RESUMO
Infection with hepatitis E virus (HEV) represents a global problem, with over 20 million people infected annually. No specific antiviral drugs are available for treating HEV infection, necessitating the development of novel targeted therapeutics. Here, we report that the N-methyl-D-aspartate receptor (NMDAR) antagonist ifenprodil, a clinically approved drug used to treat idiopathic pulmonary fibrosis (IPF), is an HEV inhibitor in liver-derived cells. In vitro investigation demonstrates that ifenprodil suppresses viral protein expression in a dose-dependent manner in human hepatoma cells by inhibiting early stages of viral infection. We also found that ifenprodil modulates host cell intrinsic biological processes distinct from virus-induced innate immunity, inhibiting HEV RNA accumulation in primary human hepatocytes. Finally, the inhibitory effect of ifenprodil in vivo was also tested in rabbits challenged with the HEV-3ra CHN-BJ-R14 strain. Fecal virus shedding was below the limit of detection in two animals for both ribavirin-treated and ifenprodil-treated rabbits compared to vehicle-treated control animals. Our data demonstrate that ifenprodil is an effective anti-HEV compound with potential as a therapeutic candidate for the treatment of HEV infection.
RESUMO
Avian hepatitis E virus (HEV) has resulted in significant economic losses in the poultry industry. There is currently no commercial vaccination available to prevent avian HEV infection. Previously, a novel epitope (601TFPS604) was discovered in the ORF2 protein of avian HEV. In this study, peptides were synthesized and assessed for their ability to provide immunoprotecting against avian HEV infection in poultry. Twenty-five Hy-Line Variety Brown laying hens were randomly divided into five groups; groups 1 to 3 respectively immunized with RLLDRLSRTFPS, PETRRLLDRLSR (irrelevant peptide control), or truncated avian HEV ORF2 protein (aa 339-606), while group 4 (negative control) was mock-immunized with PBS and group 5 (normal control) was not immunized or challenged. After the challenge, all hens in groups 2 and 4 showed seroconversion, fecal virus shedding, viremia, alanine aminotransferase (ALT) level increasing, liver lesions and HEV antigen in the liver. There were no pathogenic effects in other groups. Collectively, all of these findings showed that hens were completely protected against avian HEV infection when they were immunized with the peptide containing TFPS of the avian HEV ORF2 protein.
Assuntos
Galinhas , Hepatite Viral Animal , Hepevirus , Doenças das Aves Domésticas , Proteínas Virais , Animais , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Hepevirus/imunologia , Hepevirus/genética , Hepatite Viral Animal/prevenção & controle , Hepatite Viral Animal/imunologia , Hepatite Viral Animal/virologia , Proteínas Virais/imunologia , Proteínas Virais/genética , Vacinas contra Hepatite Viral/imunologia , Feminino , Peptídeos/imunologia , Peptídeos/síntese química , Peptídeos/genética , Eliminação de Partículas Virais , Infecções por Vírus de RNA/prevenção & controle , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/imunologia , Vacinas Virais/imunologia , Fígado/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Fezes/virologiaRESUMO
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis in the world and can lead to severe complications in immunocompromised individuals. HEV is primarily transmitted through eating pork, which has led to an increased in anti-HEV IgG seropositivity in the general population of Europe in particular. However, it can also be transmitted intravenously, such as through transfusions. The growing evidence of HEV contamination of blood products and documented cases of transmission have given rise to practice changes and blood product screening of HEV in many European countries. This review covers the abundant European literature and focuses on the most recent data pertaining to the prevalence of HEV RNA positivity and IgG seropositivity in the North American general population and in blood products from Canada and the United States. Currently, Health Canada and the Food and Drug Administration do not require testing of HEV in blood products. For this reason, awareness among blood product prescribers about the possibility of HEV transmission through blood products is crucial. However, we also demonstrate that the province of Quebec has a prevalence of anti-HEV and HEV RNA positivity similar to some European countries. In light of this, we believe that HEV RNA blood donation screening be reevaluated with the availability of more cost-effective assays.
Assuntos
Doadores de Sangue , Seleção do Doador , Vírus da Hepatite E , Hepatite E , Humanos , Hepatite E/epidemiologia , Hepatite E/diagnóstico , Hepatite E/transmissão , Canadá/epidemiologia , Estados Unidos/epidemiologia , Vírus da Hepatite E/isolamento & purificação , Vírus da Hepatite E/imunologia , Seleção do Doador/métodos , RNA Viral/sangue , Programas de Rastreamento/métodos , Prevalência , Anticorpos Anti-Hepatite/sangue , Segurança do Sangue , Imunoglobulina G/sangue , Doação de SangueRESUMO
Hepatitis E virus (HEV) is a positive-sense, single-stranded RNA virus and causes primarily acute self-limiting infections. The ORF1 of the HEV genome encodes a polyprotein around 190 kDa, which contains several putative domains, including helicase and RNA-dependent RNA polymerase. The HEV-encoded helicase is a member of the superfamily 1 helicase family and possesses multiple enzymatic functions, such as RNA 5'-triphosphatase, RNA unwinding, and NTPase, which are thought to contribute to viral RNA synthesis. However, the helicase interaction with cellular proteins remains less known. Oxysterol binding protein (OSBP) is a lipid regulator that shuffles between the Golgi apparatus and the endoplasmic reticulum for cholesterol and phosphatidylinositol-4-phosphate exchange and controls the efflux of cholesterol from cells. In this study, the RNAi-mediated silencing of OSBP significantly reduced HEV replication. Further studies indicate that the HEV helicase interacted with OSBP, shown by co-immunoprecipitation and co-localization in co-transfected cells. The presence of helicase blocked OSBP preferential translocation to the Golgi apparatus. These results demonstrate that OSBP contributes to HEV replication and enrich our understanding of the HEV-cell interactions.
Assuntos
Complexo de Golgi , Vírus da Hepatite E , Receptores de Esteroides , Replicação Viral , Vírus da Hepatite E/fisiologia , Vírus da Hepatite E/genética , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Humanos , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Interações Hospedeiro-Patógeno , Linhagem Celular , Ligação Proteica , Hepatite E/virologia , Hepatite E/metabolismoRESUMO
A wide range of virus-like particles (VLPs) is extensively employed as carriers to display various antigens for vaccine development to fight against different infections. The plant-produced truncated variant of the hepatitis E virus (HEV) coat protein is capable of forming VLPs. In this study, we demonstrated that recombinant fusion proteins comprising truncated HEV coat protein with green fluorescent protein (GFP) or four tandem copies of the extracellular domain of matrix protein 2 (M2e) of influenza A virus inserted at the Tyr485 position could be efficiently expressed in Nicotiana benthamiana plants using self-replicating vector based on the potato virus X genome. The plant-produced fusion proteins in vivo formed VLPs displaying GFP and 4M2e. Therefore, HEV coat protein can be used as a VLP carrier platform for the presentation of relatively large antigens comprising dozens to hundreds of amino acids. Furthermore, plant-produced HEV particles could be useful research tools for the development of recombinant vaccines against influenza.
Assuntos
Apresentação de Antígeno , Proteínas do Capsídeo , Vírus da Hepatite E , Nicotiana , Proteínas Recombinantes de Fusão , Proteínas da Matriz Viral , Vírus da Hepatite E/imunologia , Vírus da Hepatite E/genética , Nicotiana/virologia , Nicotiana/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Plantas Geneticamente Modificadas , Vírus da Influenza A/imunologia , Vírus da Influenza A/genética , Hepatite E/imunologia , Hepatite E/prevenção & controle , Hepatite E/virologia , Proteínas ViroporinasRESUMO
AIMS: Hepatitis E virus (HEV) is responsible for â¼20 million human infections worldwide every year. The genotypes HEV-3 and HEV-4 are zoonotic and are responsible for most of the autochthonous HEV cases in high-income countries. There are several cell culture systems that allow for propagation of different HEV genotypes in vitro. One of these systems uses human lung carcinoma cells (A549), and was further optimized for propagation of HEV-3 47832c strain. In this study, we investigated the effect of different media supplements as well as microRNA-122 (miR-122) on improving the replication of HEV-3 47832c in A549 cells. METHODS AND RESULTS: We observed that supplementation of maintenance media with 5% fetal bovine serum was sufficient for efficient replication of HEV-3, and verified the positive effect of media supplementation with Amphotericin B, MgCl2, and dimethyl sulfoxide on replication of HEV-3. We have also demonstrated that adding miR-122 mimics to the culture media does not have any significant effect on the replication of HEV-3 47832c. CONCLUSIONS: Herein, we detected over a 6-fold increase in HEV-3 replication in A549/D3 cells by adding all three supplements: Amphotericin B, MgCl2, and dimethyl sulfoxide to the culture media, while demonstrating that miR-122 might not play a key role in replication of HEV-3 47832c.
Assuntos
Meios de Cultura , Genótipo , Vírus da Hepatite E , Replicação Viral , Vírus da Hepatite E/genética , Humanos , MicroRNAs/genética , Hepatite E/virologia , Células A549 , Cultura de Vírus/métodosRESUMO
Hepatitis E is an underestimated disease, leading to estimated 20 million infections and up to 70,000 deaths annually. Infections are mostly asymptomatic, but can reach mortality rates up to 25% in pregnant women or become chronic in immunocompromised patients. Hepatitis E virus (HEV) infection have been associated with a range of extrahepatic manifestations, including a spectrum of neurological symptoms. Current therapy options are limited to non-specific antivirals like ribavirin, but recently, repurposed viral polymerase inhibitors like sofosbuvir and NITD008 were described to inhibit HEV replication. Here, we evaluated the efficacy of these drugs in various neuronal-derived cell lines to determine their potency outside the liver. Our findings indicate that both drugs, especially sofosbuvir, exhibited reduced efficacy in neuronal cells compared to hepatic cells. These results should be taken into account in the development of direct-acting antivirals for HEV and their potency at extrahepatic replication sites.
Assuntos
Antivirais , Vírus da Hepatite E , Hepatite E , Neurônios , Sofosbuvir , Replicação Viral , Sofosbuvir/farmacologia , Antivirais/farmacologia , Humanos , Vírus da Hepatite E/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/virologia , Linhagem Celular , Hepatite E/tratamento farmacológico , Hepatite E/virologia , Adenosina/análogos & derivadosRESUMO
Hepatitis E virus (HEV) can cause self-limiting acute and chronic hepatitis infections, particularly in immunocompromised individuals. In developing countries, HEV is mainly transmitted via drinking contaminated water, whereas zoonotic transmission dominates the route of infection in developed countries, including Japan. Pigs are an important reservoir for HEV infection. Wild boars, which share the same genus and species as domestic pigs, are also an HEV reservoir. During our nationwide study of HEV infection in wild boar populations in Japan, a genotype 6 (HEV-6) strain, wbJHG_23, was isolated in Hyogo Prefecture in 2023. The genomic length was 7244 nucleotides, excluding the poly(A) tract. The wbJHG_23 strain exhibited the highest nucleotide identity throughout its genome with two previously reported HEV-6 strains (80.3-80.9%). Conversely, it displayed lower similarity (73.3-78.1%) with the HEV-1-5, HEV-7, and HEV-8 strains, indicating that, although closely related, the wbJHG_23 strain differs significantly from the reported HEV-6 strains and might represent a novel subtype. The wbJHG_23 strain successfully infected the human-derived cancer cell lines, PLC/PRF/5 and A549 1-1H8 cells, suggesting that HEV-6 has the potential for zoonotic infection. An infectious cDNA clone was constructed using a reverse genetics system, and a cell culture system supporting the efficient propagation of the HEV-6 strain was established, providing important tools for further studies on this genotype. Using this cell culture system, we evaluated the sensitivity of the wbJHG_23 strain to ribavirin treatment. Its good response to this treatment suggested that it could be used to treat human infections caused by HEV-6.
Assuntos
Genoma Viral , Vírus da Hepatite E , Hepatite E , Filogenia , Sus scrofa , Animais , Linhagem Celular , DNA Complementar/genética , Genótipo , Hepatite E/virologia , Hepatite E/veterinária , Hepatite E/transmissão , Vírus da Hepatite E/genética , Vírus da Hepatite E/classificação , Vírus da Hepatite E/isolamento & purificação , Japão , RNA Viral/genética , Sus scrofa/virologia , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/transmissãoRESUMO
The hepatitis E virus (HEV) is infecting over 20 million people annually with a high morbidity especially in pregnant women and immune-suppressed individuals. While HEV genotype 1 (HEV-1) infects only humans, genotype 3 (HEV-3) is zoonotic and commonly transmitted from infected animals to humans. Whereas a few reverse genetics systems enabling targeted genome manipulations exist for HEV-3, those for HEV-1 are still very limited, mainly because of inefficient cell culture replication. Here, the generation of HEV-1 strain Sar55 and HEV-3 strain 47832mc by transfecting in vitro-transcribed and capped virus genomes into different cell lines was attempted. Culture supernatants of colon-derived colorectal adenocarcinoma cell line Caco-2 contained HEV-1 and HEV-3 capable of infecting Caco-2 cells. Density gradient centrifugation analyses of culture supernatants confirmed that HEV-1 particles were quasi-enveloped in analogy to HEV-3 and that non-virion-associated capsid protein was secreted from cells. Following transfection or infection of Caco-2 cells, HEV-1 consistently reached higher titers than HEV-3 in culture supernatants, but HEV-1 generated by transfection of Caco-2 cells was unable to efficiently infect hepatoma cell lines PLC/PRF/5 or HuH7-Lunet BLR. Taken together, our results indicate that HEV-1 is able to exert a complete replication cycle in Caco-2 cells. An efficient cell culture system for this genotype will be useful for studying species tropism, but further research is required to determine the significance of HEV-1 replication in colon-derived cells.
Assuntos
Genótipo , Vírus da Hepatite E , Genética Reversa , Replicação Viral , Humanos , Vírus da Hepatite E/genética , Vírus da Hepatite E/fisiologia , Células CACO-2 , Genética Reversa/métodos , Colo/virologia , Genoma Viral , Hepatite E/virologiaRESUMO
Preliminary investigations have demonstrated that the cysteines located at the C-terminus of HEV ORF2 protein exhibits disulfide bonding capability during virus-like particles (VLPs) assembly. However, the effect and mechanism underlying the pairing of disulfide bonds formed by C627, C630, and C638 remains unclear. The p222 protein encompasses C-terminus and serves as a representative of HEV ORF2 to investigate the specific impacts of C627, C630, and C638. The three cysteines were subjected to site-directed mutagenesis and expressed in prokaryotes; Both the mutated proteins and p222 underwent polymerization except for p222A; Surprisingly, only p222 was observed as abundant spherical particles under transmission electron microscope (TEM); Stability and immunogenicity of the p222 exhibited higher than other mutated proteins; LC/MS/MS analysis identified four disulfide bonds in the p222. The novel findings suggest that the three cysteines contribute to structural and functional properties of ORF2 protein, highlighting the indispensability of each cysteine.
Assuntos
Cisteína , Vírus da Hepatite E , Proteínas Virais , Cisteína/química , Cisteína/metabolismo , Vírus da Hepatite E/genética , Vírus da Hepatite E/química , Proteínas Virais/genética , Proteínas Virais/química , Proteínas Virais/metabolismo , Mutagênese Sítio-Dirigida , Dissulfetos/química , Dissulfetos/metabolismo , Animais , HumanosRESUMO
Hepatitis E virus is a single-strand, positive-sense RNA virus that can lead to chronic infection in immunocompromised patients. Virus-host recombinant variants (VHRVs) have been described in such patients. These variants integrate part of human genes into the polyproline-rich region that could introduce new post-translational modifications (PTMs), such as ubiquitination. The aim of this study was to characterize the replication capacity of different VHRVs, namely, RNF19A, ZNF787, KIF1B, EEF1A1, RNA18, RPS17, and RPL6. We used a plasmid encoding the Kernow strain, in which the fragment encoding the S17 insertion was deleted (Kernow p6 delS17) or replaced by fragments encoding the different insertions. The HEV RNA concentrations in the supernatants and the HepG2/C3A cell lysates were determined via RT-qPCR. The capsid protein ORF2 was immunostained. The effect of ribavirin was also assessed. The HEV RNA concentrations in the supernatants and the cell lysates were higher for the variants harboring the RNF19A, ZNF787, KIF1B, RPS17, and EEF1A1 insertions than for the Kernow p6 del S17, while it was not with RNA18 or RPL6 fragments. The number of ORF2 foci was higher for RNF19A, ZNF787, KIF1B, and RPS17 than for Kernow p6 del S17. VHRVs with replicative advantages were less sensitive to the antiviral effect of ribavirin. No difference in PTMs was found between VHRVs with a replicative advantage and those without. In conclusion, our study showed that insertions did not systematically confer a replicative advantage in vitro. Further studies are needed to determine the mechanisms underlying the differences in replicative capacity. IMPORTANCE: Hepatitis E virus (HEV) is a major cause of viral hepatitis. HEV can lead to chronic infection in immunocompromised patients. Ribavirin treatment is currently used to treat such chronic infections. Recently, seven virus-host recombinant viruses were characterized in immunocompromised patients. These viruses have incorporated a portion of a human gene fragment into their genome. We studied the consequences of these insertions on the replication capacity. We found that these inserted fragments could enhance virus replication for five of the seven recombinant variants. We also showed that the recombinant variants with replicative advantages were less sensitive to ribavirin in vitro. Finally, we found that the mechanisms leading to such a replicative advantage do not seem to rely on the post-translational modifications introduced by the human gene fragment that could have modified the function of the viral protein. The mechanisms involved in improving the replication of such recombinant viruses remain to be explored.
Assuntos
Vírus da Hepatite E , Interações entre Hospedeiro e Microrganismos , Recombinação Genética , Humanos , Antivirais/farmacologia , Células Hep G2 , Hepatite E/genética , Hepatite E/virologia , Vírus da Hepatite E/classificação , Vírus da Hepatite E/efeitos dos fármacos , Vírus da Hepatite E/genética , Vírus da Hepatite E/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Ribavirina/farmacologia , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Interações entre Hospedeiro e Microrganismos/genética , Ubiquitinação/genética , Plasmídeos/genéticaRESUMO
A critical review on the approaches to assess the infectivity of the Hepatitis E virus (HEV) in food recommended that a cell culture-based method should be developed. Due to the observations that viral loads in food may be low, it is important to maximise the potential for detection of HEV in a food source in order to fully assess infectivity. To do so, would require minimal processing of any target material. In order to proceed with the development of an infectivity culture method that is simple, robust and reproducible, there are a number of points to address; one being to assess if food homogenates are cytotoxic to HEV susceptible target cells. Food matrices previously shown to have detectable HEV nucleic acid were selected for analysis and assessed for their effect on the percentage survival of three cell lines commonly used for infectivity assays. Target cells used were A549, PLC/PRF/5 and HepG2 cells. The results showed that, as expected, various food homogenates have differing effects on cells in vitro. In this study, the most robust cell line over a time period was the A549 cell line in comparison to HepG2, with PLC/PRF/5 cells being the most sensitive. Overall, this data would suggest that FH can be left in contact with A549 cells for a period of up to 72 h to maximise the potential for testing infection. Using food homogenates directly would negate any concerns over losing virus as a result of any additional processing steps.
Assuntos
Sobrevivência Celular , Vírus da Hepatite E , Humanos , Vírus da Hepatite E/genética , Vírus da Hepatite E/fisiologia , Contaminação de Alimentos/análise , Hepatite E/virologia , Linhagem Celular , Células Hep G2 , Células A549RESUMO
The hepatitis E virus (HEV) can cause acute and chronic hepatitis in humans. Whereas HEV genotypes 1-4 of species Paslahepevirus balayani are commonly found in humans, infections with ratHEV (species Rocahepevirus ratti) were previously considered to be restricted to rats. However, several cases of human ratHEV infections have been described recently. To investigate the zoonotic potential of this virus, a genomic clone was constructed here based on sequence data of ratHEV strain pt2, originally identified in a human patient with acute hepatitis from Hongkong. For comparison, genomic clones of ratHEV strain R63 from a rat and of HEV genotype 3 strain 47832mc from a human patient were used. After transfection of in vitro-transcribed RNA from the genomic clones into the human hepatoma cell line HuH-7-Lunet BLR, virus replication was shown for all strains by increasing genome copy numbers in cell culture supernatants. These cells developed persistent virus infections, and virus particles in the culture supernatant as well as viral antigen within the cells were demonstrated. All three generated virus strains successfully infected fresh HuH-7-Lunet BLR cells. In contrast, the human hepatoma cell lines HuH-7 and PLC/PRF/5 could only be infected with the genotype 3 strain and to a lesser extent with ratHEV strain R63. Infection of the rat-derived hepatoma cell lines clone 9, MH1C1 and H-4-II-E did not result in efficient virus replication for either strain. The results indicate that ratHEV strains from rats and humans can infect human hepatoma cells. The replication efficiency is strongly dependent on the cell line and virus strain. The investigated rat hepatoma cell lines could not be infected and other rat-derived cells should be tested in future to identify permissive cell lines from rats. The developed genomic clone can represent a useful tool for future research investigating pathogenicity and zoonotic potential of ratHEV.
Assuntos
Vírus da Hepatite E , Replicação Viral , Animais , Humanos , Ratos , Vírus da Hepatite E/genética , Vírus da Hepatite E/classificação , Vírus da Hepatite E/fisiologia , Linhagem Celular Tumoral , Hepatite E/virologia , Genótipo , Genoma Viral , Carcinoma Hepatocelular/virologia , RNA Viral/genética , Hepatócitos/virologiaRESUMO
In the pork production chain, the control at slaughterhouse aims to ensure safe food thanks to proper hygienic conditions during all steps of the slaughtering. Salmonella is one of the main foodborne pathogens in the EU causing a great number of human cases, and pigs also contribute to its spreading. Pig is the main reservoir of the zoonotic hepatitis E virus (HEV) that can be present in liver, bile, feces and even rarely in blood and muscle. The aim of this study was to assess the presence of both Salmonella and HEV in several points of the slaughtering chain, including pig trucks. Other viruses hosted in the gut flora of pigs and shed in feces were also assayed (porcine adenovirus PAdV, rotavirus, norovirus, and mammalian orthoreovirus MRV). Torque teno sus virus (TTSuV) present in both feces, liver and blood was also considered. Four Italian pig abattoirs were sampled in 12 critical points, 5 of which were the outer surface of carcasses before processing. HEV and rotavirus (RVA) were not detected. Norovirus was detected once. Salmonella was detected in two of the 4 abattoirs: in the two lairage pens, in the site of evisceration and on one carcass, indicating the presence of Salmonella if carcass is improper handled. The sampling sites positive for Salmonella were also positive for PAdV. MRV was detected in 10 swabs, from only two abattoirs, mainly in outer surface of carcasses. TTSuV was also detected in all abattoirs. Our study has revealed a diverse group of viruses, each serving as indicator of either fecal (NoV, RVA, PAdV, MRV) or blood contamination (TTSuV). TTSuV could be relevant as blood contamination indicators, crucial for viruses with a viremic stage, such as HEV. The simultaneous presence of PAdV with Salmonella is relevant, suggesting PAdV as a promising indicator for fecal contamination for both bacterial and viruses. In conclusion, even in the absence of HEV, the widespread presence of Salmonella at various points in the chain, underscores the need for vigilant monitoring and mitigation strategies which could be achieved by testing not only bacteria indicators as expected by current regulation, but also some viruses (PAdV, TTSuV, MRV) which could represent other sources of fecal contamination.
Assuntos
Vírus da Hepatite E , Vírus , Animais , Matadouros , Fezes , Contaminação de Alimentos/análise , Itália/epidemiologia , Mamíferos , Carne/microbiologia , Salmonella/fisiologia , SuínosRESUMO
Hepatitis E virus (HEV) is a single-stranded positive-sense RNA virus that belongs to Hepeviridae family. HEV is the most common cause of acute viral hepatitis worldwide. According to the World Health Organization (WHO), there are estimated 20 million HEV infections worldwide every year, leading to estimated 3.3 million symptomatic cases of HEV infection. The WHO estimates that HEV infection caused approximately 44,000 deaths in 2015, which represents 3.3% of mortality rates due to viral hepatitis. In low-income (LI) countries and lower-middle-income (LMI) countries, HEV is a waterborne infection induced by HEV genotype (gt) 1 and HEV gt 2 that cause large outbreaks and affect young individuals with a high mortality rate in pregnant women from South Asian countries and patients with liver diseases. HEV gt 3, HEV gt 4, and HEV gt 7 are responsible for sporadic infections with zoonotic transmission mainly through the consumption of raw or undercooked meat from different animals. Acute HEV infection is relatively asymptomatic or mild clinical form, in rare cases the disease can be moderate/severe clinical forms and result in fulminant hepatitis or acute liver failure (ALF). Furthermore, HEV infection is associated with extrahepatic manifestations, including renal and neurological clinical signs and symptoms. Pregnant women, infants, older people, immunocompromised individuals, patients with comorbidities, and workers who come into close contact with HEV-infected animals are recognized as major risk groups for severe clinical form of HEV infection and fatal outcome. Chronic HEV infection can occur in immunocompromised individuals with the possibility of progression to cirrhosis.
RESUMO
Hepatitis E virus (HEV) persists in the male genital tract that associates with infertility. However, the presence of HEV in the female genital tract is unreported. Vaginal secretions, cervical smears, and cervix uteri were collected to explore the presence of HEV in the female genital tract. HEV RNA and/or antigens were detected in the vaginal secretions, cervical smears, and the cervix uteri of women. The infectivity of HEV excreted into vaginal secretions was further validated in vitro. In addition, HEV replicates in the female genital tract were identified in HEV-infected animal models by vaginal injection or vaginal mucosal infection to imitate sexual transmission. Serious genital tract damage and inflammatory responses with significantly elevated mucosal innate immunity were observed in women or animals with HEV vaginal infection. Results demonstrated HEV replicates in the female genital tract and causes serious histopathological damage and inflammatory responses.
Assuntos
Líquidos Corporais , Hepatite A , Vírus da Hepatite E , Hepatite E , Animais , Feminino , Masculino , Humanos , VaginaRESUMO
INTRODUCTION: Acute hepatitis E virus (HEV) infection is recognized as a zoonosis in several European countries. We describe the characteristics and outcomes of locally acquired acute HEV hepatitis. METHODOLOGY: A prospective study was conducted among adult patients with acute HEV hepatitis at the University Hospital in Plovdiv, South Bulgaria between January 2020 and May 2022. An acute HEV infection case was a patient with acute hepatitis and laboratory-confirmed anti-HEV IgM antibodies and/or HEV RNA in serum. Demographic data, clinical manifestations, laboratory test results, and outcomes were recorded. RESULTS: A total of 46 patients were selected. Median age of 65 years (interquartile range [IQR] 50.8-74.3). 28 (60.87%) were male. 22 (47.83%) had comorbidities such as diabetes (15), liver cirrhosis (3), hepatitis B virus infection (2), and malignancies (2). Of the 46, 18 (39.13%) patients were viremic and, HEV genotype 3 was detected. The median (IQR) serum alanine aminotransferase, aspartate aminotransferase, bilirubin, platelet, and international normalized ratio levels were 992 (495.8-1714.3) U/L, 715 (262.5-1259.3) U/L, 204 (132.3-235.5) µmol/L, 204 (132.3-235.5) ×109 L, and 1.0 (0.89-1.19), respectively. Six patients with underlying liver diseases had severe hepatitis. A young patient with osteoarthritis progressed to acute liver failure and died. The persistent HEV infection was ruled out in 2 malignant patients who tested HEV RNA negative three months after discharge. CONCLUSIONS: Acute HEV hepatitis is a diagnosis to consider after excluding other causes of acute viral hepatitis. A diagnostic workup should include timely testing for HEV to identify the most vulnerable to severe consequences.
Assuntos
Vírus da Hepatite E , Hepatite E , Adulto , Humanos , Masculino , Idoso , Feminino , Hepatite E/diagnóstico , Hepatite E/epidemiologia , Estudos Prospectivos , Bulgária/epidemiologia , Vírus da Hepatite E/genética , Anticorpos Anti-Hepatite , RNA ViralRESUMO
Previous studies have shown that avian hepatitis E virus (HEV) decreases egg production by 10-40% in laying hens, but have not fully elucidated the mechanism of there. In this study, we evaluated the replication of avian HEV in the ovaries of laying hens and the mechanism underlying the decrease in egg production. Forty 150-days-old commercial laying hens were randomly divided into 2 groups of 20 hens each. A total of 1 mL (104GE) of avian HEV stock was inoculated intravenously into each chicken in the experimental group, with 20 chickens in the other group serving as negative controls. Five chickens from each group were necropsied weekly for histopathological examination. The pathogenicity of avian HEV has been characterized by seroconversion, viremia, fecal virus shedding, ovarian lesions, and decreased egg production. Both positive and negative-strand avian HEV RNA, and ORF2 antigens can be detected in the ovaries, suggesting that avian HEV can replicate in the ovaries and serve as an important extrahepatic replication site. The ovaries of laying hens underwent apoptosis after avian HEV infection. These results indicate that avian HEV infection and replication in ovarian tissues cause structural damage to the cells, leading to decreased egg production.
Assuntos
Vírus da Hepatite E , Hepevirus , Cistos Ovarianos , Neoplasias Ovarianas , Doenças das Aves Domésticas , Animais , Feminino , Galinhas , Cistos Ovarianos/veterinária , Neoplasias Ovarianas/veterinária , Hepevirus/genética , ApoptoseRESUMO
Liver disease represents a significant global burden, placing individuals at a heightened risk of developing cirrhosis and liver cancer. Viral infections act as a primary cause of liver diseases on a worldwide scale. Infections involving hepatitis viruses, notably hepatitis B, C, and E viruses, stand out as the most prevalent contributors to acute and chronic intrahepatic adverse outcome, although the hepatitis C virus (HCV) can be effectively cured with antiviral drugs, but no preventative vaccination developed. Hepatitis B virus (HBV) and HCV can lead to both acute and chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma (HCC), which are principal causes of worldwide morbidity and mortality. Other viruses, such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV), are capable of causing liver damage. Therefore, it is essential to recognize that virus infections and liver diseases are intricate and interconnected processes. A profound understanding of the underlying relationship between virus infections and liver diseases proves pivotal in the effective prevention, diagnosis, and treatment of these conditions. In this review, we delve into the mechanisms by which virus infections induce liver diseases, as well as explore the pathogenesis, diagnosis, and treatment of liver diseases. This article is categorized under: Infectious Diseases > Biomedical Engineering.
Assuntos
Hepatopatias , Humanos , Hepatopatias/virologia , Hepatopatias/diagnóstico , Hepatopatias/etiologia , Hepatopatias/terapia , Viroses/diagnóstico , Viroses/terapia , Viroses/virologia , Antivirais/uso terapêutico , Animais , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/etiologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/terapiaRESUMO
INTRODUCTION: The seroprevalence of hepatitis E virus (HEV) in patients with chronic liver disease (CLD) is little known in Brazil. Studies have suggested that HEV may harmfully influence the course of CLD, with a higher risk of progression to cirrhosis. OBJECTIVE: To estimate the prevalence of the anti-HEV antibody (IgG) in patients with CLD and to describe demographic data and risk factors, as well as clinical-laboratory and ultrasound parameters. PATIENTS AND METHODS: Cross-sectional study that included 227 patients with CLD followed at a referral outpatient clinic from June 2022 to March 2023. The patients were investigated clinically and tested for liver functions, anti-HEV IgG and, in positive cases, for HEV-RNA. Ultrasonography of the upper abdomen was also carried out. RESULTS: Investigation of 227 patients (50 with hepatitis B, 49 with nonalcoholic fatty liver disease, 33 with hepatitis C, 17 with alcoholic liver disease, 16 with schistosomiasis and 62 with mixed disease), 55.5% were female, with an average age of 57 ± 13 years; 37.9% had liver cirrhosis. Seven patients (3.08%) presented anti-HEV positive and HEV-RNA negative. Ultrasound identified association between anti-HEV and contact with pigs, presence of gynecomastia or palmar erythema, lower platelet count, higher APRI and FIB-4 values, and splenomegaly. CONCLUSION: Although the prevalence of anti-HEV in patients with CLD was low in this study, the antibody was observed more frequently in cases with a history of contact with pigs and with clinical-laboratory or imaging evidence of more advanced chronic liver disease.