Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.187
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Elife ; 122024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106189

RESUMO

Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.


Assuntos
Retículo Endoplasmático , Esfingomielinas , Esfingomielinas/metabolismo , Esfingomielinas/biossíntese , Humanos , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Multimerização Proteica , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Técnicas de Inativação de Genes , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/biossíntese
2.
Front Mol Biosci ; 11: 1356043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108343

RESUMO

Background: Skin squamous cell carcinoma (SCC) is a prevalent malignancy, and dysregulated lipid metabolism has been implicated in its pathogenesis. However, detailed characterization of lipid alterations in SCC remains limited. Methods: We analyzed lipid metabolic variations in tissue samples from 34 SCC patients and adjacent healthy tissues (located more than 1 cm from the tumor margin) using liquid chromatography-mass spectrometry (LC-MS). Data visualization and discriminatory lipid profiles were identified using principal component analysis (PCA) and sparse partial least squares discriminant analysis (sPLS-DA). Key lipids involved in the SCC metabolism were identified and further validated using an external data set (from a previous study, which similarly explored lipid profiles in oral SCC using lipidomics approaches). Pathway enrichment analysis was conducted to elucidate the metabolic pathways associated with these key lipids. Results: Eight lipids were identified by comparing SCC and healthy tissues including PI(16:0/22:4), PI(18:1/20:4), PE(16:0/20:4), PE(16:0/22:5), PE(16:0/22:6), PE(18:1/20:3), PC(18:1/20:2), and PC(18:2/20:2), as confirmed by independent datasets. All of these lipids were upregulated in SCC tumor tissues. Pathway enrichment analysis revealed significant alterations in glycerophospholipid metabolic pathways, particularly affecting the metabolism of diacylglycerophosphocholines, glycerophosphoethanolamines, and glycerophosphoinositols. Conclusion: Our findings reveal that dysregulated glycerophospholipid metabolism plays a pivotal role in the development of SCC.

3.
Clin Chim Acta ; : 119899, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134219

RESUMO

Oxylipins derived from polyunsaturated fatty acids (PUFAs) are important endogenous signaling molecules, but are little characterized in pulmonary hypertension (PH) due to chronic obstructive pulmonary disease (COPD). In this study, we identified novel plasma oxylipins associated with PH risk in COPD patients. The plasma oxylipin profiles of COPD patients without PH (COPD-noPH) or with PH (COPD-PH) were obtained from discovery and validation cohort, using the process of LC-MS/MS analysis. There was a significant decrease in the plasma levels of both free docosahexaenoic acid (DHA) and DHA-derived oxylipins in the COPD-PH group. The multivariable logistic regression model identified DHA and four DHA-derived oxylipins (13-HDHA, 10-HDHA, 8-HDHA and 16-HDHA) exhibited significant differences between the two groups after adjusting for sex, BMI, FEV1% predicted, and smoking status. The diagnostic value of these metabolites was further evaluated through ROC curve analysis. The transcriptome profiles in peripheral blood mononuclear cells (PBMCs) of COPD-PH patients and COPD-PH patients were detected through high-throughput sequencing. The enrichment analysis revealed that the upregulated differentially expressed genes (DEGs) were highly enriched in the interferon signaling pathway. In addition, DHA supplementation proved that DHA may inhibit the development of pH by reducing the secretion of interferons derived from PBMCs. This conjecture was further confirmed by the higher level of serum interferon-γ and interferon-α2 of COPD-PH patients than that of COPD-noPH patients. The present study highlights that decreased DHA and DHA-derived oxylipins levels are suggestive of a higher risk of pH development in COPD cases.

4.
Int J Radiat Biol ; : 1-12, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136547

RESUMO

PURPOSE: Lipidomics is an important tool for triaging exposed individuals, and helps early adoption of prevention and control strategies. The purpose of this study was to screen significantly perturbed lipids between pre- and post-irradiation of human plasma samples after total body irradiation (TBI) and explore potential radiation biomarkers for early radiation classification. METHODS: Plasma samples were collected before and after irradiation from 22 hospitalized cases of acute myeloid leukemia (AML) prepared for bone marrow transplantation. Acute total-body γ irradiation was performed at doses of 0, 4, 8, and 12 Gy. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with multiple reaction monitoring (MRM) method was utilized. Self-paired studies before and after irradiation were performed to screen potential lipid categorization markers and markers of dose-response relationships for radiation perturbation in humans. Based on the screened potential markers, a human TBI dose estimation model was developed. RESULTS: In total, 426 individual lipids from 14 major classes were quantified and 152 potential biomarkers with categorical characteristics were screened. A total of 80 lipids (32 TGs, 29 SMs, 9 FAs, 5 CEs, 5 PIs) were upregulated at 4 Gy, and a total of 91 lipids (39 SMs, 18 TGs, 15 HexCers, 7 CEs, 6 Cers, 3 LacCers, 2 LPEs, 1 PI) were upregulated at 12 Gy. Comparison of the ROC curves between the non-exposed and exposed groups at different doses showed AUC values ranging from 0.807 to 0.876. The metabolic pathways of potential lipid markers are mainly sphingolipid and glycerolipid metabolism, unsaturated fatty acid biosynthesis, fatty acid degradation and biosynthesis. Among the 13 dose-dependent radiosensitive lipids, CE (20:5), CE (18:1) and PI (18:2/18:2) were gradually incorporated into the TBI dose estimation model. CONCLUSION: This study suggested that it was feasible to acquire quantitative lipid biomarker panels using targeted lipidomics platforms for rapid, high-throughput triage. Lipidomics strategies for radiation biodosimetry in humans were established with lipid biomarkers with good dose-response relationship.

5.
Neurooncol Adv ; 6(1): vdae119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119277

RESUMO

Background: Primary central nervous system lymphoma (PCNSL) is a rare extranodal lymphomatous malignancy which is commonly treated with high-dose methotrexate (HD-MTX)-based chemotherapy. However, the prognosis outcome of HD-MTX-based treatment cannot be accurately predicted using the current prognostic scoring systems, such as the Memorial Sloan-Kettering Cancer Center (MSKCC) score. Methods: We studied 2 cohorts of patients with PCNSL and applied lipidomic analysis to their cerebrospinal fluid (CSF) samples. After removing the batch effects and features engineering, we applied and compared several classic machine-learning models based on lipidomic data of CSF to predict the relapse of PCNSL in patients who were treated with HD-MTX-based chemotherapy. Results: We managed to remove the batch effects and get the optimum features of each model. Finally, we found that Cox regression had the best prediction performance (AUC = 0.711) on prognosis outcomes. Conclusions: We developed a Cox regression model based on lipidomic data, which could effectively predict PCNSL patient prognosis before the HD-MTX-based chemotherapy treatments.

6.
Nutr Metab (Lond) ; 21(1): 43, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978004

RESUMO

BACKGROUND: Previous studies have linked sports-related concussions and repeated subconcussive head impacts in contact sport athletes to elevated brain injury biomarkers. Docosahexaenoic acid (DHA), the primary omega-3 (n-3) highly unsaturated fatty acid (HUFA) in the brain, has shown neuroprotective effects in animal models after brain injury, but clinical research has shown mixed results. METHODS: We conducted a randomized, double-blind, placebo-controlled study on 29 Division 1 collegiate American football players, exploring the impact of DHA (2.5 g) and eicosapentaenoic acid (EPA) (1.0 g) supplied as ethyl esters, on levels of plasma lipids shown to cross the blood-brain barrier. Dietary intake data was collected using food frequency questionnaires (FFQ). Complex lipids and unesterified fatty acids were isolated from plasma, separated via reversed-phase liquid chromatography and analyzed by targeted lipidomics analysis. RESULTS: FFQ results indicated that participants had low dietary n-3 HUFA intake and high omega-6 (n-6):n-3 polyunsaturated fatty acids (PUFA) and HUFA ratios at baseline. After DHA + EPA supplementation, plasma lysophosphatidylcholine (LPC) containing DHA and EPA significantly increased at all timepoints (weeks 17, 21, and 26; p < 0.0001), surpassing placebo at Weeks 17 (p < 0.05) and 21 (p < 0.05). Phosphatidylcholine (PC) molecular species containing DHA or EPA, PC38:6 PC36:6, PC38:7, PC40:6, and PC40:8, increased significantly in the DHA + EPA treatment group at Weeks 17 (and 21. Plasma concentrations of non-esterified DHA and EPA rose post-supplementation in Weeks 17 and 21. CONCLUSIONS: This study demonstrates that n-3 HUFA supplementation, in the form of ethyl esters, increased the DHA and EPA containing plasma lipid pools the have the capacity to enrich brain lipids and the potential to mitigate the effects of sports-related concussions and repeated subconcussive head impacts. TRIAL REGISTRATION: All deidentified data are available at ClinicalTrials.gov #NCT0479207.

7.
bioRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39005342

RESUMO

Background: Mesenchymal stromal cell derived extracellular vesicles (MSC-EVs) are a promising therapeutic for neuroinflammation. MSC-EVs can interact with microglia, the resident immune cells of the brain, to exert their immunomodulatory effects. In response to inflammatory cues, such as cytokines, microglia undergo phenotypic changes indicative of their function e.g. morphology and secretion. However, these changes in response to MSC-EVs are not well understood. Additionally, no disease-relevant screening tools to assess MSC-EV bioactivity exist, which has further impeded clinical translation. Here, we developed a quantitative, high throughput morphological profiling approach to assess the response of microglia to neuroinflammation-relevant signals and whether this morphological response can be used to indicate the bioactivity of MSC-EVs. Results: Using an immortalized human microglia cell-line, we observed increased size (perimeter, major axis length) and complexity (form factor) upon stimulation with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Upon treatment with MSC-EVs, the overall morphological score (determined using principal component analysis) shifted towards the unstimulated morphology, indicating that MSC-EVs are bioactive and modulate microglia. The morphological effects of MSC-EVs in TNF-γ/IFN-α stimulated cells were concomitant with reduced secretion of 14 chemokines/cytokines (e.g. CXCL6, CXCL9) and increased secretion of 12 chemokines/cytokines (e.g. CXCL8, CXCL10). Proteomic analysis of cell lysates revealed significant increases in 192 proteins (e.g. HIBADH, MEAK7, LAMC1) and decreases in 257 proteins (e.g. PTEN, TOM1, MFF) with MSC-EV treatment. Of note, many of these proteins are involved in regulation of cell morphology and migration. Gene Set Variation Analysis revealed upregulation of pathways associated with immune response, such as regulation of cytokine production, immune cell infiltration (e.g. T cells, NK cells) and morphological changes (e.g. Semaphorin, RHO/Rac signaling). Additionally, changes in microglia mitochondrial morphology were measured suggesting that MSC-EV modulate mitochondrial metabolism. Conclusion: This study comprehensively demonstrates the effects of MSC-EVs on human microglial morphology, cytokine secretion, cellular proteome, and mitochondrial content. Our high-throughput, rapid, low-cost morphological approach enables screening of MSC-EV batches and manufacturing conditions to enhance EV function and mitigate EV functional heterogeneity in a disease relevant manner. This approach is highly generalizable and can be further adapted and refined based on selection of the disease-relevant signal, target cell, and therapeutic product.

8.
Exp Dermatol ; 33(7): e15141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036889

RESUMO

Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to molecularly characterize BCC and diagnose tumour tissue by applying matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and machine learning (ML). BCC tumour development was induced in a mouse model and tissue sections containing BCC (n = 12) were analysed. The study design involved three phases: (i) Model training, (ii) Model validation and (iii) Metabolomic analysis. The ML algorithm was trained on MS data extracted and labelled in accordance with histopathology. An overall classification accuracy of 99.0% was reached for the labelled data. Classification of unlabelled tissue areas aligned with the evaluation of a certified Mohs surgeon for 99.9% of the total tissue area, underscoring the model's high sensitivity and specificity in identifying BCC. Tentative metabolite identifications were assigned to 189 signals of importance for the recognition of BCC, each indicating a potential tumour marker of diagnostic value. These findings demonstrate the potential for MALDI-MSI coupled with ML to characterize the metabolomic profile of BCC and to diagnose tumour tissue with high sensitivity and specificity. Further studies are needed to explore the potential of implementing integrated MS and automated analyses in the clinical setting.


Assuntos
Carcinoma Basocelular , Aprendizado de Máquina , Metabolômica , Neoplasias Cutâneas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Carcinoma Basocelular/diagnóstico , Carcinoma Basocelular/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Animais , Camundongos , Metabolômica/métodos , Sensibilidade e Especificidade , Algoritmos , Biomarcadores Tumorais/metabolismo , Humanos
9.
CNS Neurosci Ther ; 30(7): e14832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39009504

RESUMO

CONTEXT: In-stent restenosis (ISR) can lead to blood flow obstruction, insufficient blood supply to the brain, and may even result in serious complications such as stroke. Endothelial cell hyperproliferation and thrombosis are the primary etiologies, frequently resulting in alterations in intravascular metabolism. However, the metabolic changes related to this process are still undermined. OBJECTIVE: We tried to characterize the serum metabolome of patients with ISR and those with non-restenosis (NR) using metabolomics and lipidomics, exploring the key metabolic pathways of this pathological phenomenon. RESULTS: We observed that the cysteine and methionine pathways, which are associated with cell growth and oxidative homeostasis, showed the greatest increase in the ISR group compared to the NR group. Within this pathway, the levels of N-formyl-l-methionine and L-methionine significantly increased in the ISR group, along with elevated levels of downstream metabolites such as 2-ketobutyric acid, pyruvate, and taurocholate. Additionally, an increase in phosphatidylcholine (PC) and phosphatidylserine (PS), as well as a decrease in triacylglycerol in the ISR group, indicated active lipid metabolism in these patients, which could be a significant factor contributing to the recurrence of blood clots after stent placement. Importantly, phenol sulfate and PS(38:4) were identified as potential biomarkers for distinguishing ISR, with an area under the curve of more than 0.85. CONCLUSIONS: Our study revealed significant metabolic alterations in patients with ISR, particularly in the cysteine and methionine pathways, with phenol sulfate and PS(38:4) showing promise for ISR identification.


Assuntos
Metaboloma , Stents , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Metaboloma/fisiologia , Idoso , Stents/efeitos adversos , Lipidômica/métodos , Metabolismo dos Lipídeos/fisiologia , Reestenose Coronária/metabolismo , Metabolômica/métodos
10.
Clin Immunol ; 265: 110305, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972618

RESUMO

Auto-inflammatory skin diseases place considerable symptomatic and emotional burden on the affected and put pressure on healthcare expenditures. Although most apparent symptoms manifest on the skin, the systemic inflammation merits a deeper analysis beyond the surface. We set out to identify systemic commonalities, as well as differences in the metabolome and lipidome when comparing between diseases and healthy controls. Lipidomic and metabolomic LC-MS profiling was applied, using plasma samples collected from patients suffering from atopic dermatitis, plaque-type psoriasis or hidradenitis suppurativa or healthy controls. Plasma profiles revealed a notable shift in the non-enzymatic anti-oxidant defense in all three inflammatory disorders, placing cysteine metabolism at the center of potential dysregulation. Lipid network enrichment additionally indicated the disease-specific provision of lipid mediators associated with key roles in inflammation signaling. These findings will help to disentangle the systemic components of autoimmune dermatological diseases, paving the way to individualized therapy and improved prognosis.


Assuntos
Dermatite Atópica , Hidradenite Supurativa , Lipidômica , Metabolômica , Psoríase , Humanos , Dermatite Atópica/imunologia , Dermatite Atópica/sangue , Dermatite Atópica/metabolismo , Psoríase/metabolismo , Psoríase/imunologia , Psoríase/sangue , Hidradenite Supurativa/sangue , Hidradenite Supurativa/metabolismo , Hidradenite Supurativa/imunologia , Lipidômica/métodos , Feminino , Adulto , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Metaboloma , Adulto Jovem , Inflamação/metabolismo , Inflamação/sangue , Metabolismo dos Lipídeos
11.
Food Res Int ; 191: 114695, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059908

RESUMO

Roasting walnut kernel significantly improves the oxidative stability and sensory properties of its oil. However, the effect of roasting temperatures on the molecular change of main components and micronutrients in walnut oil is still unclear. Herein, lipidomics and metabolomics were integrated to comprehensively profile the walnut oil obtained at different roasting temperatures (30 °C, 120 °C, 140 °C, 160 °C, and 180 °C). Lipidomics showed that the content of glycerolipids, sphingolipids, and glycerophospholipids decreased with roasting temperatures, while the oxidized fatty acids and triglycerides increased. Ratios of linoleic acid and linolenic acid varied with roasting temperatures and were most close to 4-6:1 at 140 °C, 160 °C, and 180 °C. Major classes of micronutrients showed a tendency to increase at the roasting temperature of 120 °C and 140 °C, then decrease at 160 °C and 180 °C. Liposoluble amino acids identified for the first time in walnut oil varied with roasting temperatures. Correlation analysis demonstrated that the higher contents of liposoluble amino acids and phenolics are positively associated with enhanced oxidative stability of walnut oil obtained at 140 °C. Furthermore, glutamine and 5-oxo-D-proline were expected to be potential biomarkers to differentiate the fresh and roasted walnut oil. The study is expected to provide new insight into the change mechanism of both major lipids and micronutrients in walnut oil during the roasting process.


Assuntos
Culinária , Temperatura Alta , Juglans , Lipidômica , Metabolômica , Oxirredução , Óleos de Plantas , Juglans/química , Óleos de Plantas/química , Culinária/métodos , Triglicerídeos/análise , Aminoácidos/análise , Ácidos Graxos/análise
12.
Anticancer Res ; 44(8): 3277-3285, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39060082

RESUMO

BACKGROUND/AIM: Lipids are essential for energy production, signaling, and membrane formation, hence increased lipid metabolism may lead to cancer growth. 4-cholesten-3-one (4Cone), a sterol metabolite, has various biological activities, including the inhibition of cancer growth. This study examined whether 4Cone could change the lipid profile of triple-negative breast cancer cells (MDA-MB-231) and whether in combination with the anti-cancer chemotherapy docetaxel (TXT) could further reduce cancer aggressiveness. MATERIALS AND METHODS: The effect of 4Cone, TXT, or their combination (4Cone/TXT) on migration and proliferation was examined utilizing the wound healing and MTT assays. The expression of the lipogenesis-related enzymes was assessed using RT-qPCR and lipid profile was examined using mass spectrometry. RESULTS: 4Cone and TXT individually reduced cell viability and migration of MDA-MB-231 cancer cells; however, their combination (4Cone/TXT) had a greater impact on both attributes. All treated cells showed markedly decreased levels of the multidrug resistance enzyme PGP as well as the lipogenic enzymes FASN, ACC1, SCD1, HMGCR, and DGAT. Furthermore, lipid fingerprints were markedly different in treated cells compared with the untreated group. 4Cone increased the percentage of sphingomyelin (SM) while it decreased the percentage of ceramide (Cer); 4Cone in conjunction with TXT had the reverse effect. Triglyceride levels were reduced in 4Cone- and 4Cone/TXT-treated cells, but interestingly, they increased in TXT-treated cells. Additionally, treated cancer cells exhibited changes in glycerophospholipid subclasses. CONCLUSION: 4Cone alone or in combination with TXT alters the lipid profile by reducing a key lipogenic enzyme, resulting in the inhibition of cell proliferation and migration.


Assuntos
Movimento Celular , Proliferação de Células , Docetaxel , Lipidômica , Humanos , Docetaxel/farmacologia , Lipidômica/métodos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Células MDA-MB-231
13.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39062964

RESUMO

Colorectal cancer (CRC) is among the most prevalent and lethal malignancies. Lipidomic investigations have revealed numerous disruptions in lipid profiles across various cancers. Studies on CRC exhibit potential for identifying novel diagnostic or prognostic indicators through lipidomic signatures. This review examines recent literature regarding lipidomic markers for CRC. PubMed database was searched for eligible articles concerning lipidomic biomarkers of CRC. After selection, 36 articles were included in the review. Several studies endeavor to establish sets of lipid biomarkers that demonstrate promising potential to diagnose CRC based on blood samples. Phosphatidylcholine, phosphatidylethanolamine, ceramides, and triacylglycerols (TAGs) appear to offer the highest diagnostic accuracy. In tissues, lysophospholipids, ceramides, and TAGs were among the most altered lipids, while unsaturated fatty acids also emerged as potential biomarkers. In-depth analysis requires both cell culture and animal studies. CRC involves multiple lipid metabolism alterations. Although numerous lipid species have been suggested as potential diagnostic markers, the establishment of standardized methods and the conduct of large-scale studies are necessary to facilitate their clinical application.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Lipidômica , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/sangue , Neoplasias Colorretais/metabolismo , Lipidômica/métodos , Biomarcadores Tumorais/sangue , Prognóstico , Metabolismo dos Lipídeos , Animais
14.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062995

RESUMO

Breast cancer, a complex disease with a significant prevalence to form metastases, necessitates novel therapeutic strategies to improve treatment outcomes. Here, we present the results of a comparative molecular study of primary breast tumours, their metastases, and the corresponding primary cell lines using Desorption Electrospray Ionisation (DESI) and Laser-Assisted Rapid Evaporative Ionisation Mass Spectrometry (LA-REIMS) imaging. Our results show that ambient ionisation mass spectrometry technology is suitable for rapid characterisation of samples, providing a lipid- and metabolite-rich spectrum within seconds. Our study demonstrates that the lipidomic fingerprint of the primary tumour is not significantly distinguishable from that of its metastasis, in parallel with the similarity observed between their respective primary cell lines. While significant differences were observed between tumours and the corresponding cell lines, distinct lipidomic signatures and several phospholipids such as PA(36:2), PE(36:1), and PE(P-38:4)/PE(O-38:5) for LA-REIMS imaging and PE(P-38:4)/PE(O-38:5), PS(36:1), and PI(38:4) for DESI-MSI were identified in both tumours and cells. We show that the tumours' characteristics can be found in the corresponding primary cell lines, offering a promising avenue for assessing tumour responsiveness to therapeutic interventions. A comparative analysis by DESI-MSI and LA-REIMS imaging revealed complementary information, demonstrating the utility of LA-REIMS in the molecular imaging of cancer.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Gatos , Animais , Feminino , Cães , Linhagem Celular Tumoral , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Doenças do Gato/patologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Metástase Neoplásica , Doenças do Cão/patologia , Doenças do Cão/metabolismo , Lipidômica/métodos
15.
Redox Biol ; 75: 103257, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38955113

RESUMO

Ferroptosis, a lipid peroxidation-driven cell death program kept in check by glutathione peroxidase 4 and endogenous redox cycles, promises access to novel strategies for treating therapy-resistant cancers. Chlorido [N,N'-disalicylidene-1,2-phenylenediamine]iron (III) complexes (SCs) have potent anti-cancer properties by inducing ferroptosis, apoptosis, or necroptosis through still poorly understood molecular mechanisms. Here, we show that SCs preferentially induce ferroptosis over other cell death programs in triple-negative breast cancer cells (LC50 ≥ 0.07 µM) and are particularly effective against cell lines with acquired invasiveness, chemo- or radioresistance. Redox lipidomics reveals that initiation of cell death is associated with extensive (hydroper)oxidation of arachidonic acid and adrenic acid in membrane phospholipids, specifically phosphatidylethanolamines and phosphatidylinositols, with SCs outperforming established ferroptosis inducers. Mechanistically, SCs effectively catalyze one-electron transfer reactions, likely via a redox cycle involving the reduction of Fe(III) to Fe(II) species and reversible formation of oxo-bridged dimeric complexes, as supported by cyclic voltammetry. As a result, SCs can use hydrogen peroxide to generate organic radicals but not hydroxyl radicals and oxidize membrane phospholipids and (membrane-)protective factors such as NADPH, which is depleted from cells. We conclude that SCs catalyze specific redox reactions that drive membrane peroxidation while interfering with the ability of cells, including therapy-resistant cancer cells, to detoxify phospholipid hydroperoxides.

16.
Front Pharmacol ; 15: 1406493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953111

RESUMO

Background: Ezetimibe, which lowers cholesterol by blocking the intestinal cholesterol transporter Niemann-Pick C1 like 1, is reported to reduce hepatic steatosis in humans and animals. Here, we demonstrate the changes in hepatic metabolites and lipids and explain the underlying mechanism of ezetimibe in hepatic steatosis. Methods: We fed Otsuka Long-Evans Tokushima Fatty (OLETF) rats a high-fat diet (60 kcal % fat) with or vehicle (control) or ezetimibe (10 mg kg-1) via stomach gavage for 12 weeks and performed comprehensive metabolomic and lipidomic profiling of liver tissue. We used rat liver tissues, HepG2 hepatoma cell lines, and siRNA to explore the underlying mechanism. Results: In OLETF rats on a high-fat diet, ezetimibe showed improvements in metabolic parameters and reduction in hepatic fat accumulation. The comprehensive metabolomic and lipidomic profiling revealed significant changes in phospholipids, particularly phosphatidylcholines (PC), and alterations in the fatty acyl-chain composition in hepatic PCs. Further analyses involving gene expression and triglyceride assessments in rat liver tissues, HepG2 hepatoma cell lines, and siRNA experiments unveiled that ezetimibe's mechanism involves the upregulation of key phospholipid biosynthesis genes, CTP:phosphocholine cytidylyltransferase alpha and phosphatidylethanolamine N-methyl-transferase, and the phospholipid remodeling gene lysophosphatidylcholine acyltransferase 3. Conclusion: This study demonstrate that ezetimibe improves metabolic parameters and reduces hepatic fat accumulation by influencing the composition and levels of phospholipids, specifically phosphatidylcholines, and by upregulating genes related to phospholipid biosynthesis and remodeling. These findings provide valuable insights into the molecular pathways through which ezetimibe mitigates hepatic fat accumulation, emphasizing the role of phospholipid metabolism.

17.
J Obstet Gynaecol ; 44(1): 2378489, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39016329

RESUMO

BACKGROUND: This research investigates the metabolic profiles of follicular fluid (FF) samples from patients with polycystic ovary syndrome (PCOS) undergoing in vitro fertilisation and aims to identify diagnostic and therapeutic biomarkers for PCOS through lipidomic analysis. METHODS: We performed non-targeted lipid analysis of FF samples from women with PCOS (n = 6) and normal controls (n = 6) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Differential lipids between the two groups were screened using multidimensional statistical analysis, followed by fold change analysis and t-tests to identify potential PCOS biomarkers. RESULTS: Multivariate statistical analysis revealed significant differences in FF lipid levels between the PCOS and control groups. Five different lipids were selected as standards, with p < .05. Phosphatidylcholine (PC), the main differentially expressed lipid, was significantly increased in the FF of the POCS group and was closely related to other lipids. CONCLUSIONS: Using ultra-high-performance liquid chromatography-tandem mass spectrometry, we investigated lipid biomarkers based on FF lipidomics to provide useful information for the discovery of diagnostic markers for PCOS. Our study identified five distinct lipids as potential markers of PCOS, with PC being the primary aberrant lipid found in the FF of patients with PCOS.


Follicular fluid (FF) is a complex microenvironment involved in oocyte growth, follicular maturation and germ cell­somatic cell communication. All metabolites during oocyte growth are collected from the FF. This study used lipidomic analysis to identify differences in FF lipids between normal women and those diagnosed with polycystic ovary syndrome (PCOS). The pathogenesis of PCOS is associated with abnormal metabolism of glyceroglycolipids and sphingomyelin. Here, we found that phosphatidylcholine is the main abnormal lipid in FF in patients with PCOS. Our study informs the future research into the development of diagnostic markers for PCOS to be used in clinical practice.


Assuntos
Biomarcadores , Líquido Folicular , Lipidômica , Síndrome do Ovário Policístico , Humanos , Síndrome do Ovário Policístico/metabolismo , Feminino , Líquido Folicular/metabolismo , Líquido Folicular/química , Lipidômica/métodos , Adulto , Biomarcadores/análise , Biomarcadores/metabolismo , Lipídeos/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem/métodos , Estudos de Casos e Controles , Fosfatidilcolinas/análise , Fosfatidilcolinas/metabolismo , Fertilização in vitro
18.
Clin Exp Med ; 24(1): 174, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078421

RESUMO

Elevated levels of circulating C16:0 glucosylceramides (GluCer) and increased mRNA expression of UDP-glucose ceramide glycosyltransferase (UGCG), the enzyme responsible for converting ceramides (Cer) to GluCer, represent unfavorable prognostic markers in chronic lymphocytic leukemia (CLL) patients. To evaluate the therapeutic potential of inhibiting GluCer synthesis, we genetically repressed the UGCG pathway using in vitro models of leukemic B cells, in addition to UGCG pharmacological inhibition with approved drugs such as eliglustat and ibiglustat, both individually and in combination with ibrutinib, assessed in cell models and primary CLL patient cells. Cell viability, apoptosis, and proliferation were evaluated in vitro, and survival and apoptosis were examined ex vivo. UGCG inhibition efficacy was confirmed by quantifying intracellular sphingolipid levels through targeted lipidomics using mass spectrometry. Other inhibitors of sphingolipid biosynthesis pathways were similarly assessed. Blocking UGCG significantly decreased cell viability and proliferation, highlighting the oncogenic role of UGCG in CLL. The efficient inhibition of UGCG was confirmed by a significant reduction in GluCer intracellular levels. The combination of UGCG inhibitors with ibrutinib demonstrated synergistic effect. Inhibitors that target alternative pathways within sphingolipid metabolism, like sphingosine kinases inhibitor SKI-II, also demonstrated promising therapeutic effects both alone and when used in combination with ibrutinib, reinforcing the oncogenic impact of sphingolipids in CLL cells. Targeting sphingolipid metabolism, especially the UGCG pathway, represents a promising therapeutic strategy and as a combination therapy for potential treatment of CLL patients, warranting further investigation.


Assuntos
Sobrevivência Celular , Leucemia Linfocítica Crônica de Células B , Esfingolipídeos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Humanos , Esfingolipídeos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Piperidinas/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Glucosilceramidas/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia
19.
Methods Mol Biol ; 2816: 87-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977591

RESUMO

Laparotomy (EL) is one of the most common procedures performed among surgical specialties. Previous research demonstrates that surgery is associated with an increased inflammatory response. Low psoas muscle mass and quality markers are associated with increased mortality rates after emergency laparotomy. Analysis of lipid mediators in serum and muscle by using liquid chromatography-mass spectrometry (LC-MS)-based lipidomics has proven to be a sensitive and precise technique. In this chapter, we describe an LC-MS/MS protocol for the profiling and quantification of signaling lipids formed from Eicosapentaenoic Acid (EPA) and Eicosatetranoic acid (ETA) by 5, 12, or 15 lipoxynases. This protocol has been developed for and validated in serum and muscle samples in a mouse model of surgical stress caused by laparotomy.


Assuntos
Envelhecimento , Laparotomia , Lipidômica , Espectrometria de Massas em Tandem , Animais , Camundongos , Lipidômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Envelhecimento/metabolismo , Estresse Fisiológico , Modelos Animais de Doenças , Lipídeos/análise , Lipídeos/sangue , Metabolismo dos Lipídeos
20.
Front Oncol ; 14: 1348164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040440

RESUMO

Background: Advanced non-small cell lung cancer (NSCLC) presents significant treatment challenges, with chemo-immunotherapy emerging as a promising approach. This study explores the potential of lipidomic biomarkers to predict responses to chemo-immunotherapy in advanced non-small cell lung cancer (NSCLC) patients. Methods: A prospective analysis was conducted on 68 NSCLC patients undergoing chemo-immunotherapy, divided into disease control (DC) and progressive disease (PD) groups based on treatment response. Pre-treatment serum samples were subjected to lipidomic profiling using liquid chromatography-mass spectrometry (LC-MS). Key predictive lipids (biomarkers) were identified through projection to latent structures discriminant analysis. A biomarker combined model and a clinical combined model were developed to enhance the prediction accuracy. The predictive performances of the clinical combined model in different histological subtypes were also performed. Results: Six lipids were identified as the key lipids. The expression levels of PC(16:0/18:2), PC(16:0/18:1), PC(16:0/18:0), CE(20:1), and PC(14:0/18:1) were significantly up-regulated. While the expression level of TAG56:7-FA18:2 was significantly down-regulated. The biomarker combined model demonstrated a receiver operating characteristic (ROC) curve of 0.85 (95% CI: 0.75-0.95) in differentiating the PD from the DC. The clinical combined model exhibited an AUC of 0.87 (95% CI: 0.79-0.96) in differentiating the PD from the DC. The clinical combined model demonstrated good discriminability in DC and PD patients in different histological subtypes with the AUC of 0.78 (95% CI: 0.62-0.96), 0.79 (95% CI: 0.64-0.94), and 0.86 (95% CI: 0.52-1.00) in squamous cell carcinoma, large cell carcinoma, and adenocarcinoma subtype, respectively. Pathway analysis revealed the metabolisms of linoleic acid, alpha-linolenic acid, glycerolipid, arachidonic acid, glycerophospholipid, and steroid were implicated in the chemo-immunotherapy response in advanced NSCLC. Conclusion: Lipidomic profiling presents a highly accurate method for predicting responses to chemo-immunotherapy in patients with advanced NSCLC, offering a potential avenue for personalized treatment strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA