Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
Mar Drugs ; 22(9)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39330294

RESUMO

This study employed a diverse approach to extract antioxidant peptides from red seaweed Palmaria palmata, recognized for its comparatively high protein content. Initially, an aqueous extraction of the entire seaweed was performed, followed by enzymatic hydrolysis of the solid residues prepared from the first step. The effects of three different pH levels (3, 6, and 9) during the aqueous extraction were also examined. Results indicated that the solid fraction from the sequential extraction process contained significantly higher levels of proteins and amino acids than other fractions (p < 0.05). Furthermore, the solid fractions (IC50 ranging from 2.29 to 8.15 mg.mL-1) demonstrated significantly greater free radical scavengers than the liquid fractions (IC50 ranging from 9.03 to 10.41 mg.mL-1 or not obtained at the highest concentration tested) at both stages of extraction (p < 0.05). Among the solid fractions, those produced fractions under alkaline conditions were less effective in radical scavenging than the produced fractions under acidic or neutral conditions. The fractions with most effective metal ion chelating activity were the solid fractions from the enzymatic stage, particularly at pH 3 (IC50 = 0.63 ± 0.04 mg.mL-1) and pH 6 (IC50 = 0.89 ± 0.07 mg.mL-1), which were significantly more effective than those from the initial extraction stage (p < 0.05). Despite no significant difference in the total phenolic content between these solid fractions and their corresponding liquid fractions (3.79 ± 0.05 vs. 3.48 ± 0.02 mg.mL-1 at pH 3 and 2.43 ± 0.22 vs. 2.51 ± 0.00 mg.mL-1 at pH 6) (p > 0.05), the observed antioxidant properties may be attributed to bioactive amino acids such as histidine, glutamic acid, aspartic acid, tyrosine, and methionine, either as free amino acids or within proteins and peptides.


Assuntos
Antioxidantes , Sequestradores de Radicais Livres , Peptídeos , Rodófitas , Alga Marinha , Concentração de Íons de Hidrogênio , Peptídeos/isolamento & purificação , Peptídeos/química , Peptídeos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Rodófitas/química , Alga Marinha/química , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/química , Aminoácidos/química , Aminoácidos/isolamento & purificação , Hidrólise , Quelantes/farmacologia , Quelantes/química , Quelantes/isolamento & purificação , Algas Comestíveis
2.
J Control Release ; 374: 400-414, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153721

RESUMO

Cellular iron is inseparably related with the proper functionalities of mitochondria for its potential to readily donate and accept electrons. Though promising, the available endeavors of iron chelation antitumor therapies have tended to be adjuvant therapies. Herein, we conceptualized and fabricated an "iron-phagy" nanoparticle (Dp44mT@HTH) capable of inducing the absolute devastation of mitochondria via inhibiting the autophagy-removal of impaired ones for promoting cancer cell death. The Dp44mT@HTH with hyaluronic acid (HA) as hydrophilic shell can specifically target the highly expressed CD44 receptors on the surface of 4T1 tumor cells. After internalization and lysosomal escape, the nanoparticle disassembles in response to the reactive oxygen species (ROS), subsequently releasing the iron chelator Dp44mT and autophagy-inhibitory drug hydroxychloroquine (HCQ). Dp44mT can then seize cellular Fe2+ to trigger mitochondrial dysfunction via respiratory chain disturbance, while HCQ not only lessens Fe2+ intake, but also impedes fusions of autophagosomes and lysosomes. Consequentially, Dp44mT@HTH induces irreversible mitochondrial impairments, in this respect creating a substantial toxic stack state that induces apoptosis and cell death. Initiating from the perspective of endogenous substances, this strategy illuminates the promise of iron depletion therapy via irreversible mitochondrial damage induction for anticancer treatment.


Assuntos
Antineoplásicos , Ferro , Mitocôndrias , Nanopartículas , Espécies Reativas de Oxigênio , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Ferro/metabolismo , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Quelantes de Ferro/administração & dosagem , Quelantes de Ferro/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Ácido Hialurônico/química , Hidroxicloroquina/farmacologia , Hidroxicloroquina/administração & dosagem , Apoptose/efeitos dos fármacos , Camundongos , Humanos , Camundongos Endogâmicos BALB C , Receptores de Hialuronatos/metabolismo , Feminino , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos
3.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39201246

RESUMO

As a nutraceutical, bovine lactoferrin (bLf), an iron-binding glycoprotein involved in innate immunity, is gaining elevated attention for its ability to exert pleiotropic functions and to be exceptionally tolerated even at high dosages. Some of bLf's activities, including its anti-inflammatory and antioxidant, are tightly linked to its ability to both chelate iron and enter inside the cell nucleus. Here, we present data about Valpalf®, a new formulation containing bLf, sodium citrate, and sodium bicarbonate at a molar ratio of 10-3. In the present study, Valpalf® exhibits superior iron-binding capacity, resistance to tryptic digestion, and a greater capacity to accumulate into the nucleus over time when compared to the native bLf alone. In agreement, Valpalf® effectively reduces interleukin(IL)-6 levels in lipopolysaccharide-stimulated macrophages and modulates the expression of antioxidant enzymes, such as superoxide dismutase 1 and 2, in phorbol-12-myristate-13-acetate-stimulated monocytes. Of note, this potentiated bioactivity was corroborated in a retrospective study on the treatment of anemia of inflammation in hereditary thrombophilic pregnant and non-pregnant women, demonstrating that Valpalf® improves hematological parameters and reduces serum IL-6 levels to a higher extent than bLf alone.


Assuntos
Suplementos Nutricionais , Interleucina-6 , Lactoferrina , Superóxido Dismutase , Lactoferrina/farmacologia , Lactoferrina/química , Animais , Bovinos , Humanos , Feminino , Superóxido Dismutase/metabolismo , Interleucina-6/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Camundongos , Citrato de Sódio/farmacologia , Superóxido Dismutase-1/metabolismo , Bicarbonato de Sódio/farmacologia , Bicarbonato de Sódio/química , Gravidez , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Ferro/metabolismo , Lipopolissacarídeos , Anemia/tratamento farmacológico
4.
Mitochondrion ; 78: 101937, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004262

RESUMO

Renal iron overload is a common complication of diabetes that leads to oxidative stress and mitochondrial dysfunction in the kidneys. This study investigated the effects of iron chelation using deferiprone on mitochondrial dysfunction and oxidative stress in the renal cortex of a murine model of type 2 diabetes. Diabetic rats were treated with deferiprone (50 mg/kg BW) for 16 weeks. Our results show that iron chelation with deferiprone significantly increased the nuclear accumulation of Nrf2, a transcription factor that regulates the expression of antioxidant enzymes. This led to enhanced antioxidant capacity, reduced production of reactive oxygen species, and improved mitochondrial bioenergetic function in diabetic rats. However, chronic iron chelation led to altered mitochondrial respiration and increased oxidative stress in non-diabetic rats. In conclusion, our findings suggest that iron chelation with deferiprone protects mitochondrial bioenergetics and mitigates oxidative stress in the renal cortex, involving the NRF2 pathway in type 2 diabetes.


Assuntos
Deferiprona , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Córtex Renal , Fator 2 Relacionado a NF-E2 , Animais , Masculino , Camundongos , Ratos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Deferiprona/farmacologia , Deferiprona/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Quelantes de Ferro/farmacologia , Córtex Renal/metabolismo , Córtex Renal/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
5.
Front Pharmacol ; 15: 1422369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983911

RESUMO

Multiple studies indicate that iron chelators enhance their anti-cancer properties by inducing NDRG1, a known tumor and metastasis suppressor. However, the exact role of NDRG1 remains controversial, as newer studies have shown that NDRG1 can also act as an oncogene. Our group recently introduced mitochondrially targeted iron chelators deferoxamine (mitoDFO) and deferasirox (mitoDFX) as effective anti-cancer agents. In this study, we evaluated the ability of these modified chelators to induce NDRG1 and the role of NDRG1 in breast cancer. We demonstrated that both compounds specifically increase NDRG1 without inducing other NDRG family members. We have documented that the effect of mitochondrially targeted chelators is at least partially mediated by GSK3α/ß, leading to phosphorylation of NDRG1 at Thr346 and to a lesser extent on Ser330. Loss of NDRG1 increases cell death induced by mitoDFX. Notably, MDA-MB-231 cells lacking NDRG1 exhibit reduced extracellular acidification rate and grow slower than parental cells, while the opposite is true for ER+ MCF7 cells. Moreover, overexpression of full-length NDRG1 and the N-terminally truncated isoform (59112) significantly reduced sensitivity towards mitoDFX in ER+ cells. Furthermore, cells overexpressing full-length NDRG1 exhibited a significantly accelerated tumor formation, while its N-terminally truncated isoforms showed significantly impaired capacity to form tumors. Thus, overexpression of full-length NDRG1 promotes tumor growth in highly aggressive triple-negative breast cancer.

6.
Biomedicines ; 12(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39062025

RESUMO

Iron plays a critical role in lung infections due to its function in the inflammatory immune response but also as an important factor for bacterial growth. Iron chelation represents a potential therapeutic approach to inhibit bacterial growth and pathologically increased pro-inflammatory mediator production. The present study was designed to investigate the impact of the iron chelator DIBI in murine lung infection induced by intratracheal Pseudomonas aeruginosa (strain PA14) administration. DIBI is a polymer with a polyvinylpyrrolidone backbone containing nine 3-hydroxy-1-(methacrylamidoethyl)-2-methyl-4(1H) pyridinone (MAHMP) residues per molecule and was given by intraperitoneal injection either as a single dose (80 mg/kg) immediately after PA14 administration or a double dose (second dose 4 h after PA14 administration). The results showed that lung NF-κBp65 levels, as well as levels of various inflammatory cytokines (TNFα, IL-1ß, IL-6) both in lung tissue and bronchoalveolar lavage fluid (BALF), were significantly increased 24 h after PA14 administration. Single-dose DIBI did not affect the bacterial load or inflammatory response in the lungs or BALF. However, two doses of DIBI significantly decreased bacterial load, attenuated NF-κBp65 upregulation, reduced inflammatory cytokines production, and relieved lung tissue damage. Our findings support the conclusion that the iron chelator, DIBI, can reduce lung injury induced by P. aeruginosa, via its anti-bacterial and anti-inflammatory effects.

7.
Heliyon ; 10(13): e33707, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39044986

RESUMO

Background: ß-thalassemia major is microcytic hypochromic anemia disorder inherited from parents, resulting from a mutation in the ß-globin locus. As a result, a quantitative defective hemoglobin synthesis and relative excess in α-globin is occurred. As such, frequent blood transfusion is required, that leads to iron overload. Iron overload results in several pathological complications, including cell death, tissue injury, organ dysfunction, and liver fibrosis. The present study examined the effectiveness of nigella Sativa and manuka honey combination or manuka honey alone to the conventional therapy (Deferasirox + blood transfusion) used for preventing and managing iron overload in pediatric ß-thalassemia major patients. Methods: One hundred sixty-five patients participated in this randomized, double-blind, standard therapy-controlled, parallel-design multisite trial. The patients were randomly allocated into three groups, receiving either 500 mg nigella sativa oil combined with manuka honey lozenge (344 mg) daily or manuka honey alone plus the conventional therapy for ten treatment months. Ferritin level, serum iron, transferrin saturation, total iron binding capacity, alanine transaminase, and aspartate transaminase were determined at baseline and month 10. Results: Eventually, serum ferritin and iron were decreased significantly in the nigella sativa + manuka honey group as compared with the control group. Other clinical parameters were significantly impacted. The level of alanine transaminase and aspartate transaminase were significantly decreased in the nigella sativa plus manuka honey group compared with the control group. Conclusion: Results showed that nigella sativa plus manuka honey was more effective than manuka alone or the conventional treatment alone in managing iron overload of ß-thalassemia major patients.

8.
Microb Pathog ; 193: 106730, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851361

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that poses a significant threat to individuals suffering from cystic fibrosis (CF). The pathogen is highly prevalent in CF individuals and is responsible for chronic infection, resulting in severe tissue damage and poor patient outcome. Prolonged antibiotic administration has led to the emergence of multidrug resistance in P. aeruginosa. In this direction, antivirulence strategies achieving targeted inhibition of bacterial virulence pathways, including quorum sensing, efflux pumps, lectins, and iron chelators, have been explored against CF isolates of P. aeruginosa. Hence, this review article presents a bird's eye view on the pulmonary infections involving P. aeruginosa in CF patients by laying emphasis on factors contributing to bacterial colonization, persistence, and disease progression along with the current line of therapeutics against P. aeruginosa in CF. We further collate scientific literature and discusses various antivirulence strategies that have been tested against P. aeruginosa isolates from CF patients.


Assuntos
Antibacterianos , Fibrose Cística , Infecções por Pseudomonas , Pseudomonas aeruginosa , Percepção de Quorum , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Percepção de Quorum/efeitos dos fármacos , Virulência/efeitos dos fármacos , Fatores de Virulência , Farmacorresistência Bacteriana Múltipla , Animais
9.
Transfus Clin Biol ; 31(3): 167-173, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849068

RESUMO

Systematic transfusions coupled with iron chelation therapy have substantially improved the life expectancy of thalassemia patients in developed nations. As the human organism does not have a protective mechanism to remove excess iron, iron overload is a significant concern in thalassemia, leading to organ damage, especially in the heart and liver. Thus, iron chelation therapy is crucial to prevent or reverse organ iron overload. There are three widely used iron chelators, either as monotherapy or in combination. The choice of iron chelator depends on several factors, including local guidelines, drug availability, and the individual clinical scenario. Despite treatment advancements, challenges persist, especially in resource-limited settings, highlighting the need for improved global healthcare access. This review discusses clinical management, current treatments, and future directions for thalassemia, focusing on iron overload and its complications. Furthermore, it underscores the progress in transforming thalassemia into a manageable chronic condition and the potential of novel therapies to further enhance patient outcomes.


Assuntos
Quelantes de Ferro , Sobrecarga de Ferro , Talassemia beta , Humanos , Sobrecarga de Ferro/etiologia , Talassemia beta/terapia , Talassemia beta/complicações , Quelantes de Ferro/uso terapêutico , Transfusão de Sangue , Terapia por Quelação , Ferro/metabolismo
10.
Food Res Int ; 190: 114602, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945571

RESUMO

There is an increasing amount of research into the development of a third generation of iron supplementation using peptide-iron chelates. Peptides isolated from mung bean were chelated with ferrous iron (MBP-Fe) and tested as a supplement in mice suffering from iron-deficiency anemia (IDA). Mice were randomly divided into seven groups: a group fed the normal diet, the IDA model group, and IDA groups treated with inorganic iron (FeSO4), organic iron (ferrous bisglycinate, Gly-Fe), low-dose MBP-Fe(L-MBP-Fe), high-dose MBP-Fe(H-MBP-Fe), and MBP mixed with FeSO4 (MBP/Fe). The different iron supplements were fed for 28 days via intragastric administration. The results showed that MBP-Fe and MBP/Fe had ameliorative effects, restoring hemoglobin (HGB), red blood cell (RBC), hematocrit (HCT), and serum iron (SI) levels as well as total iron binding capacity (TIBC) and body weight gain of the IDA mice to normal levels. Compared to the inorganic (FeSO4) and organic (Gly-Fe) iron treatments, the spleen coefficient and damage to liver and spleen tissues were significantly lower in the H-MBP-Fe and MBP/Fe mixture groups, with reparative effects on jejunal tissue. Gene expression analysis of the iron transporters Dmt 1 (Divalent metal transporter 1), Fpn 1 (Ferroportin 1), and Dcytb (Duodenal cytochrome b) indicated that MBP promoted iron uptake. These findings suggest that mung bean peptide-ferrous chelate has potential as a peptide-based dietary supplement for treating iron deficiency.


Assuntos
Anemia Ferropriva , Disponibilidade Biológica , Compostos Ferrosos , Ferro , Peptídeos , Vigna , Animais , Vigna/química , Anemia Ferropriva/tratamento farmacológico , Camundongos , Compostos Ferrosos/química , Peptídeos/química , Ferro/química , Ferro/metabolismo , Masculino , Quelantes de Ferro/química , Hemoglobinas/metabolismo , Suplementos Nutricionais , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Modelos Animais de Doenças , Glicina
11.
Pediatr Blood Cancer ; 71(8): e31035, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38753107

RESUMO

In this review, we provide a summary of evidence on iron overload in young children with transfusion-dependent ß-thalassemia (TDT) and explore the ideal timing for intervention. Key data from clinical trials and observational studies of the three available iron chelators deferoxamine, deferiprone, and deferasirox are also evaluated for inclusion of subsets of young children, especially those less than 6 years of age. Evidence on the efficacy and safety of iron chelation therapy for children ≥2 years of age with transfusional iron overload is widely available. New data exploring the risks and benefits of early-start iron chelation in younger patients with minimal iron overload are also emerging.


Assuntos
Transfusão de Sangue , Terapia por Quelação , Quelantes de Ferro , Sobrecarga de Ferro , Talassemia beta , Humanos , Talassemia beta/terapia , Talassemia beta/tratamento farmacológico , Talassemia beta/complicações , Quelantes de Ferro/uso terapêutico , Criança , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/etiologia , Terapia por Quelação/métodos , Pré-Escolar , Desferroxamina/uso terapêutico , Deferiprona/uso terapêutico , Piridonas/uso terapêutico , Piridonas/efeitos adversos
12.
Microorganisms ; 12(5)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38792801

RESUMO

Antibiotic resistance is a global health crisis. Notably, carbapenem-resistant Enterobacterales (CRE) pose a significant clinical challenge due to the limited effective treatment options. This problem is exacerbated by persisters that develop upon antibiotic exposure. Bacteria persisters can tolerate high antibiotic doses and can cause recalcitrant infections, potentially developing further antibiotic resistance. Iron is a critical micronutrient for survival. We aimed to evaluate the utility of iron chelators, alone and in combination with antibiotics, in managing persisters. We hypothesized that iron chelators eradicate CRE persisters in vitro, when administered in combination with antibiotics. Our screening revealed three clinical isolates with bacteria persisters that resuscitated upon antibiotic removal. These isolates were treated with both meropenem and an iron chelator (deferoxamine mesylate, deferiprone or dexrazoxane) over 24 h. Against our hypothesis, bacteria persisters survived and resuscitated upon withdrawing both the antibiotic and iron chelator. Pursuing our aim, we next hypothesized that iron chelation is feasible as a post-antibiotic treatment in managing and suppressing persisters' resuscitation. We exposed bacteria persisters to an iron chelator without antibiotics. Flow cytometric assessments revealed that iron chelators are inconsistent in suppressing persister resuscitation. Collectively, these results suggest that the iron chelation strategy may not be useful as an antibiotic adjunct to target planktonic bacteria persisters.

13.
Ann Hematol ; 103(7): 2283-2297, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38503936

RESUMO

Data on iron overload status and change thresholds that can predict mortality in patients with transfusion-dependent ß-thalassemia (TDT) are limited. This was a retrospective cohort study of 912 TDT patients followed for up to 10 years at treatment centers in Italy (median age 32 years, 51.6% female). The crude mortality rate was 2.9%. Following best-predictive threshold identification through receiver operating characteristic curve analyses, data from multivariate Cox-regression models showed that patients with Period Average Serum Ferritin (SF) > 2145 vs ≤ 2145 ng/mL were 7.1-fold (P < 0.001) or with Absolute Change SF > 1330 vs ≤ 1330 ng/mL increase were 21.5-fold (P < 0.001) more likely to die from any cause. Patients with Period Average Liver Iron Concentration (LIC) > 8 vs ≤ 8 mg/g were 20.2-fold (P < 0.001) or with Absolute Change LIC > 1.4 vs ≤ 1.4 mg/g increase were 27.6-fold (P < 0.001) more likely to die from any cause. Patients with Index (first) cardiac T2* (cT2*) < 27 vs ≥ 27 ms were 8.6-fold (P < 0.001) more likely to die from any cause. Similarly, results at varying thresholds were identified for death from cardiovascular disease. These findings should support decisions on iron chelation therapy by establishing treatment targets, including safe iron levels and clinically meaningful changes over time.


Assuntos
Transfusão de Sangue , Sobrecarga de Ferro , Talassemia beta , Humanos , Feminino , Sobrecarga de Ferro/mortalidade , Sobrecarga de Ferro/sangue , Sobrecarga de Ferro/etiologia , Masculino , Talassemia beta/terapia , Talassemia beta/mortalidade , Talassemia beta/sangue , Talassemia beta/complicações , Adulto , Estudos Retrospectivos , Adolescente , Ferritinas/sangue , Adulto Jovem , Pessoa de Meia-Idade , Ferro/sangue , Ferro/metabolismo , Estudos de Coortes , Criança , Seguimentos , Itália/epidemiologia
14.
Front Pharmacol ; 15: 1355533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515856

RESUMO

Brazilin is the main compound in Caesalpinia sappan and Haematoxylum braziletto, which is identified as a homoisoflavonoid based on its molecular structure. These plants are traditionally used as an anti-inflammatory to treat fever, hemorrhage, rheumatism, skin problems, diabetes, and cardiovascular diseases. Recently, brazilin has increased its interest in cancer studies. Several findings have shown that brazilin has cytotoxic effects on colorectal cancer, breast cancer, lung cancer, multiple myeloma, osteosarcoma, cervical cancer, bladder carcinoma, also other cancers, along with numerous facts about its possible mechanisms that will be discussed. Besides its flavonoid content, brazilin is able to chelate metal ions. A study has proved that brazilin could be used as an antituberculosis agent based on its ability to chelate iron. This possible iron-chelating of brazilin and all the studies discussed in this review will lead us to the statement that, in the future, brazilin has the potency to be a chemo-preventive and anticancer agent. The article review aimed to determine the brazilin mechanism and pathogenesis of cancer.

15.
Cell Mol Neurobiol ; 44(1): 26, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393383

RESUMO

Iron deposition is crucial pathological changes observed in patients with Parkinson's disease (PD). Recently, scientists have actively explored therapeutic approaches targeting iron deposition in PD. However, several clinical studies have failed to yield consistent results. In this review, we provide an overview of iron deposition in PD, from both basic research and clinical perspectives. PD patients exhibit abnormalities in various iron metabolism-related proteins, leading to disruptions in iron distribution, transport, storage, and circulation, ultimately resulting in iron deposition. Excess iron can induce oxidative stress and iron-related cell death, and exacerbate mitochondrial dysfunction, contributing to the progression of PD pathology. Magnetic resonance imaging studies have indicated that the characteristics of iron deposition in the brains of PD patients vary. Iron deposition correlates with the clinical symptoms of PD, and patients with different disease courses and clinical presentations display distinct patterns of iron deposition. These iron deposition patterns may contribute to PD diagnosis. Iron deposition is a promising target for PD treatment. However, further research is required to elucidate the underlying mechanisms and their impacts on PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Encéfalo/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Estresse Oxidativo
16.
Br J Haematol ; 204(5): 2049-2056, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38343073

RESUMO

Iron overload from repeated transfusions has a negative impact on cardiac function, and iron chelation therapy may help prevent cardiac dysfunction in transfusion-dependent patients with myelodysplastic syndromes (MDS). TELESTO (NCT00940602) was a prospective, placebo-controlled, randomised study to evaluate the iron chelator deferasirox in patients with low- or intermediate-1-risk MDS and iron overload. Echocardiographic parameters were collected at screening and during treatment. Patients receiving deferasirox experienced a significant decrease in the composite risk of hospitalisation for congestive heart failure (CHF) or worsening of cardiac function (HR = 0.23; 95% CI: 0.05, 0.99; nominal p = 0.0322) versus placebo. No significant differences between the arms were found in left ventricular ejection fraction, ventricular diameter and mass or pulmonary artery pressure. The absolute number of events was low, but the enrolled patients were younger than average for patients with MDS, with no serious cardiac comorbidities and a modest cardiovascular risk profile. These results support the effectiveness of deferasirox in preventing cardiac damage caused by iron overload in this patient population. Identification of patients developing CHF is challenging due to the lack of distinctive echocardiographic features. The treatment of iron overload may be important to prevent cardiac dysfunction in these patients, even those with moderate CHF risk.


Assuntos
Deferasirox , Quelantes de Ferro , Sobrecarga de Ferro , Síndromes Mielodisplásicas , Humanos , Deferasirox/uso terapêutico , Síndromes Mielodisplásicas/terapia , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/complicações , Masculino , Feminino , Quelantes de Ferro/uso terapêutico , Pessoa de Meia-Idade , Idoso , Sobrecarga de Ferro/etiologia , Sobrecarga de Ferro/tratamento farmacológico , Estudos Prospectivos , Benzoatos/uso terapêutico , Benzoatos/efeitos adversos , Insuficiência Cardíaca/etiologia , Reação Transfusional/etiologia , Ecocardiografia , Adulto , Idoso de 80 Anos ou mais , Triazóis/uso terapêutico , Triazóis/efeitos adversos , Transfusão de Sangue
17.
Curr Issues Mol Biol ; 46(2): 1348-1359, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38392204

RESUMO

Dysregulation of iron homeostasis causes iron-mediated cell death, recently described as ferroptosis. Ferroptosis is reported in many chronic diseases, such as hepatic cancer, renal, and cardiovascular diseases (heart failure, atherosclerosis). However, there is a notable scarcity of research studies in the existing literature that explore treatments capable of preventing ferroptosis. Additionally, as far as the author is aware, there is currently no established model for studying ferroptosis within cardiovascular cells, which would be essential for assessing metal-chelating molecules with the potential ability to inhibit ferroptosis and their application in the treatment of cardiovascular diseases. In this study, a smooth muscle cell-based ferroptosis model is developed upon the inhibition of the system Xc- transporter by erastin associated or not with Fe(III) overload, and its rescue upon the introduction of well-known iron chelators, deferoxamine and deferiprone. We showed that erastin alone decreased the intracellular concentration of glutathione (GSH) without affecting peroxidized lipid concentrations. Erastin with ferric citrate was able to decrease intracellular GSH and induce lipid peroxidation after overnight incubation. Only deferiprone was able to rescue the cells from ferroptosis by decreasing lipid peroxidation via iron ion chelation in a 3:1 molar ratio.

18.
Life Sci ; 336: 122328, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061132

RESUMO

AIMS: Inflammatory Bowel Disease (IBD) is associated with systemic iron deficiency and has been managed with iron supplements which cause adverse side effects. Conversely, some reports highlight iron depletion to ameliorate IBD. The underlying intestinal response and comparative benefit of iron depletion and supplementation in IBD is unknown. The aims of this work were to characterize and compare the effects of iron supplementation and iron depletion in IBD. MAIN METHODS: IBD was induced in Drosophila melanogaster using 3 % dextran sodium sulfate (DSS) in diet for 7 days. Using this model, we investigated the impacts of acute iron depletion (using bathophenanthroline disulfonate, BPS) and supplementation (using ferrous sulphate, FS), before and after IBD induction, on gut iron homeostasis, cell death, gut permeability, inflammation, antioxidant defence, antimicrobial response and several fly phenotypes. KEY FINDINGS: DSS decreased fly mass (p < 0.001), increased gut permeability (p < 0.001) and shortened lifespan (p = 0.035) compared to control. The DSS-fed flies also showed significantly elevated lipid peroxidation (p < 0.001), and the upregulated expression of apoptotic marker- drice (p < 0.001), tight junction protein - bbg (p < 0.001), antimicrobial peptide - dpta (p = 0.002) and proinflammatory cytokine - upd2 (p < 0.001). BPS significantly (p < 0.05) increased fly mass and lifespan, decreased gut permeability, decreased lipid peroxidation and decreased levels of drice, bbg, dpta and upd2 in IBD flies. This iron chelation (using BPS) showed better protection from DSS-induced IBD than iron supplementation (using FS). Preventive and curative interventions, by BPS or FS, also differed in outcomes. SIGNIFICANCE: This may inform precise management strategies aimed at tackling IBD and its recurrence.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Colite/induzido quimicamente , Drosophila , Drosophila melanogaster , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Ferro/metabolismo , Suplementos Nutricionais , Quelantes de Ferro/farmacologia , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo/metabolismo
19.
Br J Haematol ; 204(1): 306-314, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37990447

RESUMO

Haemochromatosis (HC) encompasses a range of genetic disorders. HFE-HC is by far the most common in adults, while non-HFE types are rare due to mutations of HJV, HAMP, TFR2 and gain-of-function mutations of SLC40A1. HC is often unknown to paediatricians as it is usually asymptomatic in childhood. We report clinical and biochemical data from 24 paediatric cases of HC (10 cases of HFE-, 5 TFR2-, 9 HJV-HC), with a median follow-up of 9.6 years. Unlike in the adult population, non-HFE-HC constitutes 58% (14/24) of the population in our series. Transferrin saturation was significantly higher in TFR2- and HJV-HC compared to HFE-HC, and serum ferritin and LIC were higher in HJV-HC compared to TFR2- and HFE-HC. Most HFE-HC subjects had relatively low ferritin and LIC at the time of diagnosis, so therapy could be postponed for most of them after the age of 18. Our results confirm that HJV-HC is a severe form already in childhood, emphasizing the importance of early diagnosis and treatment to avoid the development of organ damage and reduce morbidity and mortality. Although phlebotomies were tolerated by most patients, oral iron chelators could be a valid option in early-onset HC.


Assuntos
Hemocromatose , Sobrecarga de Ferro , Adulto , Humanos , Criança , Hemocromatose/diagnóstico , Hemocromatose/genética , Hemocromatose/terapia , Estudos Retrospectivos , Proteína da Hemocromatose/genética , Mutação , Ferritinas , Antígenos de Histocompatibilidade Classe I/genética , Sobrecarga de Ferro/genética
20.
Acta Haematol ; 147(4): 427-434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38104534

RESUMO

BACKGROUND: Most patients with lower risk myelodysplastic neoplasms or syndromes (MDSs) become RBC transfusion-dependent, resulting in iron overload, which is associated with an increased oxidative stress state. Iron-chelation therapy is applied to attenuate the toxic effects of this state. Deferiprone (DFP) is an oral iron chelator, which is not commonly used in this patient population, due to safety concerns, mainly agranulocytosis. The purpose of this study was to assess the effect of DFP, on oxidative stress parameters in iron-overloaded RBC transfusion-dependent patients with lower risk MDSs. METHODS: Adult lower risk MDS patients with a cumulative transfusion burden of >20 red blood cell units and evidence of iron overload (serum ferritin >1,000 ng/mL) were included in this study. DFP was administered (100 mg/kg/day) for 4 months. Blood samples for oxidative stress parameters and iron overload parameters were done at baseline and monthly: reactive oxygen species (ROS), phosphatidylserine, reduced glutathione, membrane lipid peroxidation, serum ferritin, and cellular labile iron pool. The primary efficacy variable was ROS. Tolerability and side effects were recorded as well. A paired t test was applied for statistical analyses. RESULTS: Eighteen patients were treated with DFP. ROS significantly decreased in all cell lineages: median decrease of 58.6% in RBC, 33.3% in PMN, and 39.8% in platelets (p < 0.01 for all). Other oxidative stress markers improved: phosphatidylserine decreased by 57.95%, lipid peroxidase decreased by 141.3%, and reduced gluthathione increased by 72.8% (p < 0.01 for all). The iron-overload marker and cellular labile iron pool decreased by 35% in RBCs, 44.3% in PMN, and 46.3% in platelets (p < 0.01 for all). No significant changes were observed in SF levels. There were no events of agranulocytosis. All AEs were grades 1-2. CONCLUSIONS: Herein, we showed preliminary evidence that DFP decreases iron-induced oxidative stress in MDS patients with a good tolerability profile (albeit a short follow-up period). No cases of severe neutropenia or agranulocytosis were reported. The future challenge is to prove that reduction in iron toxicity will eventually be translated into a clinically meaningful improvement.


Assuntos
Deferiprona , Quelantes de Ferro , Sobrecarga de Ferro , Síndromes Mielodisplásicas , Estresse Oxidativo , Humanos , Deferiprona/uso terapêutico , Deferiprona/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Quelantes de Ferro/uso terapêutico , Quelantes de Ferro/farmacologia , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/etiologia , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/metabolismo , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Piridonas/uso terapêutico , Piridonas/efeitos adversos , Piridonas/administração & dosagem , Idoso de 80 Anos ou mais , Adulto , Israel , Administração Oral , Espécies Reativas de Oxigênio/metabolismo , Transfusão de Eritrócitos , Ferritinas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA