Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.215
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Orphanet J Rare Dis ; 19(1): 247, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38956624

RESUMO

BACKGROUND: The safety and efficacy of vaccination against coronavirus disease 2019 (COVID-19) in patients with lymphangioleiomyomatosis (LAM) is still unclear. This study investigates COVID-19 vaccine hesitancy, vaccine safety and efficacy, and COVID-19 symptoms in LAM patients. RESULTS: In total, 181 LAM patients and 143 healthy individuals responded to the questionnaire. The vaccination rate of LAM patients was 77.34%, and 15.7% of vaccinated LAM patients experienced adverse events. Vaccination decreased the risk of LAM patients developing anorexia [OR: 0.17, 95% CI: (0.07, 0.43)], myalgia [OR: 0.34, 95% CI: (0.13, 0.84)], and ageusia [OR: 0.34, 95% CI: (0.14, 0.84)]. In LAM patients, a use of mTOR inhibitors reduced the risk of developing symptoms during COVID-19, including fatigue [OR: 0.18, 95% CI: (0.03, 0.95)], anorexia [OR: 0.30, 95% CI: (0.09, 0.96)], and ageusia [OR: 0.20, 95% CI: (0.06, 0.67)]. CONCLUSIONS: Vaccination rates in the LAM population were lower than those in the general population, as 22.7% (41/181) of LAM patients had hesitations regarding the COVID-19 vaccine. However, the safety of COVID-19 vaccination in the LAM cohort was comparable to the healthy population, and COVID-19 vaccination decreased the incidence of COVID-19 symptoms in LAM patients. In addition, mTOR inhibitors seem not to determine a greater risk of complications in patients with LAM during COVID-19.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Linfangioleiomiomatose , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , Feminino , Estudos Retrospectivos , Adulto , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/uso terapêutico , Pessoa de Meia-Idade , Masculino , SARS-CoV-2 , Vacinação , China/epidemiologia , População do Leste Asiático
2.
Adv Sci (Weinh) ; : e2404937, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962935

RESUMO

Anti-cancer peptides (ACPs) represent a promising potential for cancer treatment, although their mechanisms need to be further elucidated to improve their application in cancer therapy. Lycosin-I, a linear amphipathic peptide isolated from the venom of Lycosa singorensis, shows significant anticancer potential. Herein, it is found that Lycosin-I, which can self-assemble into a nanosphere structure, has a multimodal mechanism of action involving lipid binding for the selective and effective treatment of leukemia. Mechanistically, Lycosin-I selectively binds to the K562 cell membrane, likely due to its preferential interaction with negatively charged phosphatidylserine, and rapidly triggers membrane lysis, particularly at high concentrations. In addition, Lycosin-I induces apoptosis, cell cycle arrest in the G1 phase and ferroptosis in K562 cells by suppressing the PI3K-AKT-mTOR signaling pathway and activating cell autophagy at low concentrations. Furthermore, intraperitoneal injection of Lycosin-I inhibits tumor growth of K562 cells in a nude mouse xenograft model without causing side effects. Collectively, the multimodal effect of Lycosin-I can provide new insights into the mechanism of ACPs, and Lycosin-I, which is characterized by high potency and specificity, can be a promising lead for the development of anti-leukemia drugs.

3.
Oncol Res ; 32(7): 1209-1219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948021

RESUMO

Objective: This study aimed to investigate the role of receptor tyrosine kinase-like orphan receptor 2 (ROR2) in triple-negative breast cancer (TNBC). Methods: ROR2 expression in primary TNBC and metastatic TNBC tissues was analyzed by immunohistochemical staining and PCR. ROR2 expression in TNBC cell lines was detected by PCR and Western blot analysis. The migration, invasion and chemosensitivity of TNBC cells with overexpression or knockdown of ROR2 were examined. Results: ROR2 expression was high in metastatic TNBC tissues. ROR2 knockdown suppressed the migration, invasion and chemoresistance of TNBC cells. ROR2 overexpression in MDA-MB-435 cells promoted the migration, invasion, and chemoresistance. Moreover, ROR2 knockdown in HC1599 and MDA-MB-435 adriamycin-resistant cells enhanced chemosensitivity to adriamycin. ROR2 could activate PI3K/AKT/mTOR signaling in TNBC cells. Conclusion: ROR2 is upregulated and promotes metastatic phenotypes of TNBC by activating PI3K/AKT/mTOR signaling.


Assuntos
Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Transdução de Sinais , Serina-Treonina Quinases TOR , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Doxorrubicina/farmacologia
4.
PeerJ ; 12: e17555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948215

RESUMO

Background: PLAUR has been found upregulated in various tumors and closely correlated with the malignant phenotype of tumor cells. The aim of this study was to investigate the relationship between PLAUR and clear cell renal cell carcinoma (ccRCC) and its potential mechanism of promoting tumor progression. Methods: The expression levels and clinical significance of PLAUR, along with the associated signaling pathways, were extensively investigated in ccRCC samples obtained from The Cancer Genome Atlas (TCGA). PLAUR expression in 20 pairs of ccRCC tumor tissues and the adjacent tissues was assessed using qRT-PCR and IHC staining. Additionally, a series of in vitro experiments were conducted to investigate the impact of PLAUR suppression on cellular proliferation, migration, invasion, cell cycle progression, and apoptosis in ccRCC. The Western blot analysis was employed to investigate the expression levels of pivotal genes associated with the PI3K/AKT/mTOR signaling pathway. Results: The expression of PLAUR was significantly upregulated in ccRCC compared to normal renal tissues, and higher PLAUR expression in ccRCC was associated with a poorer prognosis than low expression. The in-vitro functional investigations demonstrated that knockdown of PLAUR significantly attenuated the proliferation, migration, and invasion capabilities of ccRCC cells. Concurrently, PLAUR knockdown effectively induced cellular apoptosis, modulated the cell cycle, inhibited the EMT process, and attenuated the activation of the PI3K/AKT/mTOR signaling pathway. PLAUR may represent a key mechanism underlying ccRCC progression. Conclusions: The involvement of PLAUR in ccRCC progression may be achieved through the activation of the PI3K/AKT/mTOR signaling pathway, making it a reliable biomarker for the identification and prediction of ccRCC.


Assuntos
Carcinoma de Células Renais , Proliferação de Células , Progressão da Doença , Neoplasias Renais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Masculino , Feminino , Apoptose , Movimento Celular/genética , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Prognóstico , Regulação para Cima
5.
Cancer Innov ; 3(4): e128, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38948248

RESUMO

Background: Increasing evidence has shown that connexins are involved in the regulation of tumor development, immune escape, and drug resistance. This study investigated the gene expression patterns, prognostic values, and potential mechanisms of connexins in breast cancer. Methods: We conducted a comprehensive analysis of connexins using public gene and protein expression databases and clinical samples from our institution. Connexin mRNA expressions in breast cancer and matched normal tissues were compared, and multiomics studies were performed. Results: Gap junction beta-2 mRNA was overexpressed in breast cancers of different pathological types and molecular subtypes, and its high expression was associated with poor prognosis. The tumor membrane of the gap junction beta-2 mutated group was positive, and the corresponding protein was expressed. Somatic mutation and copy number variation of gap junction beta-2 are rare in breast cancer. The gap junction beta-2 transcription level in the p110α subunit of the phosphoinositide 3-kinase mutant subgroup was higher than that in the wild-type subgroup. Gap junction beta-2 was associated with the phosphoinositide 3-kinase-Akt signaling pathway, extracellular matrix-receptor interaction, focal adhesion, and proteoglycans in cancer. Furthermore, gap junction beta-2 overexpression may be associated with phosphoinositide 3-kinase and histone deacetylase inhibitor resistance, and its expression level correlated with infiltrating CD8+ T cells, macrophages, neutrophils, and dendritic cells. Conclusions: Gap junction beta-2 may be a promising therapeutic target for targeted therapy and immunotherapy and may be used to predict breast cancer prognosis.

6.
Neurosci Biobehav Rev ; : 105788, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950685

RESUMO

Multiple sclerosis (MS) is an autoimmune disease, governed by oligodendrocyte (OL) dystrophy and central nervous system (CNS) demyelination manifesting variable neurological impairments. Mitochondrial mechanisms may drive myelin biogenesis maintaining the axo-glial unit according to dynamic requisite demands imposed by the axons they ensheath. The promotion of OL maturation and myelination by actively transporting thyroid hormone (TH) into the CNS and thereby facilitating key transcriptional and metabolic pathways that regulate myelin biogenesis is fundamental to sustain the profound energy demands at each axo-glial interface. Deficits in regulatory functions exerted through TH for these physiological roles to be orchestrated by mature OLs, can occur in genetic and acquired myelin disorders, whereby mitochondrial efficiency and eventual dysfunction can lead to profound oligodendrocytopathy, demyelination and neurodegenerative sequelae. TH-dependent transcriptional and metabolic pathways can be dysregulated during acute and chronic MS lesion activity depriving OLs from critical acetyl-CoA biochemical mechanisms governing myelin lipid biosynthesis and at the same time altering the generation of iron metabolism that may drive ferroptotic mechanisms, leading to advancing neurodegeneration.

7.
Cancer Diagn Progn ; 4(4): 396-401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962555

RESUMO

Background/Aim: Rapamycin inhibits the mTOR protein kinase. Methioninase (rMETase), by degrading methionine, targets the methionine addiction of cancer cells and has been shown to improve the efficacy of chemotherapy drugs, reducing their effective doses. Our previous study demonstrated that rapamycin and rMETase work synergistically against colorectal-cancer cells, but not on normal cells, when administered simultaneously in vitro. In the present study, we aimed to further our previous findings by exploring whether  synergy exists between rapamycin and rMETase when used sequentially against HCT-116 colorectal-carcinoma cells, compared to simultaneous administration, in vitro. Materials and Methods: The half-maximal inhibitory concentrations (IC50) of rapamycin alone and rMETase alone against the HCT-116 human colorectal-cancer cell line were previously determined using the CCK-8 cell viability assay (11). We then examined the efficacy of rapamycin and rMETase, both at their IC50, administered simultaneously or sequentially on the HCT-116 cell line, with rapamycin administered before rMETase and vice versa. Results: The IC50 for rapamycin and rMETase, determined from previous experiments (11), was 1.38 nM and 0.39 U/ml, respectively, of HCT-116 cells. When rMETase was administered four days before rapamycin, both at the IC50, there was a 30.46% inhibition of HCT-116 cells. When rapamycin was administered four days before rMETase, both at the IC50, there was an inhibition of 41.13%. When both rapamycin and rMETase were simultaneously administered, both at the IC50, there was a 71.03% inhibition. Conclusion: Rapamycin and rMETase have synergistic efficacy against colorectal-cancer cells in vitro when administered simultaneously, but not sequentially.

8.
Tissue Cell ; 89: 102455, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38964084

RESUMO

Breast cancer (BC) is the most common type of fatal cancer in women. New therapeutic strategies need to be explored to enhance the efficacy of doxorubicin by overcoming the resistance of BC cells. NUF2 is a component of the Ndc80 centromere complex and is a key substance in mediating mitosis and affects the progression of multiple tumors. However, the role as well as mechanisms of NUF2 resistance in BC remain unclear. This study aims to reveal the role of NUF2 in drug resistance in BC. We here revealed that NUF2 was highly expressed in human BC. NUF2 depletion-derived exosomes blocked the growth of BC cells. Further, NUF2 ablation-derived exosomes inhibited autophagy in BC cells. Also, NUF2 ablation-derived exosomes improved doxorubicin resistance in BC cells. Mechanically, NUF2 ablation-derived exosomes blocked PI3K/AKT/mTOR axis in BC cells. In summary, NUF2 ablation-derived exosomes blocked the autophagy of BC cells and improved doxorubicin resistance via mediating PI3K/AKT/mTOR axis.

9.
Cancer Cell Int ; 24(1): 233, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965615

RESUMO

MicroRNAs (miRNAs) are small RNA molecules that regulate genes and are involved in various biological processes, including cancer development. Researchers have been exploring the potential of miRNAs as therapeutic agents in cancer treatment. Specifically, targeting the mammalian target of the rapamycin (mTOR) pathway with miRNAs has shown promise in improving the effectiveness of radiotherapy (RT), a common cancer treatment. This review provides an overview of the current understanding of miRNAs targeting mTOR as therapeutic agents to enhance RT outcomes in cancer patients. It emphasizes the importance of understanding the specific miRNAs that target mTOR and their impact on radiosensitivity for personalized cancer treatment approaches. The review also discusses the role of mTOR in cell homeostasis, cell proliferation, and immune response, as well as its association with oncogenesis. It highlights the different ways in which miRNAs can potentially affect the mTOR pathway and their implications in immune-related diseases. Preclinical findings suggest that combining mTOR modulators with RT can inhibit tumor growth through anti-angiogenic and anti-vascular effects, but further research and clinical trials are needed to validate the efficacy and safety of using miRNAs targeting mTOR as therapeutic agents in combination with RT. Overall, this review provides a comprehensive understanding of the potential of miRNAs targeting mTOR to enhance RT efficacy in cancer treatment and emphasizes the need for further research to translate these findings into improved clinical outcomes.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38967079

RESUMO

BACKGROUND: Osteosarcoma is considered as the most prevalent form of primary malignant bone cancer, prompting a pressing need for novel therapeutic options. Arnicolide D, a sesquiterpene lactone derived from the traditional Chinese herbal medicine Centipeda minima (known as E Bu Shi Cao in Chinese), showed anticancer efficacy against several kinds of cancers. However, its effect on osteosarcoma remains unclear. OBJECTIVE: This study aimed to investigate the anticancer activity of arnicolide D and the underlying molecular mechanism of its action in osteosarcoma cells, MG63 and U2OS. METHODS: Cell viability and proliferation were evaluated through MTT assay and colony formation assay following 24 h and 48 h treatment with different concentrations of arnicolide D. Flow cytometry was employed to examine cell cycle progression and apoptosis after 24 h treatment of arnicolide D. Western blotting was performed to determine the expression of the PI3k, Akt and m-TOR and their phosphorylated forms. RESULTS: Our findings revealed that arnicolide D treatment resulted in a significant reduction in cell viability, the inhibition of proliferation, and the induction of apoptosis and cell cycle arrest in the G2/M phase. Furthermore, arnicolide D could inhibit the activation of PI3K/Akt/mTOR pathway in osteosarcoma cells. CONCLUSION: Based on our results, arnicolide D demonstrated significant anti-osteosarcoma activity and held the potential to be considered as a therapeutic candidate for osteosarcoma in the future.

11.
Aging (Albany NY) ; 162024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38967628

RESUMO

OBJECTIVE: This investigation seeks to elucidate the role of the Granulocyte Colony-Stimulating Factor (G-CSF) in the progression of hepatocellular carcinoma (HCC), as well as the impact of the substance on related signaling pathways within the disease matrix. METHODS: Nude mouse tumor-bearing assay was used to detect tumor progression. Levels of Mannose/CD68 and CD34/Mannose within these samples and the concentrations of Mannose and inducible Nitric Oxide Synthase (iNOS) in macrophages were quantified using immunofluorescence techniques. The angiogenic capability was assessed via tube formation assays, and protein expressions of G-CSF, Vascular Endothelial Growth Factor (VEGF), Transforming Growth Factor-beta (TGF-ß), Matrix Metalloproteinases 2 and 9 (MMP2/9), SH2-containing protein tyrosine phosphatase-2 (SHP-2), phosphorylated PI3K/total PI3K (P-PI3K/t-PI3K), phosphorylated AKT/total AKT (P-AKT/t-AKT), and phosphorylated mTOR/total mTOR (P-mTOR/t-mTOR) were measured through Western Blot analysis in both tumor tissues and macrophages. RESULTS: Administration of G-CSF resulted in a marked augmentation of tumor volume. Macrophage Mannose expression was significantly elevated upon G-CSF treatment, while iNOS levels were conspicuously diminished. G-CSF substantially enhanced the secretion of VEGF, TGF-ß, and MMPs in tumor tissues. Macrophage parameters, following incubation in G-CSF pre-treated conditioned medium, indicated enhanced tube-forming capabilities relative to the control, an effect mitigated by the introduction of specific inhibitors. Furthermore, the G-CSF group exhibited a notable reduction in SHP-2 expression, alongside a substantial elevation in the phosphorylation levels of the PI3K/AKT/mTOR pathway proteins across all tumor-bearing paradigms. CONCLUSION: G-CSF ostensibly facilitates the advancement of hepatocellular carcinoma by activating the PI3K/AKT/mTOR signaling cascade within Tumor-Associated Macrophages (TAM).

12.
Eur J Clin Pharmacol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900307

RESUMO

PURPOSE: The aim of this study was to quantitatively compare the efficacy and safety of CDK4/6 inhibitors and PI3K/AKT/mTOR inhibitors for ER+/HER2- metastatic breast cancer. METHODS: A parametric survival function was used to analyze the time course of overall survival (OS) and progression-free survival (PFS). The objective response rate (ORR) and the incidence of any grade and grade 3-4 adverse events were summarized using the random-effects model of a single-arm meta-analysis. RESULTS: This study included 44 arms from 48 publications, with a total sample size of 7881 patients. Our study revealed that CDK4/6 inhibitors had a median OS of 40.7 months, a median PFS of 14.8 months, and an ORR of 40%, whereas PI3K/AKT/mTOR inhibitors had a median OS of 29.8 months, a median PFS of 8.3 months, and an ORR of 20%. Additionally, this study also found that the proportion of patients with visceral metastases and specific endocrine therapy used in combination significantly impact OS and PFS. In terms of adverse events, CDK4/6 inhibitors exhibited a relatively high incidence of hematological adverse events. CONCLUSION: Our study provides solid quantitative evidence for the first-line recommendation of CDK4/6 inhibitors combined with endocrine therapy for ER+/HER2- metastatic breast cancer in clinical guidelines.

13.
Oncoimmunology ; 13(1): 2369373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915784

RESUMO

Dendritic cells (DCs) are the main antigen presenting cells of the immune system and are essential for anti-tumor responses. DC-based immunotherapies are used in cancer treatment, but their functionality is not optimized and their clinical efficacy is currently limited. Approaches to improve DC functionality in anti-tumor immunity are therefore required. We have previously shown that the loss of ß2-integrin-mediated adhesion leads to epigenetic reprogramming of bone marrow-derived DCs (BM-DCs), resulting in an increased expression of costimulatory markers (CD86, CD80, and CD40), cytokines (IL-12) and the chemokine receptor CCR7. We now show that the loss of ß2-integrin-mediated adhesion of BM-DCs also leads to a generally suppressed metabolic profile, with reduced metabolic rate, decreased ROS production, and lowered glucose uptake in cells. The mRNA levels of glycolytic enzymes and glucose transporters were reduced, indicating transcriptional regulation of the metabolic phenotype. Surprisingly, although signaling through a central regulator of immune cell metabolisms, the mechanistic target of rapamycin (mTOR), was increased in BM-DCs with dysfunctional integrins, rapamycin treatment revealed that mTOR signaling was not involved in suppressing DC metabolism. Instead, bioinformatics and functional analyses showed that the Ikaros transcription factor may be involved in regulating the metabolic profile of non-adhesive DCs. Inversely, we found that induction of metabolic stress through treatment of cells with low levels of an inhibitor of glycolysis, 2-deoxyglucose (2DG), led to increased BM-DC activation. Specifically, 2DG treatment led to increased levels of Il-12 and Ccr7 mRNA, increased production of IL-12, increased levels of cell surface CCR7 and increased in vitro migration and T cell activation potential. Furthermore, 2DG treatment led to increased histone methylation in cells (H3K4me3, H3K27me3), indicating metabolic reprogramming. Finally, metabolic stress induced by 2DG treatment led to improved BM-DC-mediated anti-tumor responses in vivo in a melanoma cancer model, B16-OVA. In conclusion, our results indicate a role for ß2-integrin-mediated adhesion in regulating a novel type of metabolic reprogramming of DCs and DC-mediated anti-tumor responses, which may be targeted to enhance DC-mediated anti-tumor responses in cancer immunotherapy.


Assuntos
Antígenos CD18 , Células Dendríticas , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Animais , Camundongos , Antígenos CD18/metabolismo , Antígenos CD18/genética , Camundongos Endogâmicos C57BL , Adesão Celular , Receptores CCR7/metabolismo , Receptores CCR7/genética , Melanoma Experimental/patologia , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Humanos , Reprogramação Metabólica
14.
Cell Physiol Biochem ; 58(3): 250-272, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865588

RESUMO

BACKGROUND/AIMS: Motivated by the vacuolar proton pump's importance in cancer, we investigate the effects of proton pump inhibition on breast cancer cell migration and proliferation, F-actin polymerization, lamin A/C, heterochromatin, and ETV7 expressions, nuclear size and shape, and AKT/mTOR signaling. METHODS: Lowly metastatic MCF7 and highly metastatic MDA-MB-231 breast cancer cells were treated with 120 nM of proton pump inhibitor Bafilomycin A1 for 24 hours. Cell migration was studied with wound- scratch assays, ATP levels with a chemiluminescent assay; cell proliferation was quantified by a cell area expansion assay. Nuclear size and shape were determined using DAPI nuclear stain and fluorescence microscopy. The levels of F-actin, lamin A/C, heterochromatin, and ETV7 were quantified using both immunocytochemistry and western blots; p-mTORC1, p-mTORC2, mTOR, p-AKT, and AKT were measured by western blots. RESULTS: We reveal that proton pump inhibition reduces F-actin polymerization, cell migration, proliferation, and increases heterochromatin in both lowly and highly metastatic cells. Surprisingly, Bafilomycin decreases lamin A/C in both cell lines. Inhibition has different effects on ETV7 expression in lowly and highly metastatic cells, as well as nuclear area, perimeter, and circularity. Bafilomycin also significantly decreases p-mTORC1, p-MTORC2, and MTOR expression in both cell lines, whereas it significantly decreases p-AKT in lowly metastatic cells and surprisingly significantly increases p-AKT in highly metastatic cells. Our proton pump inhibition protocol reduces V-ATPase levels (~25%) within three hours. V-ATPase levels vary in time for both control and inhibited cells, and inhibition reduces cellular ATP. CONCLUSION: Proton pumps promote F-actin polymerization and decrease heterochromatin, facilitating invasion. These pumps also upregulate both mTORC1 and mTORC2, thus highlighting the relevance of vacuolar proton pumps as metastatic cancer targets.


Assuntos
Actinas , Neoplasias da Mama , Movimento Celular , Proliferação de Células , Heterocromatina , Macrolídeos , Alvo Mecanístico do Complexo 2 de Rapamicina , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , ATPases Vacuolares Próton-Translocadoras , Humanos , Actinas/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Macrolídeos/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Heterocromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Células MCF-7
15.
Neuromolecular Med ; 26(1): 24, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864941

RESUMO

Depression frequently occurs following traumatic brain injury (TBI). However, the role of Fibromodulin (FMOD) in TBI-related depression is not yet clear. Previous studies have suggested FMOD as a potential key factor in TBI, yet its association with depression post-TBI and underlying mechanisms are not well understood. Serum levels of FMOD were measured in patients with traumatic brain injury using qPCR. The severity of depression was assessed using the self-depression scale (SDS). Neurological function, depressive state, and cognitive function in mice were assessed using the modified Neurological Severity Score (mNSS), forced swimming test (FST), tail suspension test (TST), Sucrose Preference Test (SPT), and morris water maze (MWM). The morphological features of mouse hippocampal synapses and neuronal dendritic spines were revealed through immunofluorescence, transmission electron microscopy, and Golgi-Cox staining. The protein expression levels of FMOD, MAP2, SYP, and PSD95, as well as the phosphorylation levels of the PI3K/AKT/mTOR signaling pathway, were detected through Western blotting. FMOD levels were decreased in TBI patients' serum. Overexpression of FMOD preserved neuronal function and alleviated depression-like behaviour, increased synaptic protein expression, and induced ultrastructural changes in hippocampal neurons. The increased phosphorylation of PI3K, AKT, and mTOR suggested the involvement of the PI3K/AKT/mTOR signaling pathway in FMOD's protective effects. FMOD exhibits potential as a therapeutic target for depression related to TBI, with its protective effects potentially mediated through the PI3K/AKT/mTOR signaling pathway.


Assuntos
Lesões Encefálicas Traumáticas , Depressão , Fibromodulina , Hipocampo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Lesões Encefálicas Traumáticas/complicações , Espinhas Dendríticas/efeitos dos fármacos , Depressão/etiologia , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sinapses , Serina-Treonina Quinases TOR/metabolismo , Fibromodulina/genética , Fibromodulina/metabolismo
16.
Cancers (Basel) ; 16(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893278

RESUMO

Ovarian cancer is an umbrella term covering a number of distinct subtypes. Endometrioid and clear-cell ovarian carcinoma are endometriosis-associated ovarian cancers (EAOCs) frequently arising from ectopic endometrium in the ovary. The mechanistic target of rapamycin (mTOR) is a crucial regulator of cellular homeostasis and is dysregulated in both endometriosis and endometriosis-associated ovarian cancer, potentially favouring carcinogenesis across a spectrum from benign disease with cancer-like characteristics, through an atypical phase, to frank malignancy. In this review, we focus on mTOR dysregulation in endometriosis and EAOCs, investigating cancer driver gene mutations and their potential interaction with the mTOR pathway. Additionally, we explore the complex pathogenesis of transformation, considering environmental, hormonal, and epigenetic factors. We then discuss postmenopausal endometriosis pathogenesis and propensity for malignant transformation. Finally, we summarize the current advancements in mTOR-targeted therapeutics for endometriosis and EAOCs.

17.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893517

RESUMO

Isoliquiritigenin (ISL) is a chalcone that has shown great potential in the treatment of cancer. However, its relatively weak activity and low water solubility limit its clinical application. In this study, we designed and synthesized 21 amino acid ester derivatives of ISL and characterized the compounds using 1H NMR and 13C NMR. Among them, compound 9 (IC50 = 14.36 µM) had a better inhibitory effect on human cervical cancer (Hela) than ISL (IC50 = 126.5 µM), and it was superior to the positive drug 5-FU (IC50 = 33.59 µM). The mechanism of the action experiment showed that compound 9 could induce Hela cell apoptosis and autophagy through the PI3K/Akt/mTOR pathway.


Assuntos
Aminoácidos , Antineoplásicos , Apoptose , Chalconas , Desenho de Fármacos , Ésteres , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Células HeLa , Aminoácidos/química , Aminoácidos/farmacologia , Ésteres/química , Ésteres/farmacologia , Ésteres/síntese química , Apoptose/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade , Fosfatidilinositol 3-Quinases/metabolismo , Autofagia/efeitos dos fármacos , Estrutura Molecular
18.
Chem Biodivers ; : e202400934, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898600

RESUMO

Ginseng saponins ( ginsenosides), bioactive compounds derived from ginseng, are widely used natural products with potent therapeutic properties in the management of various ailments, particularly tumors, cardiovascular and cerebrovascular diseases, and immune system disorders. Autophagy, a highly regulated and multistep process involving the breakdown of impaired organelles and macromolecules by autophagolysosomes and autophagy-related genes (ATGs), has gained increasing attention as a potential target for ginsenoside-mediated disease treatment. This review aims to provide a comprehensive overview of recent research advances in the understanding of autophagy-related signaling pathways and the role of ginsenoside-mediated autophagy regulation. By delving into the intricate autophagy signaling pathways underpinning the pharmacological properties of ginsenosides, we highlight their therapeutic potential in addressing various conditions. Our findings serve as a comprehensive reference for further investigation into the medicinal properties of ginseng or ginseng-related products.

19.
Cancer Sci ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889220

RESUMO

RNA-binding proteins can regulate nucleotide metabolism and gene expression. UPF3B regulator of nonsense mediated mRNA decay (UPF3B) exhibits dysfunction in cancers. However, its role in the progression of hepatocellular carcinoma (HCC) is still insufficiently understood. Here, we found that UPF3B was markedly upregulated in HCC samples and associated with adverse prognosis in patients. UPF3B dramatically promoted HCC growth both in vivo and in vitro. Mechanistically, UPF3B was found to bind to PPP2R2C, a regulatory subunit of PP2A, boosting its mRNA degradation and activating the PI3K/AKT/mTOR pathway. E2F transcription factor 6 (E2F6) directly binds to the UPF3B promoter to facilitate its transcription. Together, the E2F6/UPF3B/PPP2R2C axis promotes HCC growth through the PI3K/AKT/mTOR pathway. Hence, it could be a promising therapeutic target for treating HCC.

20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 670-678, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38926952

RESUMO

OBJECTIVE: To investigate the clinical significance, functional role and potential downstream mechanism of USP5 in acute myeloid leukemia (AML). METHODS: The expression of USP5 in AML and normal tissues and its correlation with patients' survival were analyzed based on TCGA database. USP5 was knocked down and overexpressed in Jurkat and HL-60 cells using lentivirus. USP5 mRNA and protein expression were detected by RT-qPCR and Western blot, respectively. Cell proliferation and growth were measured by CCK-8 and methylcellulose colony-forming assay. Flow cytometry was used to analyze cell cycle and apoptosis. RESULTS: USP5 was highly expression in AML compared with normal tissues. Up-regulation of USP5 was negatively correlated with the survival of AML patients. USP5 knockdown and overexpression inhibited and promoted the proliferation and colony growth of AML cells, respectively. Cell cycle arrest and apoptosis were induced in USP5 knockdown Jurkat and HL-60 cells. Furthermore, USP5 knockdown inhibited the phosphrylation of AKT, mTOR and 4EBP1. CONCLUSION: Overexpression of USP5 predicts poor survival of AML patients. Targeting USP5 suppresses AKT/mTOR/4EBP1 signaling and reduces the proliferation and growth of AML cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Proliferação de Células , Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células HL-60 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Células Jurkat , Proteases Específicas de Ubiquitina/metabolismo , Relevância Clínica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA