Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Nanomicro Lett ; 17(1): 16, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39327317

RESUMO

Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots. Compared to active sensing devices, passive piezoelectric and triboelectric tactile sensors consume less power, but lack the capability to resolve static stimuli. Here, we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired, passive, and bio-friendly tactile sensors for resolving both static and dynamic stimuli. Specifically, to emulate the polarization process of natural sensory cells, conjugated polymers (including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), polyaniline, or polypyrrole) are controllably polarized into two opposite states to create artificial potential differences. The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized. Then, a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs. Compared with the currently existing tactile sensing devices, the developed tactile sensors feature distinct characteristics including fully organic composition, high sensitivity (up to 773 mV N-1), ultralow power consumption (nW), as well as superior bio-friendliness. As demonstrations, both single point tactile perception (surface texture perception and material property perception) and two-dimensional tactile recognitions (shape or profile perception) with high accuracy are successfully realized using self-defined machine learning algorithms. This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39324357

RESUMO

PURPOSE: The aim of this study was to develop and train a machine learning (ML) algorithm to create a clinical decision support tool (i.e., ML-driven probability calculator) to be used in clinical practice to estimate recurrence rates following an arthroscopic Bankart repair (ABR). METHODS: Data from 14 previously published studies were collected. Inclusion criteria were (1) patients treated with ABR without remplissage for traumatic anterior shoulder instability and (2) a minimum of 2 years follow-up. Risk factors associated with recurrence were identified using bivariate logistic regression analysis. Subsequently, four ML algorithms were developed and internally validated. The predictive performance was assessed using discrimination, calibration and the Brier score. RESULTS: In total, 5591 patients underwent ABR with a recurrence rate of 15.4% (n = 862). Age <35 years, participation in contact and collision sports, bony Bankart lesions and full-thickness rotator cuff tears increased the risk of recurrence (all p < 0.05). A single shoulder dislocation (compared to multiple dislocations) lowered the risk of recurrence (p < 0.05). Due to the unavailability of certain variables in some patients, a portion of the patient data had to be excluded before pooling the data set to create the algorithm. A total of 797 patients were included providing information on risk factors associated with recurrence. The discrimination (area under the receiver operating curve) ranged between 0.54 and 0.57 for prediction of recurrence. CONCLUSION: ML was not able to predict the recurrence following ABR with the current available predictors. Despite a global coordinated effort, the heterogeneity of clinical data limited the predictive capabilities of the algorithm, emphasizing the need for standardized data collection methods in future studies. LEVEL OF EVIDENCE: Level IV, retrospective cohort study.

3.
Heliyon ; 10(17): e37256, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296076

RESUMO

Background: It has been demonstrated that aberrant androgen receptor (AR) signaling contributes to the pathogenesis of prostate cancer (PCa). To date, the most efficacious strategy for the treatment of PCa remains to target the AR signaling axis. However, numerous PCa patients still face the issue of overtreatment or undertreatment. The establishment of a precise risk prediction model is urgently needed to distinguish patients with high-risk and select appropriate treatment modalities. Methods: In this study, a consensus AR regulatory gene-related signature (ARS) was developed by integrating a total of 101 algorithm combinations of 10 machine learning algorithms. We evaluated the value of ARS in predicting patient prognosis and the therapeutic effects of the various treatments. Additionally, we conducted a screening of therapeutic targets and agents for high-risk patients, followed by the verification in vitro and in vivo. Results: ARS was an independent risk factor for biochemical recurrence and distant metastasis in PCa patients. The enhanced and consistent prognostic predictive capability of ARS across various platforms was confirmed when compared with 44 previously published signatures. More importantly, PCa patients in the ARShigh group benefit more from PARP inhibitors and immunotherapy, while chemotherapy, radiotherapy, and AR-targeted therapy are more effective for ARSlow patients. The results of in silico screening suggest that AURKB could potentially serve as a promising therapeutic target for ARShigh patients. Conclusions: Collectively, this prediction model based on AR regulatory genes holds great clinical translational potential to solve the dilemma of treatment choice and identify potential novel therapeutic targets in PCa.

4.
J Cancer ; 15(16): 5376-5395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247594

RESUMO

Purpose: Colorectal cancer is the third most common cause of cancer death worldwide. We probed the correlations between E3 ubiquitin ligase (E3)-related genes (ERGs) and colon cancer prognosis and immune responses. Methods: Gene expression profiles and clinical data of patients with colon cancer were acquired from the TCGA, GTEx, GSE17537 and GSE29621 databases. ERGs were identified by coexpression analysis. WGCNA and differential expression analysis were subsequently conducted. Consensus clustering identified two molecular clusters. Differential analysis of the two clusters and Cox regression were then conducted. A prognostic model was constructed based on 10 machine learning algorithms and 92 algorithm combinations. The CIBERSORT, ssGSEA and TIMER algorithms were used to estimate immune infiltration. The OncoPredict algorithm and The Cancer Immunome Atlas (TCIA) predicted susceptibility to chemotherapeutic and targeted drugs and immunotherapy sensitivity. CCK-8, scratch-wound and RT‒PCR assays were subsequently conducted. Results: Two ERG-associated clusters were identified. The prognosis and immune function of patients in cluster A were superior to those of patients in cluster B. We constructed a prognostic model with perfect predictive capability and validated it in internal and external colon cancer datasets. We discovered significant discrepancies in immune infiltration and immune checkpoints between different risk groups. The group with high-risk had a reduced half-maximal inhibitory concentration (IC50) for some routine antitumor drugs and reduced susceptibility to immunotherapy. In vitro experiments demonstrated that the ectopic expression of PRELP inhibited the migration and proliferation of CRC cells. Conclusions: In summary, we identified novel molecular subtypes and developed a prognostic model, which will help a lot in the advancement of better forecasting and therapeutic approaches.

5.
Technol Health Care ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39177617

RESUMO

BACKGROUND: Brain tumor is an extremely dangerous disease with a very high mortality rate worldwide. Detecting brain tumors accurately is crucial due to the varying appearance of tumor cells and the dimensional irregularities in their growth. This poses a significant challenge for detection algorithms. Currently, there are numerous algorithms utilized for this purpose, ranging from transform-based methods to those rooted in machine learning techniques. These algorithms aim to enhance the accuracy of detection despite the complexities involved in identifying brain tumor cells. The major limitation of these algorithms is the mapping of extracted features of a brain tumor in the classification algorithms. OBJECTIVE: To employ a combination of transform methods to extract texture feature from brain tumor images. METHODS: This paper employs a combination of transform methods based on sub band decomposition for texture feature extraction from MRI scans, hybrid feature optimization methods using firefly and glow-worm algorithms for selection of feature, employment of MKSVM algorithm and stacking ensemble classifier for classification and application of the feature of fusion of different feature extraction methods. RESULTS: The algorithm under consideration has been put into practice using MATLAB, utilizing datasets from BRATS (Brain Tumor Segmentation) for the years 2013, 2015, and 2018. These datasets serve as the foundation for testing and validating the algorithm's performance across different time periods, providing a comprehensive assessment of its effectiveness in detecting brain tumors. The proposed algorithm achieves maximum detection accuracy, detection sensitivity and specificity up to 98%, 99% and 99.5% respectively. The experimental outcomes showcase the efficiency of the algorithm in detection of brain tumor. CONCLUSION: The proposed work mainly contributes in brain tumor detection in the following aspects: a) use of combination of transform methods for texture feature extraction from MRI scans b) hybrid feature selection methods using firefly and glow-worm optimization algorithms for selection of feature c) employment of MKSVM algorithm and stacking ensemble classifier for classification and application of the feature of fusion of different feature extraction methods.

6.
Cancer Lett ; 601: 217149, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39117066

RESUMO

Understanding the determinants of long-term liver metastasis (LM) outcomes in gastrointestinal stromal tumor (GIST) patients is crucial. We established the feature selection model of intratumoral microbiome at the surgery, achieving robust predictive accuracies of 0.953 and 0.897 AUCs in discovery (n = 74) and validation (n = 34) cohorts, respectively. Notably, despite the significant reduction in LM occurrence with adjuvant imatinib (AI) treatment, intratumoral microbiome exerted independently stronger effects on post-operative LM. Employing both 16S and full-length rRNA sequencing, we pinpoint intracellular Shewanella algae as a foremost LM risk factor in both AI- and non-AI-treated patients. Experimental validation confirmed S. algae's intratumoral presence in GIST, along with migration/invasion-promoting effects on GIST cells. Furthermore, S. algae promoted LM and impeded AI treatment in metastatic mouse models. Our findings advocate for incorporating intratumoral microbiome evaluation at surgery, and propose S. algae as a therapeutic target for LM suppression in GIST.


Assuntos
Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Mesilato de Imatinib , Neoplasias Hepáticas , Tumores do Estroma Gastrointestinal/patologia , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/microbiologia , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/microbiologia , Animais , Camundongos , Feminino , Masculino , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/microbiologia , Quimioterapia Adjuvante/métodos , Pessoa de Meia-Idade , Microbiota/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Idoso
7.
Cancers (Basel) ; 16(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39061176

RESUMO

The early 2-factor (E2F) family of transcription factors, including E2F1 through 8, plays a critical role in apoptosis, metabolism, proliferation, and angiogenesis within glioblastoma (GBM). However, the specific functions of E2F transcription factors (E2Fs) and their impact on the malignancy of Bevacizumab (BVZ)-responsive GBM subtypes remain unclear. This study used data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI), and Gene Expression Omnibus (GEO) to explore the impact of eight E2F family members on the clinical characteristics of BVZ-responsive GBM subtypes and possible mechanisms of recurrence after BVZ treatment. Using machine learning algorithms, including TreeBagger and deep neural networks, we systematically predicted and validated GBM patient survival terms based on the expression profiles of E2Fs across BVZ-responsive GBM subtypes. Our bioinformatics analyses suggested that a significant increase in E2F8 post-BVZ treatment may enhance the function of angiogenesis and stem cell proliferation, implicating this factor as a candidate mechanism of GBM recurrence after treatment. In addition, BVZ treatment in unresponsive GBM patients may potentially worsen disease progression. These insights underscore that E2F family members play important roles in GBM malignancy and BVZ treatment response, highlighting their potential as prognostic biomarkers, therapeutic targets, and recommending precision BVZ treatment to individual GBM patients.

8.
World J Gastrointest Surg ; 16(6): 1571-1581, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38983351

RESUMO

BACKGROUND: Synchronous liver metastasis (SLM) is a significant contributor to morbidity in colorectal cancer (CRC). There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC. AIM: To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix (GLCM) features collected from magnetic resonance imaging (MRI). METHODS: Our study retrospectively enrolled 392 patients with CRC from Yichang Central People's Hospital from January 2015 to May 2023. Patients were randomly divided into a training and validation group (3:7). The clinical parameters and GLCM features extracted from MRI were included as candidate variables. The prediction model was constructed using a generalized linear regression model, random forest model (RFM), and artificial neural network model. Receiver operating characteristic curves and decision curves were used to evaluate the prediction model. RESULTS: Among the 392 patients, 48 had SLM (12.24%). We obtained fourteen GLCM imaging data for variable screening of SLM prediction models. Inverse difference, mean sum, sum entropy, sum variance, sum of squares, energy, and difference variance were listed as candidate variables, and the prediction efficiency (area under the curve) of the subsequent RFM in the training set and internal validation set was 0.917 [95% confidence interval (95%CI): 0.866-0.968] and 0.09 (95%CI: 0.858-0.960), respectively. CONCLUSION: A predictive model combining GLCM image features with machine learning can predict SLM in CRC. This model can assist clinicians in making timely and personalized clinical decisions.

9.
Front Immunol ; 15: 1424259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007147

RESUMO

Introduction: Costimulatory molecules are putative novel targets or potential additions to current available immunotherapy, but their expression patterns and clinical value in triple-negative breast cancer (TNBC) are to be clarified. Methods: The gene expression profiles datasets of TNBC patients were obtained from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Diagnostic biomarkers for stratifying individualized tumor immune microenvironment (TIME) were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithms. Additionally, we explored their associations with response to immunotherapy via the multiplex immunohistochemistry (mIHC). Results: A total of 60 costimulatory molecule genes (CMGs) were obtained, and we determined two different TIME subclasses ("hot" and "cold") through the K-means clustering method. The "hot" tumors presented a higher infiltration of activated immune cells, i.e., CD4 memory-activated T cells, resting NK cells, M1 macrophages, and CD8 T cells, thereby enriched in the B cell and T cell receptor signaling pathways. LASSO and SVM-RFE algorithms identified three CMGs (CD86, TNFRSF17 and TNFRSF1B) as diagnostic biomarkers. Following, a novel diagnostic nomogram was constructed for predicting individualized TIME status and was validated with good predictive accuracy in TCGA, GSE76250 and GSE58812 databases. Further mIHC conformed that TNBC patients with high CD86, TNFRSF17 and TNFRSF1B levels tended to respond to immunotherapy. Conclusion: This study supplemented evidence about the value of CMGs in TNBC. In addition, CD86, TNFRSF17 and TNFRSF1B were found as potential biomarkers, significantly promoting TNBC patient selection for immunotherapeutic guidance.


Assuntos
Biomarcadores Tumorais , Imuno-Histoquímica , Aprendizado de Máquina , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Humanos , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/diagnóstico , Microambiente Tumoral/imunologia , Feminino , Algoritmos , Perfilação da Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Imunoterapia , Transcriptoma
10.
Front Immunol ; 15: 1427661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015570

RESUMO

Background: Osteosarcoma primarily affects children and adolescents, with current clinical treatments often resulting in poor prognosis. There has been growing evidence linking programmed cell death (PCD) to the occurrence and progression of tumors. This study aims to enhance the accuracy of OS prognosis assessment by identifying PCD-related prognostic risk genes, constructing a PCD-based OS prognostic risk model, and characterizing the function of genes within this model. Method: We retrieved osteosarcoma patient samples from TARGET and GEO databases, and manually curated literature to summarize 15 forms of programmed cell death. We collated 1621 PCD genes from literature sources as well as databases such as KEGG and GSEA. To construct our model, we integrated ten machine learning methods including Enet, Ridge, RSF, CoxBoost, plsRcox, survivalSVM, Lasso, SuperPC, StepCox, and GBM. The optimal model was chosen based on the average C-index, and named Osteosarcoma Programmed Cell Death Score (OS-PCDS). To validate the predictive performance of our model across different datasets, we employed three independent GEO validation sets. Moreover, we assessed mRNA and protein expression levels of the genes included in our model, and investigated their impact on proliferation, migration, and apoptosis of osteosarcoma cells by gene knockdown experiments. Result: In our extensive analysis, we identified 30 prognostic risk genes associated with programmed cell death (PCD) in osteosarcoma (OS). To assess the predictive power of these genes, we computed the C-index for various combinations. The model that employed the random survival forest (RSF) algorithm demonstrated superior predictive performance, significantly outperforming traditional approaches. This optimal model included five key genes: MTM1, MLH1, CLTCL1, EDIL3, and SQLE. To validate the relevance of these genes, we analyzed their mRNA and protein expression levels, revealing significant disparities between osteosarcoma cells and normal tissue cells. Specifically, the expression levels of these genes were markedly altered in OS cells, suggesting their critical role in tumor progression. Further functional validation was performed through gene knockdown experiments in U2OS cells. Knockdown of three of these genes-CLTCL1, EDIL3, and SQLE-resulted in substantial changes in proliferation rate, migration capacity, and apoptosis rate of osteosarcoma cells. These findings underscore the pivotal roles of these genes in the pathophysiology of osteosarcoma and highlight their potential as therapeutic targets. Conclusion: The five genes constituting the OS-PCDS model-CLTCL1, MTM1, MLH1, EDIL3, and SQLE-were found to significantly impact the proliferation, migration, and apoptosis of osteosarcoma cells, highlighting their potential as key prognostic markers and therapeutic targets. OS-PCDS enables accurate evaluation of the prognosis in patients with osteosarcoma.


Assuntos
Apoptose , Neoplasias Ósseas , Osteossarcoma , Osteossarcoma/genética , Osteossarcoma/mortalidade , Osteossarcoma/patologia , Humanos , Apoptose/genética , Prognóstico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/mortalidade , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Aprendizado de Máquina , Perfilação da Expressão Gênica , Transcriptoma , Proliferação de Células/genética , Bases de Dados Genéticas , Biologia Computacional/métodos
11.
Heliyon ; 10(13): e33637, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040248

RESUMO

Background: Revealing the role of anoikis resistance plays in CRC is significant for CRC diagnosis and treatment. This study integrated the CRC anoikis-related key genes (CRC-AKGs) and established a novel model for improving the efficiency and accuracy of the prognostic evaluation of CRC. Methods: CRC-ARGs were screened out by performing differential expression and univariate Cox analysis. CRC-AKGs were obtained through the LASSO machine learning algorithm and the LASSO Risk-Score was constructed to build a nomogram clinical prediction model combined with the clinical predictors. In parallel, this work developed a web-based dynamic nomogram to facilitate the generalization and practical application of our model. Results: We identified 10 CRC-AKGs and a risk-related prognostic Risk-Score was calculated. Multivariate COX regression analysis indicated that the Risk-Score, TNM stage, and age were independent risk factors that significantly associated with the CRC prognosis(p < 0.05). A prognostic model was built to predict the outcome with satisfied accuracy (3-year AUC = 0.815) for CRC individuals. The web interactive nomogram (https://yuexiaozhang.shinyapps.io/anoikisCRC/) showed strong generalizability of our model. In parallel, a substantial correlation between tumor microenvironment and Risk-Score was discovered in the present work. Conclusion: This study reveals the potential role of anoikis in CRC and sets new insights into clinical decision-making in colorectal cancer based on both clinical and sequencing data. Also, the interactive tool provides researchers with a user-friendly interface to input relevant clinical variables and obtain personalized risk predictions or prognostic assessments based on our established model.

12.
Int J Colorectal Dis ; 39(1): 100, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967814

RESUMO

BACKGROUND: Microsatellite instability (MSI) caused by DNA mismatch repair (MMR) deficiency is of great significance in the occurrence, diagnosis and treatment of colorectal cancer (CRC). AIM: This study aimed to analyze the relationship between mismatch repair status and clinical characteristics of CRC. METHODS: The histopathological results and clinical characteristics of 2029 patients who suffered from CRC and underwent surgery at two centers from 2018 to 2020 were determined. After screening the importance of clinical characteristics through machine learning algorithms, the patients were divided into deficient mismatch repair (dMMR) and proficient mismatch repair (pMMR) groups based on the immunohistochemistry results and the clinical feature data between the two groups were observed by statistical methods. RESULTS: The dMMR and pMMR groups had significant differences in histologic type, TNM stage, maximum tumor diameter, lymph node metastasis, differentiation grade, gross appearance, and vascular invasion. There were significant differences between the MLH1 groups in age, histologic type, TNM stage, lymph node metastasis, tumor location, and depth of invasion. The MSH2 groups were significantly different in age. The MSH6 groups had significant differences in age, histologic type, and TNM stage. There were significant differences between the PMS2 groups in lymph node metastasis and tumor location. CRC was dominated by MLH1 and PMS2 combined expression loss (41.77%). There was a positive correlation between MLH1 and MSH2 and between MSH6 and PMS2 as well. CONCLUSIONS: The proportion of mucinous adenocarcinoma, protruding type, and poor differentiation is relatively high in dMMR CRCs, but lymph node metastasis is rare. It is worth noting that the expression of MMR protein has different prognostic significance in different stages of CRC disease.


Assuntos
Neoplasias Colorretais , Reparo de Erro de Pareamento de DNA , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Estadiamento de Neoplasias , Instabilidade de Microssatélites , Metástase Linfática , Adulto
13.
J Glob Infect Dis ; 16(2): 76-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081504

RESUMO

Pathogenic bacteria in wounds impede successful skin grafting. However, their detection relies on culture methods, which delay confirmation by several days. Real-time fluorescence imaging detects bacteria, allowing for rapid assessment and documentation. We herein report a post modified radical mastectomy, surgical site infection with multidrug-resistant Pseudomonas spp. that underwent repeated antibiotic therapy and debridement and eventually grafting. In this case, a real-time fluorescence imaging device helped prevent graft rejection.

14.
Front Pharmacol ; 15: 1389550, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863979

RESUMO

The mortality rate associated with cutaneous melanoma (SKCM) remains alarmingly high, highlighting the urgent need for a deeper understanding of its molecular underpinnings. In our study, we leveraged bulk transcriptome sequencing data from the SKCM cohort available in public databases such as TCGA and GEO. We utilized distinct datasets for training and validation purposes and also incorporated mutation and clinical data from TCGA, along with single-cell sequencing data from GEO. Through dimensionality reduction, we annotated cell subtypes within the single-cell data and analyzed the expression of tumor-related pathways across these subtypes. We identified differentially expressed genes (DEGs) in the training set, which were further refined using the Least Absolute Shrinkage and Selection Operator (LASSO) machine learning algorithm, employing tenfold cross-validation. This enabled the construction of a prognostic model, whose diagnostic efficacy we subsequently validated. We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses on the DEGs, and performed immunological profiling on two risk groups to elucidate the relationship between model genes and the immune responses relevant to SKCM diagnosis, treatment, and prognosis. We also knocked down the GMR6 expression level in the melanoma cells and verified its effect on cancer through multiple experiments. The results indicate that the GMR6 gene plays a role in promoting the proliferation, invasion, and migration of cancer cells in human melanoma. Our findings offer novel insights and a theoretical framework that could enhance prognosis, treatment, and drug development strategies for SKCM, potentially leading to more precise therapeutic interventions.

15.
Sci Rep ; 14(1): 13641, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871843

RESUMO

Chimeric antigen receptor T-cell (CAR-T) therapies are a paradigm-shifting therapeutic in patients with hematological malignancies. However, some concerns remain that they may cause serious cardiovascular adverse events (AEs), for which data are scarce. In this study, gradient boosting machine algorithm-based model was fitted to identify safety signals of serious cardiovascular AEs reported for tisagenlecleucel in the World Health Organization Vigibase up until February 2024. Input dataset, comprised of positive and negative controls of tisagenlecleucel based on its labeling information and literature search, was used to train the model. Then, we implemented the model to calculate the predicted probability of serious cardiovascular AEs defined by preferred terms included in the important medical event list from European Medicine Agency. There were 467 distinct AEs from 3,280 safety cases reports for tisagenlecleucel, of which 363 (77.7%) were classified as positive controls, 66 (14.2%) as negative controls, and 37 (7.9%) as unknown AEs. The prediction model had area under the receiver operating characteristic curve of 0.76 in the test dataset application. Of the unknown AEs, six cardiovascular AEs were predicted as the safety signals: bradycardia (predicted probability 0.99), pleural effusion (0.98), pulseless electrical activity (0.89), cardiotoxicity (0.83), cardio-respiratory arrest (0.69), and acute myocardial infarction (0.58). Our findings underscore vigilant monitoring of acute cardiotoxicities with tisagenlecleucel therapy.


Assuntos
Aprendizado de Máquina , Farmacovigilância , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Doenças Cardiovasculares , Idoso , Adulto , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Adolescente , Adulto Jovem , Criança , Receptores de Antígenos de Linfócitos T , Neoplasias Hematológicas/tratamento farmacológico , Pré-Escolar
16.
Biosens Bioelectron ; 261: 116523, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38924813

RESUMO

The quest to reduce kidney transplant rejection has emphasized the urgent requirement for the development of non-invasive, precise diagnostic technologies. These technologies aim to detect antibody-mediated rejection (ABMR) and T-cell-mediated rejection (TCMR), which are asymptomatic and pose a risk of potential kidney damage. The protocols for managing rejection caused by ABMR and TCMR differ, and diagnosis has traditionally relied on invasive biopsy procedures. Therefore, a convergence system using a nano-sensing chip, Raman spectroscopy, and AI technology was introduced to facilitate diagnosis using serum samples obtained from patients with no major abnormality, ABMR, and TCMR after kidney transplantation. Tissue biopsy and Banff score analysis were performed across the groups for validation, and 5 µL of serum obtained at the same time was added onto the Au-ZnO nanorod-based Surface-Enhanced Raman Scattering sensing chip to obtain Raman spectroscopy signals. The accuracy of machine learning algorithms for principal component-linear discriminant analysis and principal component-partial least squares discriminant analysis was 93.53% and 98.82%, respectively. The collagen (an indicative of kidney injury), creatinine, and amino acid-derived signals (markers of kidney function) contributed to this accuracy; however, the high accuracy was primarily due to the ability of the system to analyze a broad spectrum of various biomarkers.


Assuntos
Rejeição de Enxerto , Transplante de Rim , Aprendizado de Máquina , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Rejeição de Enxerto/sangue , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/classificação , Técnicas Biossensoriais/métodos , Nanotubos/química , Masculino , Ouro/química , Biomarcadores/sangue , Pessoa de Meia-Idade , Feminino , Adulto
17.
Front Immunol ; 15: 1388690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803495

RESUMO

Introduction: Psoriasis is a chronic skin disease characterized by unique scaling plaques. However, during the acute phase, psoriatic lesions exhibit eczematous changes, making them difficult to distinguish from atopic dermatitis, which poses challenges for the selection of biological agents. This study aimed to identify potential diagnostic genes in psoriatic lesions and investigate their clinical significance. Methods: GSE182740 datasets from the GEO database were analyzed for differential analysis; machine learning algorithms (SVM-RFE and LASSO regression models) are used to screen for diagnostic markers; CIBERSORTx is used to determine the dynamic changes of 22 different immune cell components in normal skin lesions, psoriatic non-lesional skin, and psoriatic lesional skin, as well as the expression of the diagnostic genes in 10 major immune cells, and real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry are used to validate results. Results: We obtained 580 differentially expressed genes (DEGs) in the skin lesion and non-lesion of psoriasis patients, 813 DEGs in mixed patients between non-lesions and lesions, and 96 DEGs in the skin lesion and non-lesion of atopic dermatitis, respectively. Then 144 specific DEGs in psoriasis via a Veen diagram were identified. Ultimately, UGGT1, CCNE1, MMP9 and ARHGEF28 are identified for potential diagnostic genes from these 144 specific DEGs. The value of the selected diagnostic genes was verified by receiver operating characteristic (ROC) curves with expanded samples. The the area under the ROC curve (AUC) exceeded 0.7 for the four diagnosis genes. RT-qPCR results showed that compared to normal human epidermis, the expression of UGGT1, CCNE1, and MMP9 was significantly increased in patients with psoriasis, while ARHGEF28 expression was significantly decreased. Notably, the results of CIBERSORTx showed that CCNE1 was highly expressed in CD4+ T cells and neutrophils, ARHGEF28 was also expressed in mast cells. Additionally, CCNE1 was strongly correlated with IL-17/CXCL8/9/10 and CCL20. Immunohistochemical results showed increased nuclear expression of CCNE1 in psoriatic epidermal cells relative to normal. Conclusion: Based on the performance of the four genes in ROC curves and their expression in immune cells from patients with psoriasis, we suggest that CCNE1 possess higher diagnostic value.


Assuntos
Biomarcadores , Aprendizado de Máquina , Psoríase , Pele , Psoríase/imunologia , Psoríase/diagnóstico , Psoríase/genética , Humanos , Pele/imunologia , Pele/patologia , Pele/metabolismo , Perfilação da Expressão Gênica , Dermatite Atópica/imunologia , Dermatite Atópica/diagnóstico , Dermatite Atópica/genética , Transcriptoma , Bases de Dados Genéticas , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Oncogênicas , Ciclina E
18.
Ann Hematol ; 103(6): 2089-2102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691145

RESUMO

Infection post-hematopoietic stem cell transplantation (HSCT) is one of the main causes of patient mortality. Fever is the most crucial clinical symptom indicating infection. However, current microbial detection methods are limited. Therefore, timely diagnosis of infectious fever and administration of antimicrobial drugs can effectively reduce patient mortality. In this study, serum samples were collected from 181 patients with HSCT with or without infection, as well as the clinical information. And more than 80 infectious-related microRNAs in the serum were selected according to the bulk RNA-seq result and detected in the 345 time-pointed serum samples by Q-PCR. Unsupervised clustering result indicates a close association between these microRNAs expression and infection occurrence. Compared to the uninfected cohort, more than 10 serum microRNAs were identified as the combined diagnostic markers in one formula constructed by the Random Forest (RF) algorithms, with a diagnostic accuracy more than 0.90. Furthermore, correlations of serum microRNAs to immune cells, inflammatory factors, pathgens, infection tissue, and prognosis were analyzed in the infection cohort. Overall, this study demonstrates that the combination of serum microRNAs detection and machine learning algorithms holds promising potential in diagnosing infectious fever after HSCT.


Assuntos
Febre , Transplante de Células-Tronco Hematopoéticas , Aprendizado de Máquina , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Febre/etiologia , Febre/diagnóstico , Febre/sangue , Algoritmos , MicroRNAs/sangue , Biomarcadores/sangue , Adolescente , Adulto Jovem
19.
Mitochondrion ; 76: 101882, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599302

RESUMO

Mitochondria are dynamic organelles that alter their morphological characteristics in response to functional needs. Therefore, mitochondrial morphology is an important indicator of mitochondrial function and cellular health. Reliable segmentation of mitochondrial networks in microscopy images is a crucial initial step for further quantitative evaluation of their morphology. However, 3D mitochondrial segmentation, especially in cells with complex network morphology, such as in highly polarized cells, remains challenging. To improve the quality of 3D segmentation of mitochondria in super-resolution microscopy images, we took a machine learning approach, using 3D Trainable Weka, an ImageJ plugin. We demonstrated that, compared with other commonly used methods, our approach segmented mitochondrial networks effectively, with improved accuracy in different polarized epithelial cell models, including differentiated human retinal pigment epithelial (RPE) cells. Furthermore, using several tools for quantitative analysis following segmentation, we revealed mitochondrial fragmentation in bafilomycin-treated RPE cells.


Assuntos
Células Epiteliais , Imageamento Tridimensional , Aprendizado de Máquina , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo , Imageamento Tridimensional/métodos , Epitélio Pigmentado da Retina/citologia , Processamento de Imagem Assistida por Computador/métodos , Linhagem Celular
20.
Adv Sci (Weinh) ; 11(23): e2401061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569519

RESUMO

The heterogeneity of macrophages influences the response to immune checkpoint inhibitor (ICI) therapy. However, few studies explore the impact of APOE+ macrophages on ICI therapy using single-cell RNA sequencing (scRNA-seq) and machine learning methods. The scRNA-seq and bulk RNA-seq data are Integrated to construct an M.Sig model for predicting ICI response based on the distinct molecular signatures of macrophage and machine learning algorithms. Comprehensive single-cell analysis as well as in vivo and in vitro experiments are applied to explore the potential mechanisms of the APOE+ macrophage in affecting ICI response. The M.Sig model shows clear advantages in predicting the efficacy and prognosis of ICI therapy in pan-cancer patients. The proportion of APOE+ macrophages is higher in ICI non-responders of triple-negative breast cancer compared with responders, and the interaction and longer distance between APOE+ macrophages and CD8+ exhausted T (Tex) cells affecting ICI response is confirmed by multiplex immunohistochemistry. In a 4T1 tumor-bearing mice model, the APOE inhibitor combined with ICI treatment shows the best efficacy. The M.Sig model using real-world immunotherapy data accurately predicts the ICI response of pan-cancer, which may be associated with the interaction between APOE+ macrophages and CD8+ Tex cells.


Assuntos
Apolipoproteínas E , Inibidores de Checkpoint Imunológico , Macrófagos , Análise de Célula Única , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Animais , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Análise de Célula Única/métodos , Humanos , Apolipoproteínas E/genética , Modelos Animais de Doenças , Feminino , Aprendizado de Máquina , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA