Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 32: 101336, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36111249

RESUMO

Astrin/SPAG5 is a mitotic spindle protein found to be overexpressed in several human cancers, functioning as an oncogene. The expression of Astrin has not been reported so far in colon cancer, nor has it been related to HIFs expression or action. Since mTOR, Astrin, and hypoxia-inducible factors (HIFs) are involved in promoting the growth and survival of cancer cells, we investigated the possible interaction between them in cultured colon cancer cells. Both Astrin and HIF-1α and HIF-2α protein levels were found only expressed in colon cancer cells compared with nonmalignant cells. Our data indicate that mTOR stimulates both Astrin and HIFs expression, but notably, mTORC activity seems to be independent of Astrin expression levels. However, while HIF-1α or HIF-2α stable knockdown increased Astrin expression, mTOR activity was affected in an opposite way by HIF-1α or HIF-2α silencing, indicating that HIF-1α inhibits mTOR while HIF-2α stimulates its activity. These data suggest that mTOR, Astrin, and HIFs compose an integrative network interacting to activate positive or negative regulatory loops probably to coordinate cancer cell growth, metabolism, and survival under oncogenic stress.

2.
Dev Cell ; 53(2): 141-153.e4, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32275887

RESUMO

Autophagy plays critical roles in neurodegeneration and development, but how this pathway is organized and regulated in neurons remains poorly understood. Here, we find that the dynein adaptor RILP is essential for retrograde transport of neuronal autophagosomes, and surprisingly, their biogenesis as well. We find that induction of autophagy by mTOR inhibition specifically upregulates RILP expression and its localization to autophagosomes. RILP depletion or mutations in its LC3-binding LIR motifs strongly decrease autophagosome numbers suggesting an unexpected RILP role in autophagosome biogenesis. We find that RILP also interacts with ATG5 on isolation membranes, precluding premature dynein recruitment and autophagosome transport. RILP inhibition impedes autophagic turnover and causes p62/sequestosome-1 aggregation. Together, our results identify an mTOR-responsive neuronal autophagy pathway, wherein RILP integrates the processes of autophagosome biogenesis and retrograde transport to control autophagic turnover. This pathway has important implications for understanding how autophagy contributes to neuronal function, development, and disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Autofagossomos , Proteína 5 Relacionada à Autofagia/genética , Transporte Biológico , Dineínas/metabolismo , Células HeLa , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/genética , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA