanged; however, changes in the heme environment and the microenvironment of tryptophans, as well as a decrease in the protein's thermal stability, were observed. Thus, the formation of a noncovalent complex of hemoglobin with glutathione makes a more significant effect on the tertiary and quaternary structure of hemoglobin than glutathionylation, which mainly affects the secondary structure of the protein. The obtained data are important for understanding the functioning of glutathionylated hemoglobin, which is a marker of oxidative stress, and hemoglobin in complex with GSH, which appears to deposit GSH and release it during deoxygenation to increase the antioxidant protection of cells.


Assuntos
Antioxidantes , Oxiemoglobinas , Humanos , Triptofano , Hemoglobinas , Glutationa , Heme , Oxigênio
18.
Cell Chem Biol ; 30(12): 1542-1556.e9, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37714153

RESUMO

Identification of cysteines with high oxidation susceptibility is important for understanding redox-mediated biological processes. In this report, we report a chemical proteomic strategy that finds cysteines with high susceptibility to S-glutathionylation. Our proteomic strategy, named clickable glutathione-based isotope-coded affinity tag (G-ICAT), identified 1,518 glutathionylated cysteines while determining their relative levels of glutathionylated and reduced forms upon adding hydrogen peroxide. Among identified cysteines, we demonstrated that CTNND1 (p120) C692 has high susceptibility to glutathionylation. Also, p120 wild type (WT), compared to C692S, induces its dissociation from E-cadherin under oxidative stress, such as glucose depletion. p120 and E-cadherin dissociation correlated with E-cadherin destabilization via its proteasomal degradation. Lastly, we showed that p120 WT, compared to C692S, increases migration and invasion of MCF7 cells under glucose depletion, supporting a model that p120 C692 glutathionylation increases cell migration and invasion by destabilization of E-cadherin, a core player in cell-cell adhesion.


Assuntos
Cateninas , delta Catenina , Humanos , Cateninas/metabolismo , Proteômica , Caderinas/metabolismo , Movimento Celular , Glucose
19.
Biomed Pharmacother ; 167: 115459, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716117

RESUMO

In this mini-review, we discuss the role of NF-κB, a proinflammatory transcription factor, in the expression of genes involved in inflammation, proliferation, and apoptosis pathways, and link it with prognosis of various human cancers, particularly non-small cell lung cancer (NSCLC). We and others have shown that NF-κB activity can be impacted by post-translational S-glutathionylation through reversible formation of a mixed disulfide bond between its cysteine residues and glutathione (GSH). Clinical data analysis showed that high expression of NF-κB correlated with shorter overall survival (OS) in NSCLC patients, suggesting a tumor promotion function for NF-κB. Moreover, NF-κB expression was associated with tumor stage, lymph node metastasis, and 5-year OS in these patients. NF-κB was over-expressed in the cytoplasm of tumor tissue compared to adjacent normal tissues. S-glutathionylation of NF-κB caused negative regulation by interfering with DNA binding activities of NF-κB subunits. In response to oxidants, S-glutathionylation of NF-κB also correlated with enhanced lung inflammation. Thus, S-glutathionylation is an important contributor to NF-κB regulation and clinical results highlight the importance of NF-κB in NSCLC, where NF-κB levels are associated with unfavorable prognosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , NF-kappa B/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Regulação da Expressão Gênica , Processamento de Proteína Pós-Traducional
20.
Biochemistry (Mosc) ; 88(7): 924-943, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37751864

RESUMO

Development of oxidative/nitrosative stress associated with the activation of oncogenic pathways results from the increase in the generation of reactive oxygen and nitrogen species (ROS/RNS) in tumor cells, where they can have a dual effect. At high concentrations, ROS/RNS cause cell death and limit tumor growth at certain phases of its development, while their low amounts promote oxidative/nitrosative modifications of key redox-dependent residues in regulatory proteins. The reversibility of such modifications as S-glutathionylation and S-nitrosylation that proceed through the electrophilic attack of ROS/RNS on nucleophilic Cys residues ensures the redox-dependent switch in the activity of signaling proteins, as well as the ability of these compounds to control cell proliferation and programmed cell death. The content of S-glutathionylated and S-nitrosylated proteins is controlled by the balance between S-glutathionylation/deglutathionylation and S-nitrosylation/denitrosylation, respectively, and depends on the cellular redox status. The extent of S-glutathionylation and S-nitrosylation of protein targets and their ratio largely determine the status and direction of signaling pathways in cancer cells. The review discusses the features of S-glutathionylation and S-nitrosylation reactions and systems that control them in cancer cells, as well as their relationship with redox-dependent processes and tumor growth.


Assuntos
Apoptose , Neoplasias , Espécies Reativas de Oxigênio , Oxirredução , Morte Celular , Proliferação de Células , Oxigênio , Espécies Reativas de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA