Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 782
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Heliyon ; 10(14): e34651, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39149009

RESUMO

Based on scientific evidence, it seems that bio-magnetic systems can change the process of cancer cell death by affecting the distribution of pressure and mechanical stress in the tumor tissue. Already most of the research has been done experimentally and few mathematical modeling and numerical simulations have been done to investigate the relationship between the magnetic parameters and the mechanical stress of the tumor tissue. This is despite the fact that in order to be able to make new equipment with the help of medical engineering methods, it is definitely necessary that the mathematics governing the problem and changes in the effective magnetic parameters (such as the shape of the magnetic source, magnetic flux density, magnetic source distance and ferro-fluid volume fraction) should be studied as much as possible. In this research, using numerical simulation and mathematical modeling, four common geometrical shapes (rectangular and circular) of the static magnetic field source were used to investigate the relationship between the change of the effective magnetic parameters and the mechanical stress created in the tumor tissue. The results of this research showed that when the magnetic flux density and ferro-fluid volume fraction and also the distance between the magnet and the tissue are kept constant, as well as without spending any extra energy, for a rectangular magnet, just by changing the way the source is placed on the tissue, the average biomechanical stress inside the tumor tissue causes a 25 % change. Also, for a circular magnet, just by doubling the radius of the magnet, the average biomechanical stress inside the tumor tissue causes a 73 % change.

2.
Math Biosci Eng ; 21(7): 6659-6693, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39176414

RESUMO

Tumor growth dynamics serve as a critical aspect of understanding cancer progression and treatment response to mitigate one of the most pressing challenges in healthcare. The in silico approach to understanding tumor behavior computationally provides an efficient, cost-effective alternative to wet-lab examinations and are adaptable to different environmental conditions, time scales, and unique patient parameters. As a result, this paper explored modeling of free tumor growth in cancer, surveying contemporary literature on continuum, discrete, and hybrid approaches. Factors like predictive power and high-resolution simulation competed against drawbacks like simulation load and parameter feasibility in these models. Understanding tumor behavior in different scenarios and contexts became the first step in advancing cancer research and revolutionizing clinical outcomes.


Assuntos
Simulação por Computador , Modelos Biológicos , Neoplasias , Humanos , Neoplasias/patologia , Progressão da Doença , Algoritmos , Proliferação de Células , Animais
3.
J Math Biol ; 89(3): 35, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177819

RESUMO

Chronic Myeloid Leukemia is a blood cancer for which standard therapy with Tyrosine-Kinase Inhibitors is successful in the majority of patients. After discontinuation of treatment half of the well-responding patients either present undetectable levels of tumor cells for a long time or exhibit sustained fluctuations of tumor load oscillating at very low levels. Motivated by the consequent question of whether the observed kinetics reflect periodic oscillations emerging from tumor-immune interactions, in this work, we analyze a system of ordinary differential equations describing the immune response to CML where both the functional response against leukemia and the immune recruitment exhibit optimal activation windows. Besides investigating the stability of the equilibrium points, we provide rigorous proofs that the model exhibits at least two types of bifurcations: a transcritical bifurcation around the tumor-free equilibrium point and a Hopf bifurcation around a biologically plausible equilibrium point, providing an affirmative answer to our initial question. Focusing our attention on the Hopf bifurcation, we examine the emergence of limit cycles and analyze their stability through the calculation of Lyapunov coefficients. Then we illustrate our theoretical results with numerical simulations based on clinically relevant parameters. Besides the mathematical interest, our results suggest that the fluctuating levels of low tumor load observed in CML patients may be a consequence of periodic orbits arising from predator-prey-like interactions.


Assuntos
Simulação por Computador , Leucemia Mielogênica Crônica BCR-ABL Positiva , Conceitos Matemáticos , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Humanos , Modelos Imunológicos , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Modelos Biológicos , Carga Tumoral/imunologia
4.
Mol Cancer ; 23(1): 156, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095771

RESUMO

BACKGROUND: Elevated microRNA-155 (miR-155) expression in non-small-cell lung cancer (NSCLC) promotes cisplatin resistance and negatively impacts treatment outcomes. However, miR-155 can also boost anti-tumor immunity by suppressing PD-L1 expression. Therapeutic targeting of miR-155 through its antagonist, anti-miR-155, has proven challenging due to its dual molecular effects. METHODS: We developed a multiscale mechanistic model, calibrated with in vivo data and then extrapolated to humans, to investigate the therapeutic effects of nanoparticle-delivered anti-miR-155 in NSCLC, alone or in combination with standard-of-care drugs. RESULTS: Model simulations and analyses of the clinical scenario revealed that monotherapy with anti-miR-155 at a dose of 2.5 mg/kg administered once every three weeks has substantial anti-cancer activity. It led to a median progression-free survival (PFS) of 6.7 months, which compared favorably to cisplatin and immune checkpoint inhibitors. Further, we explored the combinations of anti-miR-155 with standard-of-care drugs, and found strongly synergistic two- and three-drug combinations. A three-drug combination of anti-miR-155, cisplatin, and pembrolizumab resulted in a median PFS of 13.1 months, while a two-drug combination of anti-miR-155 and cisplatin resulted in a median PFS of 11.3 months, which emerged as a more practical option due to its simple design and cost-effectiveness. Our analyses also provided valuable insights into unfavorable dose ratios for drug combinations, highlighting the need for optimizing dose regimens to prevent antagonistic effects. CONCLUSIONS: This work bridges the gap between preclinical development and clinical translation of anti-miR-155 and unravels the potential of anti-miR-155 combination therapies in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , MicroRNAs/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Padrão de Cuidado , Pesquisa Translacional Biomédica
5.
Bull Math Biol ; 86(10): 119, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136811

RESUMO

Virtual clinical trials (VCTs) are growing in popularity as a tool for quantitatively predicting heterogeneous treatment responses across a population. In the context of a VCT, a plausible patient is an instance of a mathematical model with parameter (or attribute) values chosen to reflect features of the disease and response to treatment for that particular patient. A number of techniques have been introduced to determine the set of model parametrizations to include in a virtual patient cohort. These methodologies generally start with a prior distribution for each model parameter and utilize some criteria to determine whether a parameter set sampled from the priors should be included or excluded from the plausible population. No standard technique exists, however, for generating these prior distributions and choosing the inclusion/exclusion criteria. In this work, we rigorously quantify the impact that VCT design choices have on VCT predictions. Rather than use real data and a complex mathematical model, a spatial model of radiotherapy is used to generate simulated patient data and the mathematical model used to describe the patient data is a two-parameter ordinary differential equations model. This controlled setup allows us to isolate the impact of both the prior distribution and the inclusion/exclusion criteria on both the heterogeneity of plausible populations and on predicted treatment response. We find that the prior distribution, rather than the inclusion/exclusion criteria, has a larger impact on the heterogeneity of the plausible population. Yet, the percent of treatment responders in the plausible population was more sensitive to the inclusion/exclusion criteria utilized. This foundational understanding of the role of virtual clinical trial design should help inform the development of future VCTs that use more complex models and real data.


Assuntos
Ensaios Clínicos como Assunto , Simulação por Computador , Conceitos Matemáticos , Humanos , Ensaios Clínicos como Assunto/estatística & dados numéricos , Ensaios Clínicos como Assunto/métodos , Resultado do Tratamento , Seleção de Pacientes , Teorema de Bayes
6.
Pediatr Nephrol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995354

RESUMO

BACKGROUND: This study aims to externally validate a clinical mathematical model designed to predict urine output (UOP) during the initial post-operative period in pediatric patients who underwent cardiac surgery with cardiopulmonary bypass (CPB). METHODS: Children aged 0-18 years admitted to the pediatric cardiac intensive care unit at Cleveland Clinic Children's from April 2018 to April 2023, who underwent cardiac surgery with CPB were included. Patients were excluded if they had pre-operative kidney failure requiring kidney replacement therapy (KRT), re-operation or extracorporeal membrane oxygenation or KRT requirement within the first 32 post-operative hours or had indwelling urinary catheter for fewer than the initial 32 post-operative hours, or had vasoactive-inotrope score of 0, or those with missing data in the electronic health records. RESULTS: A total of 213 encounters were analyzed; median age (days): 172 (IQR 25-75th%: 51-1655), weight (kg): 6.1 (IQR 25-75th%: 3.8-15.5), median UOP ml/kg/hr in the first 32 post-operative hours: 2.59 (IQR 25-75th%: 1.93-3.26) and post-operative 30-day mortality: 1, (0.4%). The mathematical model achieved the following metrics in the entire dataset: mean absolute error (95th% Confidence Interval (CI)): 0.70 (0.67-0.73), median absolute error (95th% CI): 0.54 (0.52-0.56), mean squared error (95th% CI): 0.97 (0.89-1.05), root mean squared error (95th% CI): 0.99 (0.95-1.03) and R2 Score (95th% CI): 0.29 (0.24-0.34). CONCLUSIONS: This study provides encouraging external validation results of a mathematical model predicting post-operative UOP in pediatric cardiac surgery patients. Further multicenter studies must explore its broader applicability.

7.
Sci Rep ; 14(1): 16257, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009619

RESUMO

In order to comprehend the dynamics of disease propagation within a society, mathematical formulations are essential. The purpose of this work is to investigate the diagnosis and treatment of lung cancer in persons with weakened immune systems by introducing cytokines ( I L 2 & I L 12 ) and anti-PD-L1 inhibitors. To find the stable position of a recently built system TCD I L 2 I L 12 Z, a qualitative and quantitative analysis are taken under sensitive parameters. Reliable bounded findings are ensured by examining the generated system's boundedness, positivity, uniqueness, and local stability analysis, which are the crucial characteristics of epidemic models. The positive solutions with linear growth are shown to be verified by the global derivative, and the rate of impact across every sub-compartment is determined using Lipschitz criteria. Using Lyapunov functions with first derivative, the system's global stability is examined in order to evaluate the combined effects of cytokines and anti-PD-L1 inhibitors on people with weakened immune systems. Reliability is achieved by employing the Mittag-Leffler kernel in conjunction with a fractal-fractional operator because FFO provide continuous monitoring of lung cancer in multidimensional way. The symptomatic and asymptomatic effects of lung cancer sickness are investigated using simulations in order to validate the relationship between anti-PD-L1 inhibitors, cytokines, and the immune system. Also, identify the actual state of lung cancer control with early diagnosis and therapy by introducing cytokines and anti-PD-L1 inhibitors, which aid in the patients' production of anti-cancer cells. Investigating the transmission of illness and creating control methods based on our validated results will both benefit from this kind of research.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Neoplasias Pulmonares , Humanos , Linfócitos T CD8-Positivos/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Citocinas/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Simulação por Computador
8.
Heliyon ; 10(12): e32605, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988588

RESUMO

Fused Deposition Modeling (FDM), a widely-utilized additive manufacturing (AM) technology, has found significant favor among automotive manufacturers. Polypropylene (PP) compound is extensively employed in the production of automotive parts due to its superior mechanical properties and formability. However, aiming at the problem of poor dimensional accuracy of pure PP parts, the quality of products can be enhanced by optimizing the combination of processing parameters. In this paper, the dimensional accuracy of 3D-printed components made from pure PP material is investigated. Key influencing factors such as infill percentage, infill pattern, layer thickness, and extrusion temperature are considered. To gain a deeper understanding, fluid simulation is conducted, and mathematical models are established to correlate processing parameters with dimensional accuracy. Furthermore, the Taguchi's experiments are designed and the experimental data are subjected to rigorous Signal-to-Noise ratio and ANOVA analyses. Within the experimental range, the lower extrusion temperature, infill percentage and layer thickness yield the best dimensional accuracy. Considering the influence factors of X, Y and Z directions, the optimal processing parameters for PP prints using screw extrusion 3D printers are determined as follows: an extrusion temperature of 210 °C, an infill percentage of 40 %, a layer thickness of 0.3 mm, and a concentric circle infill pattern. This study provides reference value for the subsequent improvement of the dimensional accuracy of the printed parts.

9.
Cancers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39001427

RESUMO

For many patients, the cancer continuum includes a syndrome known as cancer-associated cachexia (CAC), which encompasses the unintended loss of body weight and muscle mass, and is often associated with fat loss, decreased appetite, lower tolerance and poorer response to treatment, poor quality of life, and reduced survival. Unfortunately, there are no effective therapeutic interventions to completely reverse cancer cachexia and no FDA-approved pharmacologic agents; hence, new approaches are urgently needed. In May of 2022, researchers and clinicians from Moffitt Cancer Center held an inaugural retreat on CAC that aimed to review the state of the science, identify knowledge gaps and research priorities, and foster transdisciplinary collaborative research projects. This review summarizes research priorities that emerged from the retreat, examples of ongoing collaborations, and opportunities to move science forward. The highest priorities identified include the need to (1) evaluate patient-reported outcome (PRO) measures obtained in clinical practice and assess their use in improving CAC-related outcomes; (2) identify biomarkers (imaging, molecular, and/or behavioral) and novel analytic approaches to accurately predict the early onset of CAC and its progression; and (3) develop and test interventions (pharmacologic, nutritional, exercise-based, and through mathematical modeling) to prevent CAC progression and improve associated symptoms and outcomes.

10.
Cancers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39001416

RESUMO

Understanding signaling patterns of transformation and controlling cell phenotypes is a challenge of current biology. Here we applied a cell State Transition Assessment and Regulation (cSTAR) approach to a perturbation dataset of single cell phosphoproteomic patterns of multiple breast cancer (BC) and normal breast tissue-derived cell lines. Following a separation of luminal, basal, and normal cell states, we identified signaling nodes within core control networks, delineated causal connections, and determined the primary drivers underlying oncogenic transformation and transitions across distinct BC subtypes. Whereas cell lines within the same BC subtype have different mutational and expression profiles, the architecture of the core network was similar for all luminal BC cells, and mTOR was a main oncogenic driver. In contrast, core networks of basal BC were heterogeneous and segregated into roughly four major subclasses with distinct oncogenic and BC subtype drivers. Likewise, normal breast tissue cells were separated into two different subclasses. Based on the data and quantified network topologies, we derived mechanistic cSTAR models that serve as digital cell twins and allow the deliberate control of cell movements within a Waddington landscape across different cell states. These cSTAR models suggested strategies of normalizing phosphorylation networks of BC cell lines using small molecule inhibitors.

11.
Front Genet ; 15: 1383676, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873108

RESUMO

Cancer is a disease characterized by uncontrolled cellular growth where cancer cells take advantage of surrounding cellular populations to obtain resources and promote invasion. Carcinomas are the most common type of cancer accounting for almost 90% of cancer cases. One of the major subtypes of carcinomas are adenocarcinomas, which originate from glandular cells that line certain internal organs. Cancers such as breast, prostate, lung, pancreas, colon, esophageal, kidney are often adenocarcinomas. Current treatment strategies include surgery, chemotherapy, radiation, targeted therapy, and more recently immunotherapy. However, patients with adenocarcinomas often develop resistance or recur after the first line of treatment. Understanding how networks of tumor cells interact with each other and the tumor microenvironment is crucial to avoid recurrence, resistance, and high-dose therapy toxicities. In this review, we explore how mathematical modeling tools from different disciplines can aid in the development of effective and personalized cancer treatment strategies. Here, we describe how concepts from the disciplines of ecology and evolution, economics, and control engineering have been applied to mathematically model cancer dynamics and enhance treatment strategies.

12.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915596

RESUMO

Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1ARH) neurons are responsible for the pulsatile release of Gonadotropin-releasing Hormone (GnRH). In females, the behavior of Kiss1ARH neurons, expressing Kiss1, Neurokinin B (NKB), and Dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17ß-estradiol (E2) reduces peptide expression but increases Vglut2 mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current and that contribute to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of Canonical Transient Receptor Potential (TPRC) 5 and G protein-coupled K+ (GIRK) channels. When TRPC5 channels in Kiss1ARH neurons were deleted using CRISPR, the slow excitatory postsynaptic potential (sEPSP) was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of the Kiss1ARH neuron, suggesting that E2 modifies ionic conductances in Kiss1ARH neurons, enabling the transition from high frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1ARH neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.

13.
Molecules ; 29(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38930806

RESUMO

Pterocaulon polystachyum is a species of pharmacological interest for providing volatile and non-volatile extracts with antifungal and amebicidal properties. The biological activities of non-volatile extracts may be related to the presence of coumarins, a promising group of secondary metabolites. In the present study, leaves and inflorescences previously used for the extraction of essential oils instead of being disposed of were subjected to extraction with supercritical CO2 after pretreatment with microwaves. An experimental design was followed to seek the best extraction condition with the objective function being the maximum total extract. Pressure and temperature were statistically significant factors, and the optimal extraction condition was 240 bar, 60 °C, and pretreatment at 30 °C. The applied mathematical models showed good adherence to the experimental data. The extracts obtained by supercritical CO2 were analyzed and the presence of coumarins was confirmed. The extract investigated for cytotoxicity against bladder tumor cells (T24) exhibited significant reduction in cell viability at concentrations between 6 and 12 µg/mL. The introduction of green technology, supercritical extraction, in the exploration of P. polystachyum as a source of coumarins represents a paradigm shift with regard to previous studies carried out with this species, which used organic solvents. Furthermore, the concept of circular bioeconomy was applied, i.e., the raw material used was the residue of a steam-distillation process. Therefore, the approach used here is in line with the sustainable exploitation of native plants to obtain extracts rich in coumarins with cytotoxic potential against cancer cells.


Assuntos
Dióxido de Carbono , Cromatografia com Fluido Supercrítico , Cumarínicos , Extratos Vegetais , Cumarínicos/química , Cumarínicos/isolamento & purificação , Cumarínicos/farmacologia , Dióxido de Carbono/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Humanos , Cromatografia com Fluido Supercrítico/métodos , Componentes Aéreos da Planta/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação
15.
J Theor Biol ; 592: 111882, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-38944379

RESUMO

Regulation of cell proliferation is a crucial aspect of tissue development and homeostasis and plays a major role in morphogenesis, wound healing, and tumor invasion. A phenomenon of such regulation is contact inhibition, which describes the dramatic slowing of proliferation, cell migration and individual cell growth when multiple cells are in contact with each other. While many physiological, molecular and genetic factors are known, the mechanism of contact inhibition is still not fully understood. In particular, the relevance of cellular signaling due to interfacial contact for contact inhibition is still debated. Cellular automata (CA) have been employed in the past as numerically efficient mathematical models to study the dynamics of cell ensembles, but they are not suitable to explore the origins of contact inhibition as such agent-based models assume fixed cell sizes. We develop a minimal, data-driven model to simulate the dynamics of planar cell cultures by extending a probabilistic CA to incorporate size changes of individual cells during growth and cell division. We successfully apply this model to previous in-vitro experiments on contact inhibition in epithelial tissue: After a systematic calibration of the model parameters to measurements of single-cell dynamics, our CA model quantitatively reproduces independent measurements of emergent, culture-wide features, like colony size, cell density and collective cell migration. In particular, the dynamics of the CA model also exhibit the transition from a low-density confluent regime to a stationary postconfluent regime with a rapid decrease in cell size and motion. This implies that the volume exclusion principle, a mechanical constraint which is the only inter-cellular interaction incorporated in the model, paired with a size-dependent proliferation rate is sufficient to generate the observed contact inhibition. We discuss how our approach enables the introduction of effective bio-mechanical interactions in a CA framework for future studies.


Assuntos
Proliferação de Células , Tamanho Celular , Células Epiteliais , Modelos Biológicos , Proliferação de Células/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Inibição de Contato/fisiologia , Humanos , Animais , Movimento Celular/fisiologia
16.
Lasers Med Sci ; 39(1): 121, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722564

RESUMO

To develop and validate a 3D simulation model to calculate laser ablation (LA) zone size and estimate the volume of treated tissue for thyroid applications, a model was developed, taking into account dynamic optical and thermal properties of tissue change. For validation, ten Yorkshire swines were equally divided into two cohorts and underwent thyroid LA at 3 W/1,400 J and 3 W/1,800 J respectively with a 1064-nm multi-source laser (Echolaser X4 with Orblaze™ technology; ElEn SpA, Calenzano, Italy). The dataset was analyzed employing key statistical measures such as mean and standard deviation (SD). Model simulation data were compared with animal gross histology. Experimental data for longitudinal length, width (transverse length), ablation volume and sphericity were 11.0 mm, 10.0 mm, 0.6 mL and 0.91, respectively at 1,400 J and 14.6 mm, 12.4 mm, 1.12 mL and 0.83, respectively at 1,800 J. Gross histology data showed excellent reproducibility of the ablation zone among same laser settings; for both 1,400 J and 1,800 J, the SD of the in vivo parameters was ≤ 0.7 mm, except for width at 1,800 J, for which the SD was 1.1 mm. Simulated data for longitudinal length, width, ablation volume and sphericity were 11.6 mm, 10.0 mm, 0.62 mL and 0.88, respectively at 1,400 J and 14.2 mm, 12.0 mm, 1.06 mL and 0.84, respectively at 1,800 J. Experimental data for ablation volume, sphericity coefficient, and longitudinal and transverse lengths of thermal damaged area showed good agreement with the simulation data. Simulation datasets were successfully incorporated into proprietary planning software (Echolaser Smart Interface, Elesta SpA, Calenzano, Italy) to provide guidance for LA of papillary thyroid microcarcinomas. Our mathematical model showed good predictability of coagulative necrosis when compared with data from in vivo animal experiments.


Assuntos
Terapia a Laser , Glândula Tireoide , Animais , Terapia a Laser/métodos , Terapia a Laser/instrumentação , Glândula Tireoide/cirurgia , Glândula Tireoide/patologia , Suínos , Simulação por Computador , Modelos Teóricos , Reprodutibilidade dos Testes
17.
Heliyon ; 10(9): e30549, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726135

RESUMO

This research introduces an innovative framework for addressing the escalating issue of greenhouse gas emissions through the integration of game theory with differential equations, proposing a novel model to simulate the regulatory dynamics between emission sources and legislative actions. By blending advanced mathematical modeling with environmental science, this paper underscores the critical necessity for pioneering, proactive strategies in environmental management and policy formulation. Central to our approach is the simulation of interactions within a game-theoretic context, aiming to delineate optimal strategies for emission sources and regulatory bodies, factoring in legislative constraints and environmental ramifications. The methodology employs a system of ordinary differential equations, capturing the dynamic, non-stationary nature of atmospheric processes and offering a realistic portrayal of the challenges in mitigating greenhouse gas emissions. Furthermore, the study introduces a fee-based regulatory mechanism designed to encourage emission reductions, highlighting the economic implications of such strategies. Significantly contributing to environmental management, this research presents a detailed model capable of predicting the trajectory of greenhouse gas emissions over a decade, considering the potential impact of technological innovations in emission control. The conclusion emphasizes the promising role of artificial intelligence in refining environmental governance, acknowledging the complexities and limitations inherent in predictive modeling. Aimed at policymakers and environmental scientists, this paper serves as a strategic tool for informed decision-making, advocating for a multidisciplinary approach to develop sustainable, effective solutions to combat one of the most critical environmental challenges facing the globe today.

18.
Front Immunol ; 15: 1373738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779678

RESUMO

Introduction: While radiotherapy has long been recognized for its ability to directly ablate cancer cells through necrosis or apoptosis, radiotherapy-induced abscopal effect suggests that its impact extends beyond local tumor destruction thanks to immune response. Cellular proliferation and necrosis have been extensively studied using mathematical models that simulate tumor growth, such as Gompertz law, and the radiation effects, such as the linear-quadratic model. However, the effectiveness of radiotherapy-induced immune responses may vary among patients due to individual differences in radiation sensitivity and other factors. Methods: We present a novel macroscopic approach designed to quantitatively analyze the intricate dynamics governing the interactions among the immune system, radiotherapy, and tumor progression. Building upon previous research demonstrating the synergistic effects of radiotherapy and immunotherapy in cancer treatment, we provide a comprehensive mathematical framework for understanding the underlying mechanisms driving these interactions. Results: Our method leverages macroscopic observations and mathematical modeling to capture the overarching dynamics of this interplay, offering valuable insights for optimizing cancer treatment strategies. One shows that Gompertz law can describe therapy effects with two effective parameters. This result permits quantitative data analyses, which give useful indications for the disease progression and clinical decisions. Discussion: Through validation against diverse data sets from the literature, we demonstrate the reliability and versatility of our approach in predicting the time evolution of the disease and assessing the potential efficacy of radiotherapy-immunotherapy combinations. This further supports the promising potential of the abscopal effect, suggesting that in select cases, depending on tumor size, it may confer full efficacy to radiotherapy.


Assuntos
Imunoterapia , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/radioterapia , Imunoterapia/métodos , Terapia Combinada , Modelos Teóricos , Radioterapia/métodos
19.
Eur J Pharm Biopharm ; 199: 114310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705311

RESUMO

Nanoparticle-based drug delivery systems hold potential in chemotherapy, but their limited accumulation in tumor tissues hinders effective drug concentration for combating tumor growth. Hence, altering the physicochemical properties of nanoparticles, particularly their surface charge, can enhance their performance. This study utilized a computational model to explore a nanoparticle drug delivery system capable of dynamically adjusting its surface charge. In the model, nanoparticles in the bloodstream were assigned a neutral or positive charge, which, upon reaching the tumor microenvironment, switched to a neutral or negative charge, and releasing chemotherapy drugs into the extracellular space. Results revealed that circulating nanoparticles with a positive surface charge, despite having a shorter circulation and high clearance rate compared to their neutral counterparts, could accumulate significantly in the tissue due to their high transvascular rate. After extravasation, neutralized surface-charged nanoparticles tended to accumulate only near blood microvessels due to their low diffusion rate, resulting in substantial released drug drainage back into the bloodstream. On the other hand, nanoparticles with a negative surface charge in the tumor's extracellular space, due to the reduction of nano-bio interactions, were able to penetrate deeper into the tumor, and increasing drug bioavailability by reducing the volume of drained drugs. Furthermore, the analysis suggested that burst drug release yields a higher drug concentration than sustained drug release, however their creation of bioavailability dependent on nanoparticle accumulation in the tissue. The study's findings demonstrate the potential of this delivery system and offer valuable insights for future research in this area.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Nanopartículas/química , Neoplasias/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Humanos , Microambiente Tumoral/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Disponibilidade Biológica , Liberação Controlada de Fármacos , Sistemas de Liberação de Fármacos por Nanopartículas/química , Simulação por Computador , Distribuição Tecidual , Portadores de Fármacos/química
20.
Sci Rep ; 14(1): 11387, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762567

RESUMO

Identifying and controlling tumor escape mechanisms is crucial for improving cancer treatment effectiveness. Experimental studies reveal tumor hypoxia and adenosine as significant contributors to such mechanisms. Hypoxia exacerbates adenosine levels in the tumor microenvironment. Combining inhibition of these factors with dendritic cell (DC)-based immunotherapy promises improved clinical outcomes. However, challenges include understanding dynamics, optimal vaccine dosages, and timing. Mathematical models, including agent-based, diffusion, and ordinary differential equations, address these challenges. Here, we employ these models for the first time to elucidate how hypoxia and adenosine facilitate tumor escape in DC-based immunotherapy. After parameter estimation using experimental data, we optimize vaccination protocols to minimize tumor growth. Sensitivity analysis highlights adenosine's significant impact on immunotherapy efficacy. Its suppressive role impedes treatment success, but inhibiting adenosine could enhance therapy, as suggested by the model. Our findings shed light on hypoxia and adenosine-mediated tumor escape mechanisms, informing future treatment strategies. Additionally, identifiability analysis confirms accurate parameter determination using experimental data.


Assuntos
Adenosina , Células Dendríticas , Imunoterapia , Evasão Tumoral , Adenosina/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Animais , Modelos Teóricos , Neoplasias/terapia , Neoplasias/imunologia , Hipóxia Tumoral , Camundongos , Hipóxia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA