RESUMO
Bojungikki-Tang (BJIKT) is traditionally used to enhance digestive function and immunity. It has gained attention as a supplement to chemotherapy or targeted therapy owing to its immune-boosting properties. This study aimed to evaluate the synergistic anti-tumor effects of BJIKT in combination with pembrolizumab in a preclinical model. MHC I/II double knockout NSG mice were humanized with peripheral blood mononuclear cells (PBMCs) and injected subcutaneously with H460 lung tumor cells to establish a humanized tumor model. Both agents were administered to evaluate their impact on tumor growth and immune cell behavior. Immunohistochemistry showed decreased exhaustion markers in CD8(+) and CD4(+) T cells within the tumor, indicating enhanced T cell activity. Additionally, RNA sequencing, transcriptome analysis, and quantitative PCR analysis were performed on tumor tissues to investigate the molecular mechanisms underlying the observed effects. The results confirmed that BJIKT improved T cell function and tumor necrosis factor signaling while suppressing transforming growth factor-ß signaling. This modulation led to cell cycle arrest and apoptosis. These findings demonstrate that BJIKT, when combined with pembrolizumab, produces significant anti-tumor effects by altering immune pathways and enhancing the anti-tumor immune response. This study provides valuable insights into the role of BJIKT in the tumor microenvironment and its potential to improve therapeutic outcomes.
RESUMO
Diffuse large B cell lymphoma (DLBCL) is the most diagnosed, aggressive non-Hodgkin lymphoma, with ~40% of patients experiencing refractory or relapsed disease. Given the low response rates to current therapy, alternative treatment strategies are necessary to improve patient outcomes. Here, we sought to develop an easily accessible new xenograft mouse model that better recapitulates the human disease for preclinical studies. We generated two Luciferase (Luc)-EGFP-expressing human DLBCL cell lines representing the different DLBCL cell-of-origin subtypes. After intravenous injection of these cells into humanized NSG mice, we monitored the tumor growth and evaluated the organ-specific engraftment/progression period. Our results showed that human IL6-expressing NSG (NSG-IL6) mice were highly permissive for DLBCL cell growth. In NSG-IL6 mice, systemic engraftments of both U2932 activated B cell-like- and VAL germinal B cell-like-DLBCL (engraftment rate; 75% and 82%, respectively) were detected within 2nd-week post-injection. In the organ-specific ex vivo evaluation, both U2932-Luc and VAL-Luc cells were initially engrafted and expanded in the spleen, liver, and lung and subsequently in the skeleton, ovary, and brain. Consistent with the dual BCL2/MYC translocation association with poor patient outcomes, VAL cells showed heightened proliferation in human IL6-conditioned media and caused rapid tumor expansion and early death in the engrafted mice. We concluded that the U2932 and VAL cell-derived human IL6-expressing mouse models reproduced the clinical features of an aggressive DLBCL with a highly consistent pattern of tumor development. Based on these findings, NSG mice expressing human IL6 have the potential to serve as a new tool to develop DLBCL xenograft models to overcome the limitations of standard subcutaneous DLBCL xenografts.
RESUMO
Immune-related drug delivery systems (DDSs) in humanized mouse models are at the forefront of cancer research and serve as bridges between preclinical studies and clinical applications. These systems offer unique platforms for exploring new therapies and understanding their interactions with human cells and the immune system. Here, we focus on a DDS and a peripheral blood mononuclear cell (PBMC)-engrafted humanized mouse model that we recently developed, and consider some of the key components, challenges, and applications to advance these systems towards better cancer treatment on the basis of a better understanding of the immune response. Our DDS is unique and has a dual function, an anticancer effect and a capacity to fine-tune the immune reaction. The PBL-NOG-hIL-4-Tg mouse system is superior to other available humanized mouse systems for the development of such multifunctional DDSs because it supports the rapid reconstruction of an individual donor's immunity and avoids the onset of graft-versus-host disease.
RESUMO
Tertiary lymphoid structures (TLSs) are associated with enhanced immunity in tumors. However, their formation and functions in colorectal cancer liver metastasis (CRLM) remain unclear. Here, we reveal that intra- and peri-tumor mature TLSs (TLS+) are associated with improved clinical outcomes than TLS- tumors. Using single-cell-RNA-sequencing and spatial-enhanced-resolution-omics-sequencing (Stereo-seq), we reveal that TLS+ tumors are enriched with IgG+ plasma cells (PCs), while TLS- tumors are characterized with IgA+ PCs. By generating TLS-associated PC-derived monoclonal antibodies in vitro, we show that TLS-PCs secrete tumor-targeting antibodies. As the proof-of-concept, we demonstrate the anti-tumor activities of TLS-PC-mAb6 antibody in humanized mouse model of colorectal cancer. We identify a fibroblast lineage secreting CCL19 that facilitates lymphocyte trafficking to TLSs. CCL19 treatment promotes TLS neogenesis and prevents tumor growth in mice. Our data uncover the central role of CCL19+ fibroblasts in TLS formation, which in turn generates therapeutic antibodies to restrict CRLM.
Assuntos
Quimiocina CCL19 , Neoplasias Colorretais , Imunoglobulina G , Neoplasias Hepáticas , Estruturas Linfoides Terciárias , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Animais , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Camundongos , Imunoglobulina G/imunologia , Quimiocina CCL19/metabolismo , Quimiocina CCL19/genética , Fibroblastos/metabolismo , Fibroblastos/imunologia , Anticorpos Monoclonais/farmacologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , Feminino , Linhagem Celular TumoralRESUMO
Background: Cancer-targeted T-cell receptor T (TCR-T) cells hold promise in treating cancers such as hematological malignancies and breast cancers. However, approaches to obtain cancer-reactive TCR-T cells have been unsuccessful. Methods: Here, we developed a novel strategy to screen for cancer-targeted TCR-T cells using a special humanized mouse model with person-specific immune fingerprints. Rare steady-state circulating hematopoietic stem and progenitor cells were expanded via three-dimensional culture of steady-state peripheral blood mononuclear cells, and then the expanded cells were applied to establish humanized mice. The human immune system was evaluated according to the kinetics of dendritic cells, monocytes, T-cell subsets, and cytokines. To fully stimulate the immune response and to obtain B-cell precursor NAML-6- and triple-negative breast cancer MDA-MB-231-targeted TCR-T cells, we used the inactivated cells above to treat humanized mice twice a day every 7 days. Then, human T cells were processed for TCR ß-chain (TRB) sequencing analysis. After the repertoires had been constructed, features such as the fraction, diversity, and immune signature were investigated. Results: The results demonstrated an increase in diversity and clonality of T cells after treatment. The preferential usage and features of TRBV, TRBJ, and the V-J combination were also changed. The stress also induced highly clonal expansion. Tumor burden and survival analysis demonstrated that stress induction could significantly inhibit the growth of subsequently transfused live tumor cells and prolong the survival of the humanized mice. Conclusions: We constructed a personalized humanized mouse model to screen cancer-targeted TCR-T pools. Our platform provides an effective source of cancer-targeted TCR-T cells and allows for the design of patient-specific engineered T cells. It therefore has the potential to greatly benefit cancer treatment.
RESUMO
A series of novel 2-arylmethoxy-4-(2-fluoromethyl-biphenyl-3-ylmethoxy) benzylamine derivatives was designed, synthesized, and evaluated for their antitumor effects as PD-1/PD-L1 inhibitors both in vitro and in vivo. Firstly, the ability of these compounds to block the PD-1/PD-L1 immune checkpoint was assessed using the homogeneous time-resolved fluorescence (HTRF) assay. Two of the compounds can strongly block the PD-1/PD-L1 interaction, with IC50 values of less than 10 nM, notably, compound HD10 exhibited significant clinical potential by inhibiting the PD-1/PD-L1 interaction with an IC50 value of 3.1 nM. Further microscale thermophoresis (MST) analysis demonstrated that HD10 had strong interaction with PD-L1 protein. Co-crystal structure (2.7 Å) analysis of HD10 in complex with the PD-L1 protein revealed a strong affinity between the compound and the target PD-L1 dimer. This provides a solid theoretical basis for further in vitro and in vivo studies. Next, a typical cell-based experiment demonstrated that HD10 could remarkably prevent the interaction of hPD-1 293 T cells from human recombinant PD-L1 protein, effectively restoring T cell function, and promoting IFN-γ secretion in a dose-dependent manner. Moreover, HD10 was effective in suppressing tumor growth (TGI = 57.31 %) in a PD-1/PD-L1 humanized mouse model without obvious toxicity. Flow cytometry, qPCR, and immunohistochemistry data suggested that HD10 inhibits tumor growth by activating the immune system in vivo. Based on these results, it seems likely that HD10 is a promising clinical candidate that should be further investigated.
Assuntos
Antineoplásicos , Antígeno B7-H1 , Benzilaminas , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptor de Morte Celular Programada 1 , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Animais , Camundongos , Relação Estrutura-Atividade , Benzilaminas/farmacologia , Benzilaminas/química , Benzilaminas/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/síntese química , Inibidores de Checkpoint Imunológico/química , Linhagem Celular Tumoral , Feminino , Modelos MolecularesRESUMO
The field of cancer immunotherapy has experienced significant progress, resulting in the emergence of numerous biological drug candidates requiring in vivo efficacy testing and a better understanding of their mechanism of action (MOA). Humanized immune system (HIS) models are valuable tools in this regard. However, there is a lack of systematic guidance on HIS modeling. To address this issue, the present study aimed to establish and optimize a variety of HIS models for immune-oncology (IO) study, including genetically engineered mouse models and HIS models with human immune components reconstituted in severely immunocompromised mice. The efficacy and utility of these models were tested with several marketed or investigational IO drugs according to their MOA, followed by immunophenotypic analysis and efficacy evaluation. The results of the present study demonstrated that the HIS models responded to various IO drugs as expected and that each model had unique niches, utilities and limitations. Researchers should carefully choose the appropriate models based on the MOA and the targeted immune cell populations of the investigational drug. The present study provides valuable methodologies and actionable technical guidance on designing, generating or utilizing appropriate HIS models to address specific questions in translational IO.
Assuntos
Modelos Animais de Doenças , Imunoterapia , Neoplasias , Animais , Humanos , Camundongos , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Camundongos TransgênicosRESUMO
Neoadjuvant immunotherapy has shown promising clinical activity in the treatment of early non-small cell lung cancer (NSCLC); however, further clarification of the specific mechanism and identification of biomarkers are imperative prior to implementing it as a daily practice. The study investigated the reprogramming of T cells in both tumor and peripheral blood following neoadjuvant chemoimmunotherapy in a preclinical NSCLC mouse model engrafted with a human immune system. Samples were also collected from 21 NSCLC patients (Stage IA-IIIB) who received neoadjuvant chemoimmunotherapy, and the dynamics of potential biomarkers within these samples were measured and further subjected to correlation analysis with prognosis. Further, we initially investigated the sources of the potential biomarkers. We observed in the humanized mouse model, neoadjuvant chemoimmunotherapy could prevent postoperative recurrence and metastasis by increasing the frequency and cytotoxicity of CD8+ T cells in both peripheral blood (p < 0.001) and tumor immune microenvironment (TIME) (p < 0.001). The kinetics of peripheral CD8+PD-1+ T cells reflected the changes in the TIME and pathological responses, ultimately predicting survival outcome of mice. In the clinical cohort, patients exhibiting an increase in these T cells post-treatment had a higher rate of complete or major pathological response (p < 0.05) and increased immune infiltration (p = 0.0012, r = 0.792). We identified these T cells originating from tumor draining lymph nodes and subsequently entering the TIME. In conclusion, the kinetics of peripheral CD8+PD-1+ T cells can serve as a predictor for changes in TIME and optimal timing for surgery, ultimately reflecting the outcomes of neoadjuvant chemoimmunotherapy in both preclinical and clinical setting.
Assuntos
Biomarcadores Tumorais , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas , Imunoterapia , Neoplasias Pulmonares , Terapia Neoadjuvante , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Animais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Linfócitos T CD8-Positivos/imunologia , Terapia Neoadjuvante/métodos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Feminino , Biomarcadores Tumorais/metabolismo , Imunoterapia/métodos , Masculino , Microambiente Tumoral/imunologia , Pessoa de Meia-Idade , Idoso , Prognóstico , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The inability of people living with HIV (PLWH) to eradicate human immunodeficiency virus (HIV) infection is due in part to the inadequate HIV-specific cellular immune response. The antiviral function of cytotoxic CD8+ T cells, which are crucial for HIV control, is impaired during chronic viral infection because of viral escape mutations, immune exhaustion, HIV antigen downregulation, inflammation, and apoptosis. In addition, some HIV-infected cells either localize to tissue sanctuaries inaccessible to CD8+ T cells or are intrinsically resistant to CD8+ T cell killing. The novel design of synthetic chimeric antigen receptors (CARs) that enable T cells to target specific antigens has led to the development of potent and effective CAR-T cell therapies. While initial clinical trials using anti-HIV CAR-T cells performed over 20 years ago showed limited anti-HIV effects, the improved CAR-T cell design, which enabled its success in treating cancer, has reinstated CAR-T cell therapy as a strategy for HIV cure with notable progress being made in the recent decade.Effective CAR-T cell therapy against HIV infection requires the generation of anti-HIV CAR-T cells with potent in vivo activity against HIV-infected cells. Preclinical evaluation of anti-HIV efficacy of CAR-T cells and their safety is fundamental for supporting the initiation of subsequent clinical trials in PLWH. For these preclinical studies, we developed a novel humanized mouse model supporting in vivo HIV infection, the development of viremia, and the evaluation of novel HIV therapeutics. Preclinical assessment of anti-HIV CAR-T cells using this mouse model involves a multistep process including peripheral blood mononuclear cells (PBMCs) harvested from human donors, T cell purification, ex vivo T cell activation, transduction with lentiviral vectors encoding an anti-HIV CAR, CAR-T cell expansion and infusion in mice intrasplenically injected with autologous PBMCs followed by the determination of CAR-T cell capacity for HIV suppression. Each of the steps described in the following protocol were optimized in the lab to maximize the quantity and quality of the final anti-HIV CAR-T cell products.
Assuntos
Infecções por HIV , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Animais , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Camundongos , Infecções por HIV/imunologia , Infecções por HIV/terapia , Infecções por HIV/virologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T CD8-Positivos/imunologia , HIV-1/imunologia , Linfócitos T/imunologia , Transdução GenéticaRESUMO
X-linked adrenoleukodystrophy (ALD), an inherited neurometabolic disorder caused by mutations in ABCD1, which encodes the peroxisomal ABC transporter, mainly affects the brain, spinal cord, adrenal glands, and testes. In ALD patients, very-long-chain fatty acids (VLCFAs) fail to enter the peroxisome and undergo subsequent ß-oxidation, resulting in their accumulation in the body. It has not been tested whether in vivo base editing or prime editing can be harnessed to ameliorate ALD. We developed a humanized mouse model of ALD by inserting a human cDNA containing the pathogenic variant into the mouse Abcd1 locus. The humanized ALD model showed increased levels of VLCFAs. To correct the mutation, we tested both base editing and prime editing and found that base editing using ABE8e(V106W) could correct the mutation in patient-derived fibroblasts at an efficiency of 7.4%. Adeno-associated virus (AAV)-mediated systemic delivery of NG-ABE8e(V106W) enabled robust correction of the pathogenic variant in the mouse brain (correction efficiency: â¼5.5%), spinal cord (â¼5.1%), and adrenal gland (â¼2%), leading to a significant reduction in the plasma levels of C26:0/C22:0. This established humanized mouse model and the successful correction of the pathogenic variant using a base editor serve as a significant step toward treating human ALD disease.
Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Dependovirus , Modelos Animais de Doenças , Edição de Genes , Terapia Genética , Animais , Adrenoleucodistrofia/terapia , Adrenoleucodistrofia/genética , Camundongos , Humanos , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Adenina , Mutação , Fibroblastos/metabolismo , Ácidos Graxos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologiaRESUMO
Background: Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. HIV infection decreases CD4+ T cell levels markedly increasing Mtb co-infections. An appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans during co-infection would facilitate basic and translational research in HIV/Mtb infections. Herein, we describe a novel humanized mouse model. Methods: The irradiated NSG-SGM3 mice were transplanted with human CD34+ hematopoietic stem cells, and the humanization was monitored by staining various immune cell markers for flow cytometry. They were challenged with HIV and/or Mtb, and the CD4+ T cell depletion and HIV viral load were monitored over time. Before necropsy, the live mice were subjected to pulmonary function test and CT scan, and after sacrifice, the lung and spleen homogenates were used to determine Mtb load (CFU) and cytokine/chemokine levels by multiplex assay, and lung sections were analyzed for histopathology. The mouse sera were subjected to metabolomics analysis. Results: Our humanized NSG-SGM3 mice were able to engraft human CD34+ stem cells, which then differentiated into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced granulomatous lesions in the lungs. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Conclusion: The humanized NSG-SGM3 mice are able to recapitulate the pathogenic effects of HIV and Mtb infections and co-infection at the pathological, immunological and metabolism levels and are therefore a reproducible small animal model for studying HIV/Mtb co-infection.
Assuntos
Coinfecção , Modelos Animais de Doenças , Infecções por HIV , Mycobacterium tuberculosis , Tuberculose , Animais , Coinfecção/imunologia , Coinfecção/microbiologia , Infecções por HIV/imunologia , Infecções por HIV/complicações , Humanos , Camundongos , Tuberculose/imunologia , Mycobacterium tuberculosis/imunologia , Linfócitos T CD4-Positivos/imunologia , Transplante de Células-Tronco Hematopoéticas , Carga Viral , HIV-1/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Células-Tronco Hematopoéticas/imunologia , Camundongos SCIDRESUMO
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causal agent of Kaposi sarcoma, a cancer that appears as tumors on the skin or mucosal surfaces, as well as primary effusion lymphoma and KSHV-associated multicentric Castleman disease, which are B-cell lymphoproliferative disorders. Effective prophylactic and therapeutic strategies against KSHV infection and its associated diseases are needed. To develop these strategies, it is crucial to identify and target viral glycoproteins involved in KSHV infection of host cells. Multiple KSHV glycoproteins expressed on the viral envelope are thought to play a pivotal role in viral infection, but the infection mechanisms involving these glycoproteins remain largely unknown. We investigated the role of two KSHV envelope glycoproteins, KSHV complement control protein (KCP) and K8.1, in viral infection in various cell types in vitro and in vivo. Using our newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP, K8.1, or both, we demonstrated the presence of KCP and K8.1 on the surface of both virions and KSHV-infected cells. We showed that KSHV lacking KCP and/or K8.1 remained infectious in KSHV-susceptible cell lines, including epithelial, endothelial, and fibroblast, when compared to wild-type recombinant KSHV. We also provide the first evidence that KSHV lacking K8.1 or both KCP and K8.1 can infect human B cells in vivo in a humanized mouse model. Thus, these results suggest that neither KCP nor K8.1 is required for KSHV infection of various host cell types and that these glycoproteins do not determine KSHV cell tropism. IMPORTANCE: Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human gamma-herpesvirus associated with the endothelial malignancy Kaposi sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. Determining how KSHV glycoproteins such as complement control protein (KCP) and K8.1 contribute to the establishment, persistence, and transmission of viral infection will be key for developing effective anti-viral vaccines and therapies to prevent and treat KSHV infection and KSHV-associated diseases. Using newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP and/or K8.1, we show that KCP and K8.1 can be found on the surface of both virions and KSHV-infected cells. Furthermore, we show that KSHV lacking KCP and/or K8.1 remains infectious to diverse cell types susceptible to KSHV in vitro and to human B cells in vivo in a humanized mouse model, thus providing evidence that these viral glycoproteins are not required for KSHV infection.
Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Proteínas do Envelope Viral , Proteínas Virais , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Humanos , Animais , Camundongos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Sarcoma de Kaposi/virologia , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Linhagem Celular , Hiperplasia do Linfonodo Gigante/virologia , Hiperplasia do Linfonodo Gigante/metabolismo , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/metabolismo , Células HEK293 , Células Endoteliais/virologiaRESUMO
Although breakthroughs have been achieved with immune checkpoint inhibitors (ICI) therapy, some tumors do not respond to those therapies due to primary or acquired resistance. GARP, a type I transmembrane cell surface docking receptor mediating latent transforming growth factor-ß (TGF-ß) and abundantly expressed on regulatory T lymphocytes and platelets, is a potential target to render these tumors responsive to ICI therapy, and enhancing anti-tumor response especially combined with ICI. To facilitate these research efforts, we developed humanized mouse models expressing humanized GARP (hGARP) instead of their mouse counterparts, enabling in vivo assessment of GARP-targeting agents. We created GARP-humanized mice by replacing the mouse Garp gene with its human homolog. Then, comprehensive experiments, including expression analysis, immunophenotyping, functional assessments, and pharmacologic assays, were performed to characterize the mouse model accurately. The Tregs and platelets in the B-hGARP mice (The letter B is the first letter of the company's English name, Biocytogen.) expressed human GARP, without expression of mouse GARP. Similar T, B, NK, DCs, monocytes and macrophages frequencies were identified in the spleen and blood of B-hGARP and WT mice, indicating that the humanization of GARP did not change the distribution of immune cell in these compartments. When combined with anti-PD-1, monoclonal antibodies (mAbs) against GARP/TGF-ß1 complexes demonstrated enhanced in vivo anti-tumor activity compared to monotherapy with either agent. The novel hGARP model serves as a valuable tool for evaluating human GARP-targeting antibodies in immuno-oncology, which may enable preclinical studies to assess and validate new therapeutics targeting GARP. Furthermore, intercrosses of this model with ICI humanized models could facilitate the evaluation of combination therapies.
Assuntos
Anticorpos Monoclonais , Proteínas de Membrana , Neoplasias , Fator de Crescimento Transformador beta , Animais , Humanos , Camundongos , Anticorpos Monoclonais/uso terapêutico , Plaquetas/metabolismo , Modelos Animais de Doenças , Neoplasias/terapia , Linfócitos T Reguladores , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Inibidores de Checkpoint Imunológico/uso terapêuticoRESUMO
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major public health problem worldwide. The human immunodeficiency virus (HIV) is another equally important life-threatening pathogen. Further, co-infections with HIV and Mtb have severe effects in the host, with people infected with HIV being fifteen to twenty-one times more likely to develop active TB. The use of an appropriate animal model for HIV/Mtb co-infection that can recapitulate the diversity of the immune response in humans would be a useful tool for conducting basic and translational research in HIV/Mtb infections. The present study was focused on developing a humanized mouse model for investigations on HIV-Mtb co-infection. Using NSG-SGM3 mice that can engraft human stem cells, our studies showed that they were able to engraft human CD34+ stem cells which then differentiate into a full-lineage of human immune cell subsets. After co-infection with HIV and Mtb, these mice showed decrease in CD4+ T cell counts overtime and elevated HIV load in the sera, similar to the infection pattern of humans. Additionally, Mtb caused infections in both lungs and spleen, and induced the development of granulomatous lesions in the lungs, detected by CT scan and histopathology. Distinct metabolomic profiles were also observed in the tissues from different mouse groups after co-infections. Our results suggest that the humanized NSG-SGM3 mice are able to recapitulate the effects of HIV and Mtb infections and co-infection in the human host at pathological, immunological and metabolism levels, providing a dependable small animal model for studying HIV/Mtb co-infection.
RESUMO
Adoptive cell therapy (ACT) using T cells expressing chimeric antigen receptors (CARs) is an area of intense investigation in the treatment of malignancies and chronic viral infections. One of the limitations of ACT-based CAR therapy is the lack of in vivo persistence and maintenance of optimal cell function. Therefore, alternative strategies that increase the function and maintenance of CAR-expressing T cells are needed. In our studies using the humanized bone marrow/liver/thymus (BLT) mouse model and nonhuman primate (NHP) model of HIV infection, we evaluated two CAR-based gene therapy approaches. In the ACT approach, we used cytokine enhancement and preconditioning to generate greater persistence of anti-HIV CAR+ T cells. We observed limited persistence and expansion of anti-HIV CAR T cells, which led to minimal control of the virus. In our stem cell-based approach, we modified hematopoietic stem/progenitor cells (HSPCs) with anti-HIV CAR to generate anti-HIV CAR T cells in vivo. We observed CAR-expressing T cell expansion, which led to better plasma viral load suppression. HSPC-derived CAR cells in infected NHPs showed superior trafficking and persistence in multiple tissues. Our results suggest that a stem cell-based CAR T cell approach may be superior in generating long-term persistence and functional antiviral responses against HIV infection.
Assuntos
Infecções por HIV , HIV-1 , Receptores de Antígenos Quiméricos , Camundongos , Animais , Linfócitos T , Receptores de Antígenos Quiméricos/genética , Células-Tronco Hematopoéticas , Imunoterapia AdotivaRESUMO
The primary mode of infection by human T-cell leukemia virus type 1 (HTLV-1) is cell-to-cell transmission during contact between infected cells and target cells. Cell-free HTLV-1 infections are known to be less efficient than infections with other retroviruses, and transmission of free HTLV-1 is considered not to occur in vivo. However, it has been demonstrated that cell-free HTLV-1 virions can infect primary lymphocytes and dendritic cells in vitro, and that virions embedded in biofilms on cell membranes can contribute to transmission. The establishment of an efficient cell-free HTLV-1 infection model would be a useful tool for analyzing the replication process of HTLV-1 and the clonal expansion of infected cells. We first succeeded in obtaining supernatants with high-titer cell-free HTLV-1 using a highly efficient virus-producing cell line. The HTLV-1 virions retained the structural characteristics of retroviruses. Using this cell-free infection model, we confirmed that a variety of cell lines and primary cultured cells can be infected with HTLV-1 and demonstrated that the provirus was randomly integrated into all chromosomes in the target cells. The provirus-integrated cell lines were HTLV-1-productive. Furthermore, we demonstrated for the first time that cell-free HTLV-1 is infectious in vivo using a humanized mouse model. These results indicate that this cell-free infection model recapitulates the HTLV-1 life cycle, including entry, reverse transcription, integration into the host genome, viral replication, and secondary infection. The new cell-free HTLV-1 infection model is promising as a practical resource for studying HTLV-1 infection.IMPORTANCECo-culture of infected and target cells is frequently used for studying HTLV-1 infection. Although this method efficiently infects HTLV-1, the cell mixture is complex, and it is extremely difficult to distinguish donor infected cells from target cells. In contrast, cell-free HTLV-1 infection models allow for more strict experimental conditions. In this study, we established a novel and efficient cell-free HTLV-1 infection model. Using this model, we successfully evaluated the infectivity titers of cell-free HTLV-1 as proviral loads (copies per 100 cells) in various cell lines, primary cultured cells, and a humanized mouse model. Interestingly, the HTLV-1-associated viral biofilms played an important role in enhancing the infectivity of the cell-free infection model. This cell-free HTLV-1 infection model reproduces the replication cycle of HTLV-1 and provides a simple, powerful, and alternative tool for researching HTLV-1 infection.
Assuntos
Sistema Livre de Células , Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Animais , Humanos , Camundongos , Infecções por HTLV-I/transmissão , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/crescimento & desenvolvimento , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Linfócitos/virologia , Provírus/genética , Provírus/metabolismo , Replicação Viral , Sistema Livre de Células/virologia , Linhagem Celular , Células Cultivadas , Internalização do Vírus , Transcrição Reversa , Biofilmes , Integração ViralRESUMO
BACKGROUND: The combination of immune checkpoint inhibitors and anti-angiogenic agents has been proposed as a promising strategy to improve the outcome of advanced triple-negative breast cancer (TNBC). However, further investigation is warranted to elucidate the specific mechanisms underlying the effects of combination therapy and its potential as neoadjuvant therapy for early-stage TNBC. METHODS: In this study, we constructed humanized mouse models by engrafting the human immune system into severely immunodeficient mice and subsequently implanting TNBC cells into the model. The mice were treated with neoadjuvant combination therapy (bevacizumab combined with nivolumab), followed by in vivo imaging system to assess tumor recurrence and metastasis after surgery. The immune microenvironment of tumors was analyzed to investigate the potential mechanisms. Furthermore, we verified the impact of extending the interval before surgery or administering adjuvant therapy after neoadjuvant therapy on the prognosis of mice. RESULTS: Neoadjuvant combination therapy significantly inhibited tumor growth, prevented recurrence and metastasis by normalizing tumor vessels and inducing robust CD8+ T cell infiltration and activation in primary tumors (p < 0.001). In vivo experiments demonstrated that prolonging the interval before surgery or administering adjuvant therapy after neoadjuvant therapy did not enhance its efficacy. CONCLUSION: The preclinical study has demonstrated the therapeutic efficacy and mechanism of neoadjuvant combination therapy (nivolumab plus bevacizumab) in treating early TNBC.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Bevacizumab , Terapia Neoadjuvante , Nivolumabe , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Bevacizumab/uso terapêutico , Bevacizumab/farmacologia , Bevacizumab/administração & dosagem , Terapia Neoadjuvante/métodos , Feminino , Humanos , Camundongos , Nivolumabe/uso terapêutico , Nivolumabe/farmacologia , Nivolumabe/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto , Modelos Animais de Doenças , Recidiva Local de Neoplasia/patologia , Linhagem Celular Tumoral , Camundongos SCIDRESUMO
BACKGROUND: Honeycomb cysts (HC) within the alveolar region are distinct histopathological features in the lungs of idiopathic pulmonary fibrosis (IPF) patients. HC are lined with a single-or stratified layer of basal cells (BC), or with a bronchiolar-like epithelium composed of basal-, ciliated- and secretory epithelial cells. By using cultured IPF patient-derived alveolar BC, we aimed to establish an in vitro- and in vivo model to mimic HC formation in IPF. We (1) optimized conditions to culture and propagate IPF patient-derived alveolar BC, (2) cultured the cells on an air liquid interface (ALI) or in a three dimensional (3D) organoid model, and (3) investigated the cells` behavior after instillation into bleomycin-challenged mice. METHODS: Alveolar BC were cultured from peripheral IPF lung tissue and grown on tissue-culture treated plastic, an ALI, or in a 3D organoid model. Furthermore, cells were instilled into bleomycin-challenged NRG mice. Samples were analyzed by TaqMan RT-PCR, immunoblotting, immunocytochemistry/immunofluorescence (ICC/IF), or immunohistochemistry (IHC)/IF. Mann-Whitney tests were performed using GraphPad Prism software. RESULTS: Cultured alveolar BC showed high expression of canonical basal cell markers (TP63, keratin (KRT)5, KRT14, KRT17), robust proliferation, and wound closure capacity. The cells could be cryopreserved and propagated for up to four passages without a significant loss of basal cell markers. When cultured on an ALI or in a 3D organoid model, alveolar BC differentiated to ciliated- and secretory epithelial cells. When instilled into bleomycin-challenged mice, human alveolar BC cells formed HC-like structures composed of human basal-, and secretory epithelial cells within the mouse parenchyma. CONCLUSION: IPF patient-derived alveolar BC on an ALI, in 3D organoids or after instillation into bleomycin-challenged mice form HC-like structures that closely resemble HC within the IPF lung. These models therefore represent powerful tools to study honeycomb formation, and its potential therapeutic inhibition in IPF.
Assuntos
Fibrose Pulmonar Idiopática , Humanos , Animais , Camundongos , Fibrose Pulmonar Idiopática/induzido quimicamente , Células Epiteliais Alveolares , Células Epiteliais , Bleomicina/toxicidade , EpitélioRESUMO
Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds great promise to eradicate HIV-1 or to provide long-term remission through a continuous supply of anti-HIV-1 gene-modified cells without ongoing antiretroviral therapy. However, achieving sufficient engraftment levels of anti-HIV gene-modified HSPC to provide therapeutic efficacy has been a major limitation. Here, we report an in vivo selection strategy for anti-HIV-1 gene-modified HSPC by introducing 6-thioguanine (6TG) chemoresistance through knocking down hypoxanthine-guanine phosphoribosyl transferase (HPRT) expression using RNA interference (RNAi). We developed a lentiviral vector capable of co-expressing short hairpin RNA (shRNA) against HPRT alongside two anti-HIV-1 genes: shRNA targeting HIV-1 co-receptor CCR5 and a membrane-anchored HIV-1 fusion inhibitor, C46, for efficient in vivo selection of anti-HIV-1 gene-modified human HSPC. 6TG-mediated preconditioning and in vivo selection significantly enhanced engraftment of HPRT-knockdown anti-HIV-1 gene-modified cells (>2-fold, p < 0.0001) in humanized bone marrow/liver/thymus (huBLT) mice. Viral load was significantly reduced (>1 log fold, p < 0.001) in 6TG-treated HIV-1-infected huBLT mice compared to 6TG-untreated mice. We demonstrated that 6TG-mediated preconditioning and in vivo selection considerably improved engraftment of HPRT-knockdown anti-HIV-1 gene-modified HSPC and repopulation of anti-HIV-1 gene-modified hematopoietic cells in huBLT mice, allowing for efficient HIV-1 inhibition.
Assuntos
HIV-1 , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , HIV-1/fisiologia , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Tioguanina/metabolismo , Tioguanina/farmacologia , RNA Interferente Pequeno/genéticaRESUMO
Graft-versus-host disease (GVHD) is a primary and often lethal complication of allogenic hematopoietic stem cell transplantation (HSCT). Prophylactic regimens for GVHD are given as standard pretransplantation therapy; however, up to 50% of these patients develop acute GVHD (aGVHD) and require additional immunosuppressive intervention. Using a mouse GVHD model, we previously showed that injecting mice with exopolysaccharide (EPS) from Bacillus subtilis prior to GVHD induction significantly increased 80-day survival after transplantation of complete allogeneic major histocompatibility complex-mismatched cells. To ask whether EPS might also inhibit GVHD in humans, we used humanized NSG-HLA-A2 mice and induced GVHD by i.v. injection of A2neg human peripheral blood mononuclear cells (PBMCs). Because we could not inject human donors with EPS, we transferred EPS-pretreated dendritic cells (DCs) to inhibit aGVHD. We derived these DCs from CD34+ human cord blood cells, treated them with EPS, and then injected them together with PBMCs into the NSG-HLA-A2 mice. We found that all mice that received untreated DCs were dead by day 35, whereas 25% of mice receiving EPS-treated DCs (EPS-DCs) survived. This DC cell therapy could be readily translatable to humans, because we can generate large numbers of human EPS-DCs and use them as an "off the shelf" treatment for patients undergoing HSCT.