Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(32): e2309314, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923275

RESUMO

Hypervascularized glioblastoma is naturally sensitive to anti-angiogenesis but suffers from low efficacy of transient vasculature normalization. In this study, a lipid-polymer nanoparticle is synthesized to execute compartmentalized Cas9 and sgRNA delivery for a permanent vasculature editing strategy by knocking out the signal transducer and activator of transcription 3 (STAT3). The phenylboronic acid branched cationic polymer is designed to condense sgRNA electrostatically (inner compartment) and patch Cas9 coordinatively (outer compartment), followed by liposomal hybridization with angiopep-2 decoration for blood-brain barrier (BBB) penetration. The lipid-polymer nanoparticles can reach glioblastoma within 2 h post intravenous administration, and hypoxia in tumor cells triggers charge-elimination and degradation of the cationic polymer for burst release of Cas9 and sgRNA, accompanied by instant Cas9 RNP assembly, yielding ≈50% STAT3 knockout. The downregulation of downstream vascular endothelial growth factor (VEGF) reprograms vasculature normalization to improve immune infiltration, collaborating with interleukin-6 (IL-6) and interleukin-10 (IL-10) reduction to develop anti-glioblastoma responses. Collectively, the combinational assembly for compartmentalized Cas9/sgRNA delivery provides a potential solution in glioblastoma therapy.


Assuntos
Glioblastoma , Nanopartículas , Polímeros , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Nanopartículas/química , Camundongos , Animais , Polímeros/química , Humanos , Lipídeos/química , RNA Guia de Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Barreira Hematoencefálica/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas
2.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2419-2425, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282871

RESUMO

This study combined the herbal pair Platycodonis Radix-Curcumae Rhizoma(PR-CR) possessing an inhibitory effect on tumor cell proliferation and metastasis with the active component of traditional Chinese medicine(TCM) silibinin-loaded nanoparticles(NPs) with a regulatory effect on tumor microenvironment based on the joint effect on tumor cells and tumor microenvironment to inhi-bit cell metastasis. The effects of PR-CR on the cellular uptake of NPs and in vitro inhibition against breast cancer proliferation and metastasis were investigated to provide an experimental basis for improving nanoparticle absorption and enhancing therapeutic effects. Silibinin-loaded lipid-polymer nanoparticles(LPNs) were prepared by the nanoprecipitation method and characterized by transmission electron microscopy. The NPs were spherical or quasi-spherical in shape with obvious core-shell structure. The mean particle size was 107.4 nm, Zeta potential was-27.53 mV. The cellular uptake assay was performed by in vitro Caco-2/E12 coculture cell model and confocal laser scanning microscopy(CLSM), and the results indicated that PR-CR could promote the uptake of NPs. Further, in situ intestinal absorption assay by the CLSM vertical scanning approach showed that PR-CR could promote the absorption of NPs in the enterocytes of mice. The inhibitory effect of NPs on the proliferation and migration of 4T1 cells was analyzed using 4T1 breast cancer cells and co-cultured 4T1/WML2 cells, respectively. The results of the CCK8 assay showed that PR-CR-containing NPs could enhance the inhibition against the proliferation of 4T1 breast cancer cells. The wound healing assay indicated that PR-CR-containing NPs enhanced the inhibition against the migration of 4T1 breast cancer cells. This study enriches the research on oral absorption of TCM NPs and also provides a new idea for utilizing the advantages of TCM to inhibit breast cancer metastasis.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Camundongos , Animais , Feminino , Silibina/uso terapêutico , Células CACO-2 , Polímeros/química , Nanopartículas/química , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Microambiente Tumoral , Melanoma Maligno Cutâneo
3.
Chem Phys Lipids ; 251: 105280, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634728

RESUMO

Antibody-functionalized targeted nanocarriers have shown great-potential for minimizing the chemoresistance and systemic toxicity of cancer chemotherapies. The combination of chemotherapy and photothermal therapy has great potential in improving therapeutic effect. However, cetuximab-modified nanoparticles based lipids for chemo-phototherapy of EGFR overexpressing colorectal carcinoma (CRC) have seldom been investigated. Hence, this study aimed to fabricate cetuximab-conjugated and near infrared (NIR) light-responsive hybrid lipid-polymer nanoparticles (abbreviated as Cet-CINPs) for targeted delivery of irinotecan. Cet-CINPs were prepared with copolymer PLGA and various lipids DSPE-PEG, DSPE-PEG-Mal, lecithin as carriers. Cetuximab was conjugated on the surface of nanoparticles to achieve targeting anti-tumor efficacy. Cet-CINPs were characterized in terms of morphology (spherical), size (119 nm), charge (-27.2 mV), drug entrapment efficiency (43.27 %), and antibody conjugation efficiency (70.87 %). Cet-CINPs showed preferable photothermal response, pH/NIR-triggered drug release behavior, enhanced cellular uptake and ROS level compared with free ICG and CINPs. Meanwhile, in vitro cytotoxicity assay showed that Cet-CINPs with NIR irradiation had a higher cytotoxicity against Lovo cells than non-targeted or non-NIR activated nanoparticles. The IC50 values of Cet-CINPs with NIR irradiation was 22.84 ± 1.11 µM for 24 h and 5.01 ± 1.06 µM for 48 h, respectively. These investigations demonstrate that Cet-CINPs with good tumor-targeting ability and enhanced antitumor activity, are a promising multifunctional nanoplatform for CRC therapy.


Assuntos
Neoplasias Colorretais , Receptores ErbB , Terapia de Alvo Molecular , Nanopartículas , Terapia Fototérmica , Humanos , Linhagem Celular Tumoral , Cetuximab/administração & dosagem , Cetuximab/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Receptores ErbB/metabolismo , Lipídeos , Polímeros
4.
J Control Release ; 353: 1037-1049, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442614

RESUMO

mRNA based infectious disease vaccines have opened the venue for development of novel nucleic acids-based therapeutics. For all mRNA therapeutics dedicated delivery systems are required, where different functionalities and targeting abilities need to be optimized for the respective applications. One option for advanced formulations with tailored properties are lipid-polymer hybrid nanoparticles with complex nanostructure, which allow to combine features of several already well described nucleic acid delivery systems. Here, we explored hyaluronic acid (HA) as coating of liposome-mRNA complexes (LRCs) to investigate effects of the coating on surface charge, physicochemical characteristics and biological activity. HA was electrostatically attached to positively charged complexes, forming hybrid LRCs (HLRCs). At different N/P ratios, physico-chemical characterization of the two sets of particles showed similarity in size (around 200 nm) and mRNA binding abilities, while the presence of the HA shell conferred a negative surface charge to otherwise positive complexes. High transfection efficiency of LRCs and HLRCs in vitro has been obtained in THP-1 and human monocytes derived from PBMC, an interesting target cell population for cancer and immune related pathologies. In mice, quantitative biodistribution of radiolabeled LRC and HLRC particles, coupled with bioluminescence studies to detect the protein translation sites, hinted towards both particles' accumulation in the hepatic reticuloendothelial system (RES). mRNA translated proteins though was found mainly in the spleen, a major source for immune cells, with preference for expression in macrophages. The results showed that surface modifications of liposome-mRNA complexes can be used to fine-tune nanoparticle physico-chemical characteristics. This provides a tool for assembly of stable and optimized nanoparticles, which are prerequisite for future therapeutic interventions using mRNA-based nanomedicines.


Assuntos
Nanopartículas , Ácidos Nucleicos , Camundongos , Humanos , Animais , Lipossomos/química , Distribuição Tecidual , Leucócitos Mononucleares , Polímeros/química , Nanopartículas/química , Transfecção
5.
Biomed Pharmacother ; 155: 113837, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271586

RESUMO

In this study, we brought together X-ray induced photodynamic therapy (X-PDT) and chemo-drug (5-FU) for the treatment on colorectal cancer cells. This was achieved by developing a lipid-polymer hybrid nanoparticle delivery system (FA-LPNPs-VP-5-FU). It was prepared by incorporating a photosensitizer (verteporfin), chemotherapy drug (5-FU) and a targeting moiety (folic acid) into one platform. The average size of these nanoparticles was around 100 nm with low polydispersity. When exposed to clinical doses of 4 Gy X-ray radiation, FA-LPNPs-VP-5-FU generated sufficient amounts of reactive oxygen species, triggering the apoptosis and necrosis pathway of cancer cells. Our combined X-PDT and chemo-drug strategy was effective in inhibiting cancer cells' growth and proliferation. Cell cycle analyses revealed that our treatment induced G2/M and S phase arrest in HCT116 cells. Our results indicate that this combined treatment provides better antitumour effect in colorectal cancer cells than each of these modalities alone. This may offer a novel approach for effective colorectal cancer treatment with reduced off-target effect and drug toxicity.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Nanopartículas , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros , Verteporfina , Raios X , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ácido Fólico/farmacologia , Lipídeos , Fluoruracila , Neoplasias Colorretais/tratamento farmacológico
6.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216501

RESUMO

In this study, actively-targeted (CD44-receptors) and dual stimuli (pH/redox)-responsive lipid-polymer nanoparticles were proposed as a delivery vehicle of doxorubicin hydrochloride in triple negative breast cancer cell lines. A phosphatidylcholine lipid film was hydrated with a solution of oxidized hyaluronic acid and doxorubicin, chosen as model drug, followed by a crosslinking reaction with cystamine hydrochloride. The obtained spherical nanoparticles (mean diameter of 30 nm) were found to be efficiently internalized in cancer cells by a receptor-mediated endocytosis process, and to modulate the drug release depending on the pH and redox potential of the surrounding medium. In vitro cytotoxicity assays demonstrated the safety and efficacy of the nanoparticles in enhancing the cytotoxic effect of the free anticancer drug, with the IC50 values being reduced by two and three times in MDA-MB-468 and MDA-MB-231, respectively. The combination of self-assembled phospholipid molecules with a polysaccharide counterpart acting as receptor ligand, and stimuli-responsive chemical moieties, was carried out on smart multifunctional nanoparticles able to actively target breast cancer cells and improve the in vitro anticancer activity of doxorubicin.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/química , Doxorrubicina/farmacologia , Lipídeos/química , Lipossomos/química , Nanopartículas/química , Polissacarídeos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Concentração de Íons de Hidrogênio , Tamanho da Partícula
7.
Zhongguo Zhong Yao Za Zhi ; 45(21): 5177-5183, 2020 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-33350233

RESUMO

In the current study, schisandrin B(SchB)-loaded F127 modified lipid-polymer hybrid nanoparticles(SchB-F-LPNs) were developed to improve the inhibition of breast cancer lung metastasis. Modified nanoprecipitation method was used to prepare SchB-F-LPNs. The nanoparticles were spherical in shape with shell-core structure by TEM observation. SchB-F-LPNs showed a mean particle size of(234.60±6.11) nm with zeta potential of(-5.88±0.49) mV. XRD results indicated that SchB existed in the nanoparticles in an amorphous state. The apparent permeability coefficient through porcine mucus of F-LPNs was 1.43-fold of that of LPNs as shown in the in vitro mucus penetration study. The pharmacokinetics study showed that the C_(max) of SchB was(369.06±146.94) µg·L~(-1),(1 121.34±91.65) µg·L~(-1) and(2 951.91±360.53) µg·L~(-1) respectively in SchB suspensions group, SchB-LPNs group and SchB-F-LPNs group after oral administration in rats. With SchB suspensions as the reference formulation, the relative bioavailability of SchB-F-LPNs was 568.60%. SchB-F-LPNs inhibited the morphological change during transforming growth factor-ß1(TGF-ß1)-induced epithelial-mesenchymal transition. In addition, SchB-F-LPNs significantly decreased the number of metastatic pulmonary nodules in 4 T1 tumor-bearing mice, suggesting that SchB-F-LPNs may inhibit the metastasis of breast cancer. These results reveal the promising potential of SchB-F-LPNs in treatment of breast cancer lung metastasis.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Animais , Ciclo-Octanos , Lignanas , Lipídeos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Compostos Policíclicos , Polietilenos , Polímeros , Polipropilenos , Ratos , Suínos
8.
Biomed Pharmacother ; 106: 275-284, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29966971

RESUMO

One approach to improve the targeted therapeutic efficiency of lung cancer is to deliver drugs using nano-scaled systems. In this study, RGD peptide-modified, paclitaxel (PTX) prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles were developed and the in vitro and in vivo antitumor efficiency was evaluated in lung cancer cells and tumor bearing animal models. RGD-modified PTX and cisplatin (CDDP) loaded LPNs (RGD-ss-PTX/CDDP LPNs) have sizes around 190 nm, and zeta potentials of -35 mV. The half-maximal inhibitory concentration (IC50) values were 26.7 and 75.3 µg/mL for drugs loaded LPNs and free drugs combination, which indicates significantly higher antitumor activity of LPNs than free drugs. RGD-ss-PTX/CDDP LPNs also exhibited the best antitumor efficiency in vivo, which inhibited the tumor size of mice from 1486 mm3 to 263 mm3. The results illustrated that the system could successfully load drugs and achieve synergistic combination lung cancer treatment efficiency with lower systemic toxicity compared with free drugs counterparts. The resulting system could be facilitated as a promising targeted nanomedicine for the treatment of lung cancer.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos , Lipídeos/química , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas , Oligopeptídeos/metabolismo , Paclitaxel/administração & dosagem , Polímeros/química , Pró-Fármacos/administração & dosagem , Células A549 , Animais , Antineoplásicos/sangue , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Relação Dose-Resposta a Droga , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanomedicina , Oligopeptídeos/química , Oxirredução , Paclitaxel/análogos & derivados , Paclitaxel/sangue , Paclitaxel/química , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Tecnologia Farmacêutica/métodos , Distribuição Tecidual , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Biomater Sci Polym Ed ; 29(4): 397-411, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29271285

RESUMO

A combination of chemotherapy and photothermal therapy as a promising strategy has exhibited noticeable therapeutic effect on cancer therapy. To ensure the exertion of synergistic effect on a tumor region, a multifunctional vehicle for selectively delivering therapeutic agent into tumor cells is highly desirable. Thus, folate-poly (ethylene glycol)-distearoylphosphatidylcholine (FA-PEG-DSPE), cRGD [cyclic (Arg-Gly-Asp-D-Phe-Lys)]-PEG-DSPE and lecithin were employed to develop dual modified nanoparticles (FA/cRGD-PNPs) encapsulating polyaniline and cisplatin by a film-ultrasonic dispersion method. The FA/cRGD-PNPs showed a uniform size of 102.7 nm, remarkable stability and monodispersity, and highly localized temperature respond. Compared to chemo or photothermal treatment alone, the combined treatment on cells in vitro significantly suppressed the survival rate of MDA-MB-231 cells (1.87%) and MGC-803 cells (2.37%) treated for 48 h. The results further indicated the induced cell apoptosis rate of MDA-MB-231 cells reached to 92.6% with treatment for 24 h. Hence, our research highlights the great potential in drug delivery and the combination of chemotherapy and photothermal therapy.


Assuntos
Compostos de Anilina/farmacologia , Cisplatino/farmacologia , Nanopartículas/química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Compostos de Anilina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Terapia Combinada , Portadores de Fármacos/química , Ácido Fólico/química , Humanos , Tamanho da Partícula , Fototerapia/métodos , Propriedades de Superfície
10.
Int J Pharm ; 495(2): 728-37, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26417849

RESUMO

The resistance of Helicobacter pylori to classical antimicrobial treatment has become increasingly common, whereupon biofilms are considered to play an important role in the resistance mechanism. Here 10.2% of amoxicillin (AMX) and a novel anti H. pylori adhesion material pectin sulfate (PECS) loaded lipid polymer nanoparticles (LPN) were prepared, with rhamnolipid and phospholipids as the outer mixed lipids layer (RHL-PC-LPN). The size of RHL-PC-LPN was around 200 nm, was negatively-charged, and showed sustained and complete drug release within 24h. In an in vitro study, H. pylori biofilm models were successfully established. RHL-PC-LPN, superior to PC-LPN (employing phospholipids only as the outer lipid layer), PECS+AMX (mixture of PECS and AMX) and AMX only, was proven to significantly eradicate H. pylori in the biofilm form. In accordance to our previous results, the RHL-PC-LPN group, together with the PC-LPN and PECS+AMX group, inhibited H. pylori from adhering to AGS cells. Investigating the underlying mechanisms contributing to the death of H. pylori caused by RHL-PC-LPN, we found that LPN could lower the antibiotic minimal inhibition concentration (MIC) to biofilm form from 125 µg/ml to 15.6 µg/ml. Furthermore, FITC-ConA labeled extracellular polymeric substances (EPS) were decreased in the RHL-PC-LPN group observed by a laser scanning confocal microscope. Therefore, we conclude that employing the mixed lipids of rhamnolipid and phospholipids as the outer layer of nanoparticles and PECS as the inner core produces a system capable of significantly disrupting H. pylori biofilm by eliminating the EPS as well as inhibiting the adherence and colonization of bacteria.


Assuntos
Amoxicilina/administração & dosagem , Antibacterianos/administração & dosagem , Helicobacter pylori/efeitos dos fármacos , Nanopartículas , Amoxicilina/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Química Farmacêutica , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Farmacorresistência Bacteriana , Glicolipídeos/química , Humanos , Testes de Sensibilidade Microbiana , Pectinas/química , Fosfolipídeos/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA