Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.294
Filtrar
1.
J Environ Sci (China) ; 148: 79-87, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095203

RESUMO

Furniture is identified as a vital volatile organic compound (VOC) emission source in the indoor environment. Leather has become the most common raw and auxiliary fabric material for upholstered furniture, particularly with extensive consumption in sofas, due to its abundant resources and efficient functions. Despite being widely traded across the world, little research has been conducted on the VOCs released by leather materials and their health risk assessment in the indoor environment. Accordingly, this study investigated the VOC emissions of leather with different grades and the health risk of the inhalation exposure. Based on the ultra-fast gas phase electronic nose (EN) and GC-FID/Qtof, the substantial emissions of aliphatic aldehyde ketones (Aks), particularly hexanal, appear to be the cause of off-flavor in medium and low grade (MG and LG) sofa leathers. The health risk assessment indicated that leather materials barely pose non-carcinogenic and carcinogenic effects to residents. Given the abundance of VOC sources and the accumulation of health risks in the indoor environment, more stringent specifications concerning qualitative and quantitative content should be extended to provide VOC treatment basic for the manufacturing industry and obtain better indoor air quality.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Medição de Risco , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Humanos , Decoração de Interiores e Mobiliário , Exposição por Inalação/análise , Exposição por Inalação/estatística & dados numéricos , Têxteis/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-39235755

RESUMO

Heavy metal stress poses a significant threat to the productivity of agricultural systems and human health. Silicon (Si) is widely reported to be very effective against the different heavy metal stresses in crops. According to reports, it can help plants that are under cadmium (Cd) and nickel (Ni) stress. The presented work investigated how silicon interacted in Cd- and Ni-stressed wheat and mitigated metal toxicity. A pot experiment was carried out in which wheat crop was irrigated with Cd- and Ni-contaminated water. Application of Cd and Ni-contaminated water to wheat significantly reduced the root and shoot growth parameters and physiological and biochemical factors while increasing the antioxidant enzymatic activity and bioaccumulation of Cd and Ni metal in shoot and root as compared to the control. Application of Si led to an improvement in physiological parameters, i.e., greenness of leaves, i.e., SPAD values (17% and 26%), membrane stability (26% and 25%), and growth parameters i.e., root surface area (42% and 23%), root length (81% and 79%), root dry weight (456% and 190%), root volume (64% and 32%), shoot length (41% and 35%), shoot dry weight of shoot (111% and 117%), and overall grain weight (62% and 72%) under Cd and Ni stress, respectively. It increased the activity of antioxidant activity (max. up to 20%) whereas decreased the metal bioaccumulation of Cd and Ni in the roots and shoot (max. up to 62%) of wheat. It was concluded that the application of Si potentially increases antioxidant activity and metal chelation resulting in decreased oxidative damage and reducing the effect of Cd and Ni stress on wheat which improves growth and physiological parameters as well as inhibits Cd and Ni inclusion in food chain under Cd and Ni toxicity reducing health risks associated with these metals.

3.
J Hazard Mater ; 479: 135663, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39217931

RESUMO

Groundwater contaminated by potentially toxic elements has become an increasing global concern for human health. Therefore, it is crucial to identify the sources and health risks of potentially toxic elements, especially in arid areas. Despite the necessity, there is a notable research gap concerning the sources and risks of these elements within multi-layer aquifers in such regions. To address this gap, 54 phreatic and 24 confined groundwater samples were collected from an arid area in Northwest China. This study aimed to trace the sources and evaluate the human health risks of potentially toxic elements by natural background level (NBL), positive matrix factorization (PMF) model, and health risk model. Findings revealed exceeding levels of potentially toxic elements existed in phreatic and confined aquifers. Source apportionment and NBL results indicated that mineral dissolution, evaporation, redox reactions, and human activities were the main factors for elevated concentrations of potentially toxic elements. High Fe and Mn concentrations were attributed to reduction environments, while F accumulation resulted from slow runoff, and irrigation from the Yellow River. Due to high F levels, more than one-third of groundwater samples (phreatic: 33.14 %, confined: 56.22 %) posed non-carcinogenic health risks to population groups. Adults displayed higher carcinogenic risks (phreatic: 19.47 %, confined: 34.16 %) than infants (phreatic: 0 %, confined: 0 %) and children (phreatic: 1.26 %, confined: 7.97 %) owing to the toxic elements of Cr. The confined aquifer presented greater health risks than the phreatic aquifer. Consequently, controlling the levels of F and Cr in multi-layered aquifers is key to reducing health risks. These findings provide valuable insights into protecting groundwater from contamination by potentially toxic elements in multi-layered aquifers worldwide.

4.
Sci Total Environ ; 952: 175893, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39218087

RESUMO

Groundwater pollution has attracted widespread attention as a threat to human health and aquatic ecosystems. However, the mechanisms of pollutant enrichment and migration are unclear, and the spatiotemporal distributions of human health risks are poorly understood, indicating insufficient groundwater management and monitoring. This study assessed groundwater quality, human health risks, and pollutant sources in the Fen River Basin(FRB). Groundwater quality in the FRB is good, with approximately 87 % of groundwater samples rated as "excellent" or "good" in both the dry and rainy seasons. Significant precipitation elevates groundwater levels, making it more susceptible to human activities during the rainy season, slightly deteriorating water quality. Some sampling points in the southern of Taiyuan Basin are severely contaminated by mine drainage, with water quality index values up to 533.80, over twice the limit. Human health risks are mainly from As, F, NO3-, and Cr. Drinking water is the primary pathway of risk. From 2019 to 2020, the average non-carcinogenic risk of As, F, and NO3- increased by approximately 28 %, 170 % and 8.5 %, respectively. The average carcinogenic risk of As and Cr increased by 28 % and 786 %, the overall trend of human health risks is increasing. Source tracing indicates As and F mainly originate from geological factors, while NO3- and Cr are significantly influenced by human activities. Various natural factors, such as hydrogeochemical conditions and aquifer environments, and processes like evaporation, cation exchange, and nitrification/denitrification, affect pollutant concentrations. A multi-tracer approach, integrating hydrochemical and isotopic tracers, was employed to identify the groundwater pollution in the FRB, and the response of groundwater environment to pollutant enrichment. This study provides a scientific basis for the effective control of groundwater pollution at the watershed scale, which is very important in the Loess Plateau.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39105309

RESUMO

Organochlorine, organophosphate, triazole, and strobilurin pesticides were determined in fish samples. Relative standard deviations lower than 9.3% were obtained for organochlorine pesticides and 10.8% for other pesticides. Accuracy ranged from 73% to 119% for organochlorine pesticides and 80.4% to 116% for organophosphate, triazole, and strobilurin pesticides. A total of 28 pesticides were analysed and 7 of them were detected (exceeding 10 µg/kg) in some samples, with the highest concentration recorded at 68.5 µg/kg, corresponding to heptachlor epoxide A. The pesticide most frequently detected was ß HCH, found in 30 of the 100 analysed samples. Hazard Quotient values were estimated for men, women, and children. These values exceeded 1 for heptachlor epoxide in women and children, as well as for endrin in children. These findings emphasise the need for stricter controls to reduce fish contamination and mitigate health risks.

6.
Environ Monit Assess ; 196(9): 794, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112821

RESUMO

Rice intake represents a significant pathway through which humans accumulate heavy metals. This study presents a comprehensive analysis of heavy metal and pesticide contamination in rice cultivars irrigated with industrial wastewater near Dhaka, Bangladesh, a region heavily influenced by industrial activities. This study employed a unique methodology that not only quantified the concentrations of heavy metals and pesticide residues in rice grains but also extended to evaluating the physicochemical properties of rice stems, husks, soil, and irrigation water. The findings revealed alarmingly high levels of heavy metals such as lead, cadmium, chromium, nickel, and mercury in the soil and irrigation water, with concentrations in some cases exceeding the World Health Organization safety thresholds by 2 to 15 times. Notably, the rice grains also exhibited significant contamination, including substantial amounts of diazinon and fenitrothion pesticides, exceeding the established safety limits. The study employed hazard quotients (HQs) and cancer risk (CR) assessments to evaluate the potential health risks associated with the consumption of contaminated rice. The results indicated HQ values were greater than 1 for rice grains across the sampled fields, suggesting a considerable non-carcinogenic health risk, particularly from lead exposure, which was found at levels twice the standard limit in all the sampling fields. Moreover, the CR values for As, Pb, Cd, Co, and Mn highlighted a significant carcinogenic risk in several instances.


Assuntos
Irrigação Agrícola , Monitoramento Ambiental , Metais Pesados , Oryza , Praguicidas , Poluentes do Solo , Metais Pesados/análise , Oryza/química , Bangladesh , Medição de Risco , Praguicidas/análise , Poluentes do Solo/análise , Contaminação de Alimentos/análise , Humanos , Poluentes Químicos da Água/análise
7.
Environ Monit Assess ; 196(8): 774, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39090377

RESUMO

Potentially toxic elements (PTEs) are widely released into the environment as a result of increased urban and industrial development in recent years. The bulk of PTEs are cancer-causing and harm human health by producing free radicals. As a result, it is crucial to monitor, evaluate, and limit the effects of the elements on human health. In this study, levels of PTEs (As, Cr, Cd, Ni, Co, and Pb) in pharmaceutical effluents discharged along the Asa River around the Ilorin metropolis and their seasonal variations were evaluated. Water samples were collected from eight different locations over a two-season period along the river and analyzed for PTEs using atomic absorption spectrophotometry and an inductively coupled plasma optical emission spectrometer. As, Cd, Pb, Cr, Ni, and Co had mean PTE values in the effluents (both seasons) of 0.0258, 0.0233, 0.00193, 0.0176, and 0.0164 mg/L, respectively, with As and Pb surpassing the WHO standard. Maximum temperature and pH were measured for the physicochemical parameters in the wet season, whereas electrical conductivity and total dissolved solids were seen in the dry season. The average values of the metals in the human risk assessment for carcinogenicity were As > Cd > Pb > Cr > Ni > Co, with As above the recommended threshold in several locations. However, all of the metal hazard indices were < 1, indicating that the waters were suitable for domestic purposes. Nonetheless, the relevant authorities should mandate that pharmaceutical effluents be treated before being released into bodies of water.


Assuntos
Monitoramento Ambiental , Estações do Ano , Poluentes Químicos da Água , Nigéria , Poluentes Químicos da Água/análise , Humanos , Medição de Risco , Águas Residuárias/química , Preparações Farmacêuticas/análise , Metais Pesados/análise , Arsênio/análise , Rios/química , Cidades
8.
Heliyon ; 10(14): e34563, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39114048

RESUMO

Various factors influence the formation of disinfection by-products (DBPs) in drinking water. Therefore, it is crucial to study the formation of DBPs and identify the associated influencing agents in water distribution networks (WDNs) to effectively prevent and control the health risks posed by DBPs. This research aimed to examine THM concentrations in the WDNs of Maragheh, Iran, focusing on seasonal variations. It also compared THM levels between new and old WDNs and assessed the health risks associated with exposure to THMs through various exposure routes. The mean concentrations of Chloroform, BDCM, DBCM, and Bromoform were 44.28 ± 18.25, 12.66 ± 5.19, 3.16 ± 0.89, and 0.302 ± 0.89 µg/L, respectively. Therefore, Chloroform was the predominant compound among the THM species, accounting for over 72 % of the total THMs (TTHMs). The average TTHMs concentration in summer (69.89 µg/L) was significantly higher than in winter (50.97 µg/L) (p < 0.05). Except for Bromoform, concentrations of other THM species in the new WDNs were considerably lower than in the old WDN (p < 0.05). The mean lifetime cancer risk (LTCR) rates for oral and dermal exposure routes to THMs were negligible and within acceptable risk levels. However, the LTCR mean values for inhalation exposure routes to THMs in winter and summer were within low (1 × 10-6 ≤ LTCR <5.1 × 10-5) and high acceptable risk levels (5.1 × 10-5 ≤ LTCR <10-4), respectively. Inhalation exposure presented the highest cancer risk among the various exposure routes. The hazard index values for oral and dermal contact with THMs were less than 1. Finally, sensitivity analysis revealed that the ingestion rate and exposure duration of THMs had the most significant positive effect on chronic daily intake (CDI) values and cancer risk. However, further comprehensive investigations are needed to develop effective solutions for reducing and controlling the precursors of DBP formation, as well as identifying suitable alternative disinfection compounds that minimize by-product formation.

9.
China CDC Wkly ; 6(30): 754-761, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39114317

RESUMO

Introduction: This study introduces a novel method for developing an advanced exposure conceptual model tailored for health risk assessment, focusing on microenvironments. Methods: The research was conducted at a major smelter in China to assess the health risks associated with trace metals (TMs) pollutants in the facility and the surrounding soil. Results: Deterministic risk assessment indicated that cobalt, cadmium, antimony, manganese, arsenic, plumbum, and mercury (Co, Cd, Sb, Mn, As, Pb, and Hg) necessitated further evaluation through probabilistic risk assessment to assess potential health risks to residents. The 95% quantile concentrations of other TMs were found to be within acceptable health risk limits. For the probabilistic risk assessment, exposure parameters such as body weight, respiration rate, and exposure duration were collected using a questionnaire. This targeted assessment of the residential microenvironment revealed it as the site of the highest carcinogenic (CR) and non-carcinogenic risks (NCR), with values ranging from 2.84×10-5 to 6.7×10-5 and 1.59 to 5.57, respectively. Conclusion: The primary contaminants posing the greatest health risks in residential and industrial areas have been identified as As, Pb, and Mn. The probabilistic health risk model, which focuses on microenvironmental factors, yields more precise results and offers a valuable tool for managing soil health risks.

10.
Water Environ Res ; 96(8): e11088, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39091045

RESUMO

The confined groundwater of arid sedimentary plains has been disturbed by long-term anthropogenic extraction, and its hydrochemical quality is required for sustainable development. The present research investigates the hydrochemical characteristics, formation, potential health threats, and quality suitability of the confined groundwater in the central North China Plain. Results show that the confined groundwater has a slightly alkaline nature in the study area, predominantly dominated by fresh-soft Cl-Na and HCO3-Na types. Water chemistry is governed by water-rock interactions, including dissolution of evaporites and cation exchange. Approximately 97% of the sampled confined groundwaters exceed the prescribed standard for F-. It is mainly due to geological factors such as mineral dissolution, cation exchange, and competitive adsorption of HCO3 - and may also be released from compacted soils because of groundwater extraction. Enriched F- in the confined groundwater can pose an intermediate and higher non-carcinogenic risk to more than 90% of the population. It poses the greatest health threat to the population in the north-eastern part of the study area, especially to infants and children. For sustainable development, the long-term use of confined groundwater for irrigation in the area should be avoided, and attention should also be paid to the potential soil salinization and infiltration risks. In the study area, 97% of the confined groundwaters are found to be excellent or good quality for domestic purposes based on Entropy-weighted Water Quality Index. However, the non-carcinogenic health risk caused by high contents of F- cannot be ignored. Therefore, it is recommended that differential water supplies should be implemented according to the spatial heterogeneity of confined groundwater quality to ensure the scientific and rational use of groundwater resources. PRACTITIONER POINTS: The hydrochemistry quality of confined groundwater in an arid sedimentary plain disturbed by long-term anthropogenic extraction was investigated. The suitability of confined groundwater for multiple purposes such as irrigation and drinking were evaluated. The hydrochemical characteristics and formation mechanism of confined groundwater under the influence of multiple factors were revealed.


Assuntos
Água Subterrânea , Água Subterrânea/química , China , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Qualidade da Água , Sedimentos Geológicos/química
11.
Heliyon ; 10(15): e35678, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170487

RESUMO

To realize the energy and resource utilization from organic solid waste, a two-phase microbial desalination cell (TPMDC) was constructed using dewatered sludge and kitchen waste as the anode substrate. The performance of electricity generation and composting efficacy was investigated, along with a comprehensive assessment of the potential health risks associated with the land use of the resulting mixed compost products. Experimental outcomes revealed a maximum open-circuit voltage of 0.893 ± 0.005 V and a maximum volumetric power density of 0.797 ± 0.009 W/m³. After 90 days of composting enhanced by microbial electrochemistry, a significant organic matter removal rate of 31.13 ± 0.44 % was obtained, and the anode substrate electric conductivity was reduced by 30.02 ± 0.04 % based on the anode desalination. Simultaneously, there was an increase in the content of available nitrogen, phosphorus, and potassium, as well as an improvement in the seed germination index. The forms of heavy metals shifted from bioavailable to stable residual states. The non-carcinogenic hazard index (HI) values for heavy metals and polycyclic aromatic hydrocarbons (PAHs) during the land use of compost products were less than 1, and the total carcinogenic risk (TCR) values for heavy metals and PAHs were below the acceptable threshold of 10-4. The occupational population risk of infection from five pathogens was higher than that of the general public, with all risk values ranging from 8.67 × 10-8 to 1, where the highest risk was attributed to occupational exposure to Legionella. These outcomes demonstrated that the mixture of dewatered sludge and kitchen waste was an appropriate anode substrate to enhance TPMDC stability for electricity generation, and its compost products have promising land use suitability and acceptable land use risk, which will provide important guidance for the safe treatment and disposal of organic solid waste.

12.
Huan Jing Ke Xue ; 45(8): 4802-4811, 2024 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-39168697

RESUMO

Soil heavy metal pollution poses a serious threat to food security, human health, and soil ecosystems. Based on 644 soil samples collected from a typical oasis located at the eastern margin of the Tarim Basin, a series of models, namely, multiple linear regression (LR), neural network (BP), random forest (RF), support vector machine (SVM), and radial basis function (RBF), were built to predict the soil heavy metal content. The optimal prediction result was obtained and utilized to analyze the spatial distribution features of heavy metal contamination and relevant health risks. The outcomes demonstrated that: ① The average Cd content in the study area was 0.14 mg·kg-1, which was 1.17 times the soil background value of Xinjiang, making it the primary factor of soil heavy metal contamination in the area. Additionally, the carcinogenicity risk coefficients of Cd for both adults and children were less than 10-4, indicating that there were no significant long-term health risks for humans in the area. ② The estimation accuracies of the five inversion models were compared, and the validation set of the RF model had an R2 value of 0.763 7, which was the highest among the five models. Additionally, the RMSE, MAE, and MBE of the RF model were the smallest among the five models. Therefore, the predicted values of the RF model were most consistent with the measured values of the soil Cd content. The predicted map of soil Cd distribution derived from the RF model coincided best with the interpolation map. ③ The RF model outperformed the other four models in predicting health risks associated with the soil Cd element for both adults and children, resulting in better prediction results. Comparatively, the predicted values of the LR model in the validation set varied greatly, leading to unreliable results. It was demonstrated that the RF was the best model for predicting soil Cd content and evaluating health risks in the study area, considering its superior generalization capability and anti-overfitting ability.


Assuntos
Cádmio , Monitoramento Ambiental , Aprendizado de Máquina , Poluentes do Solo , Cádmio/análise , Poluentes do Solo/análise , Medição de Risco , China , Monitoramento Ambiental/métodos , Humanos , Máquina de Vetores de Suporte , Redes Neurais de Computação , Solo/química , Ecossistema , Modelos Lineares
13.
Huan Jing Ke Xue ; 45(8): 4847-4859, 2024 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-39168701

RESUMO

Studying the status and source analysis of heavy metal pollution in farmland in typical mining and processing areas is an important prerequisite for promoting farmland soil ecological restoration and farmland protection in concentrated mining areas. In this study, the heavy metal content of farmland soil around a mining area in southwest China was detected, and the pollution status, distribution law, health risks, and sources of heavy metals were studied by using the land accumulation index method, comprehensive pollution index method, kriging interpolation method, health risk assessment method, and PMF receptor model on the sampling data. The results showed that the mean values of eight heavy metals in farmland soil except Ni exceeded the local soil background values, and the results of the ground accumulation index evaluation showed that Cd and Hg were extremely polluted; Pb and As showed medium pollution-heavy pollution; and Cr, Zn, Ni, and Cu were lightly polluted. In the health risk assessment, oral ingestion was the main exposure route posing a health risk to the human body; the main element that constituted non-carcinogenic health risks was As, and the carcinogenic risks were from As and Cd. PMF model analysis showed that the contribution rate of weathering natural sources of iron-bearing ore was 28.02%, and the main factors were Ca and Fe. The contribution rate of agricultural sources was 3.02%, and the main factors were Pb and As. The contribution rate of industrial and atmospheric deposition composite sources was 33.09%, and the main factor was Hg. The contribution rate of the parent material source was 17.27%, and the main factor was Ca. The contribution rate of mining activities such as mining and smelting was 18.60%, and the main factors were Zn and Cd.


Assuntos
Monitoramento Ambiental , Metais Pesados , Mineração , Poluentes do Solo , Estanho , Metais Pesados/análise , Poluentes do Solo/análise , China , Medição de Risco , Estanho/análise , Produtos Agrícolas/crescimento & desenvolvimento
14.
Sci Rep ; 14(1): 18706, 2024 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134587

RESUMO

Marine pollution caused by heavy metals has emerged as a significant environmental concern, garnering increased attention in recent years. The accumulation of heavy metals in the tissues of marine organisms poses substantial threats to both marine ecosystems and human populations that rely on seafood as a primary food source. Fish and crustaceans are effective biomonitors for assessing heavy metal contamination in aquatic environments. In this study, we determined the concentrations of several heavy metals, including cadmium (Cd), lead (Pb), nickel (Ni), mercury (Hg), and tin (Sn), in four fish species (Mugil cephalus, Mugil capito, L. aurata, and Morone labrax) and five crustacean species (S. rivulatus, Cerastoderma glaucum, Paratapes undulatus, R. decussatus, Callinectes sapidus, and Metapenaeus Stebbingi) from Temsah Lake during both winter and summer seasons. To evaluate the potential ecological and health risks associated with consuming these fish and crustacean species, we calculated the metal pollution index (MPI), weekly intake (EWI), target hazard quotient (THQ), and carcinogenic risk (CR) values. The results revealed a noticeable increase in metal levels during the summer compared to winter in the studied samples. Moreover, the concentration of heavy metals in the muscles of the species generally exceeded those in the liver and gills. The MPI values indicated that Morone labrax exhibited the highest values during winter, while L. aurata showed the highest values during summer. Mugil cephalus demonstrated the lowest MPI values in both seasons. The EWI values for the studied metals were found to be lower than the corresponding tolerable weekly intake (TWI) values. Additionally, under average exposure conditions, the THQ and HI data were generally below one for most study species in the area. The calculated CR values for investigated metals in the studied species indicated acceptable carcinogenic risk levels. Therefore, this suggests that consuming studied species within Temsah lake does not present any potential health hazards for consumers.


Assuntos
Crustáceos , Monitoramento Ambiental , Peixes , Lagos , Metais Pesados , Poluentes Químicos da Água , Animais , Metais Pesados/análise , Poluentes Químicos da Água/análise , Crustáceos/metabolismo , Medição de Risco , Peixes/metabolismo , Monitoramento Ambiental/métodos , Humanos , Estações do Ano
15.
Environ Monit Assess ; 196(9): 784, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098846

RESUMO

For the first time in Iran, in this study, the amount of 19 trace elements in some types of commonly consumed Iranian fruits (in their peel and pulp) was evaluated by ICP-OES (Inductively coupled plasma-optical emission spectrometry) method. Based on the outcomes, the highest and lowest average detected elements in all fruits samples were related to (Al) aluminum (1842.18) and (V) vanadium (0.28) ppm, respectively. Mercury (Hg) and antimony (Sb) were not detected (ND) in any samples. Also, the maximum mean of elements in quince, lemon, grapefruit, kiwi, orange south, orange north and tangerine samples was related to(Fe) iron (2048.32 ppm), (Zn)zinc(753.45 ppm), Fe (1056.33 ppm), Al (9794.41 ppm), Zn (717.78 ppm), Fe (1334.87 ppm) and Fe (974.93 ppm), respectively. Furthermore, our outcomes revealed, the highest mean of elements in kiwi peel, kiwi pulp, orange North peel, orange North pulp, orange South peel, orange South pulp, quince peel, quince pulp, grapefruit peel, grapefruit pulp, lemon peel, lemon pulp, tangerine peel and tangerine pulp was related to Al (17967.79 ppm), Al (1621.03 ppm), Fe (1350.01 ppm), Al (1457.66 ppm), Zn (934.71 ppm), Fe (728.06 ppm), Fe (2768.11 ppm), Fe (1328.54 ppm), Zn (1008.54 ppm), Fe (1198.00 ppm), Zn (683.35 ppm), Zn (823.55 ppm), Fe (1182.59 ppm), and Fe (767.27 ppm), respectively. Based on the Monte Carlo simulation results, the THQ (target hazard quotient) and ILCR (Incremental Lifetime Cancer Risk) related to exposure to heavy metals via fruits for adults and children showed that there is no significant non-carcinogenic risk (THQ < 1) and carcinogenic risk (ILCR < 1E-4) for adults and children.


Assuntos
Contaminação de Alimentos , Frutas , Oligoelementos , Oligoelementos/análise , Frutas/química , Irã (Geográfico) , Medição de Risco , Contaminação de Alimentos/análise , Humanos , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise
16.
Mar Pollut Bull ; 207: 116807, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128235

RESUMO

This study examined ten heavy metals in five species: Macrobrachium vollenhovenii, Penaeus monodon, P. notialis, Chloroscombrus chrysurus, and Pseudotolithus typus, from Makoko floating slum, Lagos Lagoon to discern their bioaccumulation potentials, sources of origin, and health implications. The concentrations were in this order: Fe (4.172-10.176) > Zn (1.310-5.754) > Mn (0.475-2.330) > Cu (0.238-1.735) > Pb (0.121-0.391) > Cd (0.055-0.283) > Co (0.056-0.144) > Ni (0.039-0.121) > Cr (0.022-0.095) > As (0.003-0.031) mg/kg. The MPDI denotes "low toxicity," and the BAF/BSAF revealed that benthic species had higher bioconcentration potentials. Multivariate analyses revealed that heavy metals exhibited mutual relationships during chemical transport, and their sources were both geogenic and human-induced. The HI values were below 1, and the TCR values were below the threshold of 1 × 10-4. This suggests that the probabilities of noncancer and carcinogenic risks in human populations due to long-term consumption of the evaluated species are unlikely.

17.
Environ Res ; 261: 119728, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098714

RESUMO

The environmental changes from climatic, terrestrial and anthropogenic drivers can significantly influence the groundwater quality that may pose a threat to human health. However, the driving mechanism of groundwater quality and potential health risk still remains to be studied. In this paper, 165 groundwater samples were analyzed to evaluate the groundwater quality, driving mechanism, and probabilistic health risk in the central Yinchuan Plain by applying fuzzy comprehensive evaluation method (FCEM), redundance analysis (RDA) and Monte Carlo simulation. The results showed that hydrochemical evolution of groundwater were strongly influenced by water-rock interaction, evaporation and human activities. While 55.2% of groundwater samples reached the drinking water quality standard (Class I, II and III), 44.8% of samples exceeded the standard limits of Class III water quality (Class IV and V), indicating a high pollution level of groundwater. Mn, TDS, NH4+, NO3-, Fe, F-, NO2-, As were among major indicators that influence the groundwater quality due to the natural and anthropogenic processes. The RDA analysis revealed that climatic factors (PE: 10.9%, PRE: 1.1%), GE chemical properties (ORP: 20.7%, DO: 2.4%), hydrogeological factors (BD: 16.5%, K: 4.1%), and terrestrial factors (elevation: 1.2%; distanced: 5.6%, distancerl: 1.5%, NDVI: 1.2%) were identified as major driving factors influencing the groundwater quality in the study area. The HHRA suggested that TCR values of arsenic in infants, children and teens greatly exceeded the acceptable risk threshold of 1E-4, indicating a high cancer risk with a basic trend: infants > children > teens, while TCR values of adults were within the acceptable risk level. THI values of four age groups in the RME scenario were nearly ten times higher than those in the CTE scenario, displaying a great health effect on all age groups (HQ > 1). The present study provides novel insights into the driving mechanism of groundwater quality and potential health hazard in arid and semi-arid regions.

18.
Environ Res ; 261: 119744, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098713

RESUMO

Ambient polycyclic aromatic hydrocarbons (PAHs) originate predominantly from fuel combustion of motor vehicles and have the potential to affect human health. However, there is insufficient knowledge regarding serum PAHs health risks among the Malaysian population. This study aims to compare PAH concentrations, distributions, correlations, and health risks in 202 blood serum samples drawn from residents living in high-traffic volume areas (Kuala Lumpur) and low-traffic volume areas (Hulu Langat) in Malaysia. Solid phase extraction and gas chromatography-mass spectrometry (GC-MS) were employed to extract and analyze blood serum samples. Questionnaires were distributed to obtain sociodemographic and contributing factors of serum PAHs. The mean total PAHs concentration in serum of the Kuala Lumpur group was 54.44 ng g-1 lipids, double the Hulu Langat group's concentration (25.7 ng g-1 lipids). Indeno(1,2,3-cd)pyrene (IcP) and acenaphthene (ACP) feature the most and least abundant compounds in both study groups. The mean concentrations of IcP and ACP in the Kuala Lumpur and Hulu Langat groups were 26.8 vs 12.68 and 0.27 vs 0.14 ng g-1 lipids, respectively. High-molecular-weight PAHs (HMW-PAHs) composed 85% of serum total PAHs in both groups. Significant correlations were found (i) between the individual serum PAH congeners (p < 0.01) and (ii) between serum PAHs and total lipids (p < 0.01). According to the questionnaire data, high traffic volume and outdoor hobbies were the only contributory factors that confirmed significant relationships with serum PAHs (p < 0.001). Health risk assessment was computed using benzo(a)pyrene (BaP) equivalent (BaPeq) and demonstrated that the Kuala Lumpur group has twofold greater carcinogenic risk than the Hulu Langat group (16.11 vs 7.76 ng g-1 lipids). Our study reveals that traffic volumes notably impact serum PAH levels and general health among the Malaysian population.

19.
Int J Environ Health Res ; : 1-20, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206867

RESUMO

In this study, the Geo-accumulation index (Igeo), Human Health Risk Assessment (HRA), and Ecological Risk Index (ERI) were utilized to examine the risks associated with the soils at the DaeyangYeongseong mine. Brassica juncea and Raphanus sativus were employed in the ecological toxicity test. In all soil samples, the mean Igeo value of arsenic measured 3.15, and cadmium measured 6.63, indicating a very high level of heavy metal contamination. The carcinogenic risk of cadmium and arsenic for adults was 4.30×10-3 and 1.43×10-5, respectively. For children, these values were 3.92 × 10-2 and 1.33 ×10-4, exceeding the acceptable level (1×10-6). In all soils, cadmium showed extremely high ecological risk levels, and arsenic had extremely high risk levels in 34.8% of the total area. This was also confirmed in toxicity assessments using plants. Therefore, arsenic and cadmium were found to be the main causes of soil contamination and ecological risk.

20.
Water Environ Res ; 96(9): e11115, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39210602

RESUMO

Water plays a significant role in human life. However, the contamination of groundwater by heavy metals (HMs) has profound implications for public health. Industrialization, urbanization, and agricultural activities are turning out to be major causes for the increasing concentration of HMs in rapidly industrializing areas like Rohtak district, Haryana, India. The current study aimed at evaluating and predicting the health hazards associated with the radical rise of HMs in the groundwater of Rohtak district. For this purpose, 45 seasonal-based groundwater samples were collected from five blocks in Rohtak district, namely Kalanaur, Meham, Lakhan Majra, Rohtak City, and Sampla, both during pre- and post-monsoon seasons. Besides physicochemical analysis, these groundwater samples were analyzed for the contamination of HMs. The findings revealed that groundwater samples were relatively more contaminated during the post-monsoon period rather than pre-monsoon. The water quality index (WQI), devised to classify water quality into specific classes, depicted the Kalanaur region as "very poor." Another index named the HM pollution index (HPI) denoted the levels of HMs and categorized Kalanaur as most deteriorated, followed by Meham, Lakhan Majra, Sampla, and Rohtak City. Additionally, principal component analysis (PCA) was employed that showed a significant variation in the distribution pattern of HMs, with the major load being attributed to PC1 and PC2 for both seasons. Pearson's correlation analysis indicated a significant association of pH (R2 = 0.917) with HMs (specifically for Cd and Cr). In terms of health risk assessment, carcinogenic human health risk due to Pb and Cr was found to be higher in children than adults. Non-carcinogenic risk, indicative of harmful human health effects, apart from cancer, was calculated in terms of hazard quotient (HQ) and hazard index (HI). Results of the same, designated "children" as a vulnerable category compared with "adults," especially in the Kalanaur, Sampla, and Rohtak City blocks of the study area. The results thus reiterated that Kalanaur is the most contaminated block among the five blocks chosen and should be given urgent attention. The study holds importance as it provides a framework regarding the methodology that should be adapted for the evaluation, management, and protection of groundwater at a regional level, which could further be replicated by environmentalists and hydrogeologists across the world. PRACTITIONER POINTS: Water logging is one of the most common problems in Kalanaur block of Rohtak district, responsible for causing groundwater pollution. Cadmium and lead pollution was prevalent in Rohtak due to electroplating industries, paint industry, automobile sector, and industrial discharge. Bioremediation is one of the suitable techniques that can be used for the treatment of groundwater that involves the use of microorganisms. Efficient use of groundwater resources is necessary for sustainable development.


Assuntos
Água Subterrânea , Metais Pesados , Saúde Pública , Poluentes Químicos da Água , Água Subterrânea/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Medição de Risco , Monitoramento Ambiental , Humanos , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA