Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.888
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 734: 150443, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39088981

RESUMO

Menopause-associated mood disorder is characterized by emotional depression, anxiety, and stress, which accompany hypogonadism in women in the menopausal phase. The current treatment for menopause-associated mood disorder provides only symptomatic relief and is associated with many side effects. Supplementation with vitamin E has been shown to be effective in ameliorating anxiety and depression. However, the effects of vitamin E and its underlying mechanism in ameliorating menopause-associated mood disorders remain uncertain. This work evaluated the effects of α-tocopherol and tocotrienol-rich palm oil extract on depressive and anxiety-related phenotypes induced by estrogen deficiency through ovariectomy in mice. Our study revealed that ovariectomized mice exhibited alterations in behavior indicative of depressive- and anxiety-like behaviors. The serum corticosterone level, a glucocorticoid hormone associated with stress, was found to be elevated in ovariectomized mice as compared to the sham group. Oral administration of α-tocopherol (50 and 100 mg/kg) and tocotrienol-rich palm oil extract (100 and 200 mg/kg) for 14 days alleviated these behavioral changes, as observed in open field, social interaction, and tail suspension tests. However, treatment with tocotrienol-rich palm oil extract, but not α-tocopherol, modulated the depressive- and anxiety-like responses in ovariectomized mice subjected to chronic restraint stress. Both treatments suppressed the elevated serum corticosterone level. Our findings suggested that α-tocopherol and tocotrienol-rich palm oil extract alleviated menopause-associated mood disorder, at least in part, by modulating the hypothalamic-pituitary-adrenal (HPA) axis. The findings of this study can provide a new foundation for the treatment of menopause-associated depressive- and anxiety-like phenotypes, for the betterment of psychological wellbeing.

2.
Helicobacter ; 29(4): e13117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086007

RESUMO

BACKGROUND: Vonoprazan, a potassium-competitive acid blocker, is superior to traditional proton pump inhibitor (PPI) in acid suppression and has been approved in the treatment of acid-related disorders. Accumulating evidence suggest associations between PPI use and gut microbiota, yet the effect of vonoprazan on GI microbiota is obscure. METHODS: Transgenic FVB/N insulin-gastrin (INS-GAS) mice as a model of gastric cancer (GC) were administered vonoprazan by gavage every other day for 12 weeks. Stomachs were evaluated by histopathology, Ki-67 proliferation index, and inflammatory cytokines. The mucosal and lumen microbiota from stomach, jejunum, ileum, cecum, and feces were detected using 16S rRNA gene sequencing. RESULTS: Higher incidence of intestinal metaplasia and epithelial proliferation were observed in the vonoprazan group than that in the control mice. Vonoprazan also elevated the gastric expression of proinflammatory cytokines, including TNF-α, IL-1ß, and IL-6. Each mice comprised a unique microbiota composition that was consistent across different niches. The structure of GI microbiota changed dramatically after vonoprazan treatment with the stomach being the most disturbed segment. Vonoprazan administration shifted the gut microbiota toward the enrichment of pathogenic Streptococcus, Staphylococcus, Bilophila, and the loss of commensal Prevotella, Bifidobacterium, and Faecalibacterium. Interestingly, compared to the controls, microbial interactions were weaker in the stomach while stronger in the jejunum of the vonoprazan group. CONCLUSIONS: Long-term vonoprazan treatment promoted gastric lesions in male INS-GAS mice, with the disequilibrium of GI microbiome. The clinical application of vonoprazan needs to be judicious particularly among those with high risk of GC.


Assuntos
Microbioma Gastrointestinal , Pirróis , Neoplasias Gástricas , Sulfonamidas , Animais , Pirróis/administração & dosagem , Pirróis/farmacologia , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Camundongos , Camundongos Transgênicos , RNA Ribossômico 16S/genética , Modelos Animais de Doenças , Masculino , Inibidores da Bomba de Prótons/efeitos adversos , Inibidores da Bomba de Prótons/administração & dosagem , Citocinas/metabolismo
3.
Bull Exp Biol Med ; 177(2): 217-220, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39093473

RESUMO

PT1 peptide isolated from the venom of spider Geolycosa sp. is a modulator of P2X3 receptors that play a role in the development of inflammation and the transmission of pain impulses. The anti-inflammatory and analgesic efficacy of the PT1 peptide was studied in a model of complete Freund's adjuvant-induced paw inflammation in CD-1 mice. The analgesic activity of PT1 peptide was maximum after intramuscular injection at a dose of 0.01 mg/kg, which surpassed the analgesic effect of diclofenac at a dose of 1 mg/kg. The anti-inflammatory activity was maximum after intramuscular injection at a dose of 0.0001 mg/kg; a decrease in paw thickness was observed as soon as 2 h after the administration of the PT1 peptide against the background of inflammation development. All tested doses of PT1 peptide showed high anti-inflammatory activity 4 and 24 h after administration. PT1 peptide at a dose of 0.01 mg/kg when injected intramuscularly simultaneously produced high anti-inflammatory and analgesic effects compared to other doses of the peptide. Increasing the dose of PT1 peptide led to a gradual decrease in its analgesic and anti-inflammatory activity; increasing the dose of intramuscular injection to 0.1 and 1 mg/kg is inappropriate.


Assuntos
Analgésicos , Anti-Inflamatórios , Inflamação , Peptídeos , Animais , Camundongos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Masculino , Peptídeos/farmacologia , Peptídeos/administração & dosagem , Peptídeos/uso terapêutico , Injeções Intramusculares , Adjuvante de Freund , Venenos de Aranha/farmacologia , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Diclofenaco/administração & dosagem , Modelos Animais de Doenças , Dor/tratamento farmacológico
4.
Bull Exp Biol Med ; 177(2): 231-234, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39093477

RESUMO

Acute nociceptive pain in mice caused by subcutaneous (intraplantar) injection of TRPV1 ion channel agonist capsaicin (1.6 µg/mouse) and the effects of protein kinase A inhibitor H-89 (0.05 mg/mouse, intraplantar injection) and NMDA receptor channel antagonists MK-801 (7.5 and 15 µg/mouse, topical application) and hemantane (0.5 mg/mouse, topical application) on the pain were assessed. MK-801 and hemantane were found to reduce the duration of the pain response. H-89 did not significantly affect the pain in animals, but preliminary administration of this drug abolished the antinociceptive effect of MK-801 (7.5 µg/mouse) and weakens the effect of hemantane (0.5 mg/mouse).


Assuntos
Analgésicos , Capsaicina , Maleato de Dizocilpina , Receptores de N-Metil-D-Aspartato , Animais , Capsaicina/farmacologia , Camundongos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Masculino , Maleato de Dizocilpina/farmacologia , Analgésicos/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Dor Nociceptiva/tratamento farmacológico , Dor Nociceptiva/induzido quimicamente , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos
5.
Exp Neurol ; 380: 114907, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39103029

RESUMO

Traumatic brain injuries are extremely common, and although most patients recover from their injuries many TBI patients suffer prolonged symptoms and remain at a higher risk for developing cardiovascular disease and neurodegeneration. Moreover, it remains challenging to identify predictors of poor long-term outcomes. Here, we tested the hypothesis that preexisting cerebrovascular impairment exacerbates metabolic and vascular dysfunction and leads to worse outcomes after TBI. Male mice underwent a mild surgical reduction in cerebral blood flow using a model of bilateral carotid artery stenosis (BCAS) wherein steel microcoils were implanted around the carotid arteries. Then, 30 days post coil implantation, mice underwent TBI or sham surgery. Gene expression profiles, cerebral blood flow, metabolic function, oxidative damage, vascular health and angiogenesis were assessed. Single nuclei RNA sequencing of endothelial cells isolated from mice after TBI showed differential gene expression profiles after TBI and BCAS, that were further altered when mice underwent both challenges. TBI but not BCAS increased mitochondrial oxidative metabolism. Both BCAS and TBI decreased cerebrovascular responses to repeated whisker stimulation. BCAS induced oxidative damage and inflammation in the vasculature as well as loss of vascular density, and reduced the numbers of angiogenic tip cells. Finally, intravascular protein accumulation was increased among mice that experienced both BCAS and TBI. Overall, our findings reveal that a prior vascular impairment significantly alters the profile of vascular health and function of the cerebrovasculature, and when combined with TBI may result in worsened outcomes.

6.
Biomed Pharmacother ; 178: 117221, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39111078

RESUMO

Combining two or more chemicals in chemotherapy is rapidly increasing because of its higher efficacy, lower toxicity, lower dosages, and lower drug resistance. Here, we identified a novel combination of luteolin (LUT) and curcumin (CUR), two bioactive compounds from foods, synergistically suppressed triple-negative breast cancer (TNBC) cell proliferation (LUT 30 µM + CUR 20 µM), colony formation (LUT 1 µM + CUR 2 µM), and tumor growth in xenograft mice (LUT 10 mg/kg body weight/day + CUR 20 mg/kg body weight/day, i.p. injection every other day, 5 weeks), while the individual chemical alone did not show these inhibitory effects significantly at the selected concentrations/dosages. Our total RNA transcriptome analysis in xenograft tumors revealed that combining LUT and CUR synergistically activated type I interferon (IFN) signaling and suppressed transforming growth factor-beta (TGF-ß) signaling pathways, which was further confirmed by the expression/activity of several proteins of the pathways in tumors. In addition, this combination of LUT and CUR also synergistically decreased oncoprotein levels of c-Myc and Notch1, the critical molecules required to maintain stem cell properties, tumor clonal evolution, and drug resistance. These results suggest that the combination of LUT and CUR synergistically inhibits TNBC by suppressing multiple cellular mechanisms, such as proliferation, colony formation, and transformation, as well as tumor migration, invasion, and metastasis, via regulating IFN and TGF-ß signaling pathways. Therefore, combining LUT and CUR may be an effective therapeutic agent to treat highly aggressive, drug-resistant TNBC patients after clinical trials.

7.
Front Immunol ; 15: 1365946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131155

RESUMO

Introduction: Humanized mouse models to recapitulate human biological systems still have limitations, such as the onset of lethal graft-versus-host disease (GvHD), a variable success rate, and the low accessibility of total body irradiation (TBI). Recently, mice modified with the CD47-SIRPA axis have been studied to improve humanized mouse models. However, such trials have been rarely applied in NOD mice. In this study, we created a novel mouse strain, NOD-CD47nullRag2nullIL-2rγnull (RTKO) mice, and applied it to generate humanized mice. Methods: Four-week-old female NOD-Rag2nullIL-2rγnull (RID) and RTKO mice pre-conditioned with TBI or busulfan (BSF) injection were used for generating human CD34+ hematopoietic stem cell (HSC) engrafted humanized mice. Clinical signs were observed twice a week, and body weight was measured once a week. Flow cytometry for human leukocyte antigens was performed at intervals of four weeks or two weeks, and mice were sacrificed at 48 weeks after HSC injection. Results: For a long period from 16 to 40 weeks post transplantation, the percentage of hCD45 was mostly maintained above 25% in all groups, and it was sustained the longest and highest in the RTKO BSF group. Reconstruction of human leukocytes, including hCD3, was also most prominent in the RTKO BSF group. Only two mice died before 40 weeks post transplantation in all groups, and there were no life-threatening GvHD lesions except in the dead mice. The occurrence of GvHD has been identified as mainly due to human T cells infiltrating tissues and their related cytokines. Discussion: Humanized mouse models under all conditions applied in this study are considered suitable models for long-term experiments based on the improvement of human leukocytes reconstruction and the stable animal health. Especially, RTKO mice pretreated with BSF are expected to be a valuable platform not only for generating humanized mice but also for various immune research fields.


Assuntos
Bussulfano , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Camundongos Endogâmicos NOD , Camundongos Knockout , Condicionamento Pré-Transplante , Animais , Bussulfano/farmacologia , Humanos , Camundongos , Transplante de Células-Tronco Hematopoéticas/métodos , Condicionamento Pré-Transplante/métodos , Células-Tronco Hematopoéticas/metabolismo , Feminino , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/deficiência , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/imunologia , Modelos Animais de Doenças , Irradiação Corporal Total
8.
Brain Behav Immun ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134184

RESUMO

Prostaglandins (PGs) play a crucial role in sleep regulation, yet the broader physiological context that leads to the activation of the prostaglandin-mediated sleep-promoting system remains elusive. In this study, we explored sleep-inducing mechanisms potentially involving PGs, including microbial, immune and thermal stimuli as well as homeostatic sleep responses induced by short-term sleep deprivation using cyclooxygenase-2 knockout (COX-2 KO) mice and their wild-type littermates (WT). Systemic administration of 0.4 µg lipopolysaccharide (LPS) induced increased non-rapid-eye movement sleep (NREMS) and fever in WT animals, these effects were completely absent in COX-2 KO mice. This finding underscores the essential role of COX-2-dependent prostaglandins in mediating sleep and febrile responses to LPS. In contrast, the sleep and fever responses induced by the pro-inflammatory cytokine tumor necrosis factor α, a proinflammatory cytokine which activates COX-2, were preserved in COX-2 KO animals, indicating that these effects are independent of COX-2-related signaling. Additionally, we examined the impact of ambient temperature on sleep. The sleep-promoting effects of moderate warm ambient temperature were suppressed in COX-2 KO animals, resulting in significantly reduced NREMS at ambient temperatures of 30 °C and 35 °C compared to WT mice. However, rapid-eye-movement sleep responses to moderately cold or warm temperatures did not differ between the two genotypes. Furthermore, 6 h of sleep deprivation induced rebound increases in sleep with no significant differences observed between COX-2 KO and WT mice. This suggests that while COX-2-derived prostaglandins are crucial for the somnogenic effects of increased ambient temperature, the homeostatic responses to sleep loss are COX-2-independent. Overall, the results highlight the critical role of COX-2-derived prostaglandins as mediators of the sleep-wake and thermoregulatory responses to various physiological challenges, including microbial, immune, and thermal stimuli. These findings emphasize the interconnected regulation of body temperature and sleep, with peripheral mechanisms emerging as key players in these integrative processes.

9.
J Nutr Biochem ; : 109721, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128608

RESUMO

Malnutrition is a complicated illness that affects people worldwide and is linked to higher death rates, a heightened vulnerability to infectious infections, and delayed cognitive development. To comprehend the mechanisms associated with hunger, experimental models have been constructed. In this regard, the current study used two different types of food aiming to validate a murine model of malnutrition based on dietary restriction. The study was conducted with fifty-six Swiss male mice (eight-week-old) divided into eight groups (n=7 each) and fed the following experimental diets (10 weeks): Standard Diet (ST) ad libitum; ST 20% dietary restriction; ST 40% dietary restriction; ST 60% dietary restriction; AIN93-M diet ad libitum; AIN93-M 20% dietary restriction; AIN93-M 40% dietary restriction; AIN93-M 60% dietary restriction. Body, biochemical, and histological parameters were measured, in addition to evaluating the restriction effects on genes related to oxidative stress (GPX1 and GPX4) in epididymal adipose tissue. The results obtained showed that 20%, 40%, and 60% of dietary restrictions were able to reduce body weight when compared to controls, highlighting the accentuated weight loss in animals with 60% restrictions, especially those fed with AIN-93 M, which showed physical changes such as whitish skin and dull coat, voracious eating, and hunched posture. The present animal model also showed biochemical changes with hypoalbuminemia, as well as histological epididymal adipose tissue modulation. The presence of increased oxidative stress was observed in evaluating the GPX4 gene. Given the results, 60% food restriction using the AIN93-M diet was the best protocol for inducing malnutrition.

10.
Exp Hematol ; : 104600, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128692

RESUMO

Aging significantly impacts the hematopoietic system, reducing its regenerative capacity and ability to restore homeostasis after stress. Mouse models have been invaluable in studying this process due to their shorter lifespan and the ability to explore genetic, treatment, and environmental influences on aging. However, not all aspects of aging are mirrored between species. This review compares three key aging biomarkers in the hematopoietic systems of mice and humans: myeloid bias, telomere attrition, and epigenetic clocks. Myeloid bias, marked by an increased fraction of myeloid cells and decreased lymphoid cells, is a significant aging marker in mice but is scarcely observed in humans after childhood. Conversely, telomere length is a robust aging biomarker in humans, whereas mice exhibit significantly different telomere dynamics, making telomere length less reliable in the murine system. Epigenetic clocks, based on DNA methylation changes at specific genomic regions, provide precise estimates of chronological age in both mice and humans. Notably, age-associated regions in mice and humans occur at homologous genomic locations. Epigenetic clocks, depending on the epigenetic signatures used, also capture aspects of biological aging, offering powerful tools to assess genetic and environmental impacts on aging. Taken together, not all blood aging biomarkers are transferable between mice and humans. When using murine models to extrapolate human aging, it may be advantageous to focus on aging phenomena observed in both species. In conclusion, while mouse models offer significant insights, selecting appropriate biomarkers is crucial for translating findings to human aging.

11.
Virology ; 598: 110192, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39106585

RESUMO

In vitro studies have shown that deletion of nef and deleterious mutation in the Nef dimerization interface attenuates HIV replication and associated pathogenesis. Humanized rodents with human immune cells and lymphoid tissues are robust in vivo models for investigating the interactions between HIV and the human immune system. Here, we demonstrate that nef deletion impairs HIV replication and HIV-induced immune dysregulation in the blood and human secondary lymphoid tissue (human spleen) in bone marrow-liver-thymus-spleen (BLTS) humanized mice. Furthermore, we also show that nef defects (via deleterious mutations in the dimerization interface) impair HIV replication and HIV-induced immune dysregulation in the blood and human spleen in BLTS-humanized mice. We demonstrate that the reduced replication of nef-deleted and nef-defective HIV is associated with robust antiviral innate immune response, and T helper 1 response. Our results support the proposition that Nef may be a therapeutic target for adjuvants in HIV cure strategies.


Assuntos
Modelos Animais de Doenças , Infecções por HIV , HIV-1 , Fígado , Baço , Viremia , Replicação Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Animais , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Camundongos , Humanos , Viremia/imunologia , Baço/imunologia , Baço/virologia , HIV-1/imunologia , HIV-1/genética , HIV-1/fisiologia , Fígado/virologia , Fígado/imunologia , Fígado/patologia , Medula Óssea/virologia , Medula Óssea/imunologia , Timo/imunologia , Timo/virologia , Imunidade Inata
12.
Microbiome ; 12(1): 147, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113097

RESUMO

BACKGROUND: Understanding the cause vs consequence relationship of gut inflammation and microbial dysbiosis in inflammatory bowel diseases (IBD) requires a reproducible mouse model of human-microbiota-driven experimental colitis. RESULTS: Our study demonstrated that human fecal microbiota transplant (FMT) transfer efficiency is an underappreciated source of experimental variability in human microbiota-associated (HMA) mice. Pooled human IBD patient fecal microbiota engrafted germ-free (GF) mice with low amplicon sequence variant (ASV)-level transfer efficiency, resulting in high recipient-to-recipient variation of microbiota composition and colitis severity in HMA Il-10-/- mice. In contrast, mouse-to-mouse transfer of mouse-adapted human IBD patient microbiota transferred with high efficiency and low compositional variability resulting in highly consistent and reproducible colitis phenotypes in recipient Il-10-/- mice. Engraftment of human-to-mouse FMT stochastically varied with individual transplantation events more than mouse-adapted FMT. Human-to-mouse FMT caused a population bottleneck with reassembly of microbiota composition that was host inflammatory environment specific. Mouse-adaptation in the inflamed Il-10-/- host reassembled a more aggressive microbiota that induced more severe colitis in serial transplant to Il-10-/- mice than the distinct microbiota reassembled in non-inflamed WT hosts. CONCLUSIONS: Our findings support a model of IBD pathogenesis in which host inflammation promotes aggressive resident bacteria, which further drives a feed-forward process of dysbiosis exacerbated by gut inflammation. This model implies that effective management of IBD requires treating both the dysregulated host immune response and aggressive inflammation-driven microbiota. We propose that our mouse-adapted human microbiota model is an optimized, reproducible, and rigorous system to study human microbiome-driven disease phenotypes, which may be generalized to mouse models of other human microbiota-modulated diseases, including metabolic syndrome/obesity, diabetes, autoimmune diseases, and cancer. Video Abstract.


Assuntos
Modelos Animais de Doenças , Disbiose , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Interleucina-10 , Animais , Humanos , Camundongos , Doenças Inflamatórias Intestinais/microbiologia , Disbiose/microbiologia , Interleucina-10/genética , Colite/microbiologia , Fezes/microbiologia , Colo/microbiologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Feminino , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Inflamação , Masculino
13.
Cell ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39137778

RESUMO

Respiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death. Recovered patients had low OLAH expression throughout hospitalization. High OLAH levels were also detected in patients hospitalized with life-threatening seasonal influenza, COVID-19, respiratory syncytial virus (RSV), and multisystem inflammatory syndrome in children (MIS-C) but not during mild disease. In olah-/- mice, lethal influenza infection led to survival and mild disease as well as reduced lung viral loads, tissue damage, infection-driven pulmonary cell infiltration, and inflammation. This was underpinned by differential lipid droplet dynamics as well as reduced viral replication and virus-induced inflammation in macrophages. Supplementation of oleic acid, the main product of OLAH, increased influenza replication in macrophages and their inflammatory potential. Our findings define how the expression of OLAH drives life-threatening viral disease.

14.
CNS Neurosci Ther ; 30(8): e14902, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39138637

RESUMO

AIMS: Postoperative delirium (POD) is a common neurological complication in elderly patients after anesthesia/surgery. The main purpose of this study is to explore the effect of circRNA-targeted miRNA regulating SIRT3 on mitochondrial function through ceRNA mechanism under the surgical model of tibial fracture and to further explore the potential mechanism of postoperative delirium mediated by circRNA, so as to provide new ideas for clinical diagnosis and prevention of POD. METHODS: The surgical model of tibial fracture under sevoflurane anesthesia caused acute delirium-like behavior in elderly mice. We observed that the decrease of SIRT3 and mitochondrial dysfunction was related to POD, and miRNA and circRNA (circRNA_34414) related to SIRT3 were further studied. Through luciferase and RAP, we observed that circRNA_34414, as a miRNA sponge, was involved in the regulation of SIRT3 expression. RESULTS: Postoperative delirium in elderly mice showed decreased expression of hippocampal circRNA_34414, increased expression of miR-6960-5p, decreased expression of SIRT3, and impaired mitochondrial membrane potential. Overexpression of circRNA_34414, or knockdown of miR-6960-5p, or overexpression of SIRT3 in hippocampal CA1 glutamatergic neurons significantly upregulated hippocampal SIRT3 expression, increased mitochondrial membrane potential levels, and significantly ameliorated postoperative delirium in aged mice; CircRNA_34414 ameliorates postoperative delirium in mice, possibly by targeting miR-6960-5p to upregulate SIRT3. CONCLUSIONS: CircRNA_34414 is involved in the improvement of postoperative delirium induced by anesthesia/surgery by upregulating SIRT3 via sponging miR-6960-5p.


Assuntos
Delírio , MicroRNAs , Neurônios , Complicações Pós-Operatórias , RNA Circular , Sirtuína 3 , Animais , Sirtuína 3/metabolismo , Sirtuína 3/genética , Delírio/metabolismo , Camundongos , MicroRNAs/metabolismo , MicroRNAs/genética , RNA Circular/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Masculino , Complicações Pós-Operatórias/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fraturas da Tíbia/cirurgia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia
15.
J Psychopharmacol ; : 2698811241269691, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135494

RESUMO

BACKGROUND: Nicotine is largely responsible for the initiation and maintenance of tobacco dependence and contributes to a global health problem. AIMS: This study characterizes nicotine oral consumption and preference in male and female mice of several Diversity Outbred (DO) founder strains: C57BL/6J, A/J, 129S1/SvImJ, PWK/PhJ, NOD/ShiLtJ, and CAST/EiJ. It assesses the impact of nicotine concentration on intake and preference, the potential interaction of strain with sex, and estimates the degree of heritable variation in nicotine consumption. METHODS: Two-bottle choice oral self-administration paradigm was used to assess nicotine intake, nicotine preference, and total fluid intake in male and female mice of each strain in a concentration-response manner. A conditioned place preference (CPP) test was performed to evaluate the rewarding and aversive effects of nicotine in certain strains after systemic administration of the drug. RESULTS: The highest nicotine-consuming strain was found to be 129S1/SvlmJ, and the lowest nicotine-consuming strain was A/J. Strain differences in nicotine intake were not due to differences in bitter and sweet tastes as shown in the saccharine and quinine two-bottle choice tests. A/J strain showed no significant CPP for nicotine while the 129S1/SvImJ strain showed a significant CPP for nicotine and a higher preference when compared to the C57BL/6J strain. Heritability estimates of nicotine intake were sex dependent and concentration dependent. CONCLUSIONS: Data support that nicotine consumption patterns are heritable with an influence of genotype in a voluntary oral self-administration paradigm. Results pave the way for future studies with the highly recombinant DO mice that might lead to the identification of novel genetic loci and genes influencing nicotine consumption.

16.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125954

RESUMO

In this study, we evaluated the ability of the synthetic amphipathic helical peptide (SAHP), L-37pA, which mediates pathogen recognition and innate immune responses, to treat acute respiratory distress syndrome (ARDS) accompanied by diffuse alveolar damage (DAD) and chronic pulmonary fibrosis (PF). For the modeling of ARDS/DAD, male ICR mice were used. Intrabronchial instillation (IB) of 200 µL of inflammatory agents was performed by an intravenous catheter 20 G into the left lung lobe only, leaving the right lobe unaffected. Intravenous injections (IVs) of L-37pA, dexamethasone (DEX) and physiological saline (saline) were used as therapies for ARDS/DAD. L37pA inhibited the circulating levels of inflammatory cytokines, such as IL-8, TNFα, IL1α, IL4, IL5, IL6, IL9 and IL10, by 75-95%. In all cases, the computed tomography (CT) data indicate that L-37pA reduced lung density faster to -335 ± 23 Hounsfield units (HU) on day 7 than with DEX and saline, to -105 ± 29 HU and -23 ± 11 HU, respectively. The results of functional tests showed that L-37pA treatment 6 h after ARDS/DAD initiation resulted in a more rapid improvement in the physiological respiratory lung by 30-45% functions compared with the comparison drugs. Our data suggest that synthetic amphipathic helical peptide L-37pA blocked a cytokine storm, inhibited acute and chronic pulmonary inflammation, prevented fibrosis development and improved physiological respiratory lung function in the ARDS/DAD mouse model. We concluded that a therapeutic strategy using SAHPs targeting SR-B receptors is a potential novel effective treatment for inflammation-induced ARDS, DAD and lung fibrosis of various etiologies.


Assuntos
Citocinas , Camundongos Endogâmicos ICR , Peptídeos , Fibrose Pulmonar , Síndrome do Desconforto Respiratório , Animais , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/patologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Camundongos , Masculino , Citocinas/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo
17.
Open Med (Wars) ; 19(1): 20241001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135980

RESUMO

Background: Neural cell damage is an important cause of exacerbation of depression symptoms caused by hypoxia, but the mechanism behind it is still unclear. The purpose of this study is to elucidate the role of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)/mitofusin-2 (MFN2) signaling axis in the development of depression in mice under hypoxia. Methods: Male Institute of Cancer Research mice (age, 6 weeks) were assigned to the normal group, chronic unpredictable mild stress group (CUMS group), or CUMS + hyper-hypoxia group (CUMS + H group). Mice in the CUMS and CUMS + H groups were exposed to CUMS for 28 days. Additionally, mice in the CUMS + H group were exposed to acute hyper-hypoxia from Day 21 for 7 days. After a total of 28 days, behavioral experiments were conducted. All mice were anesthetized and sacrificed. Levels of brain tissue interleukin (IL)-6, reactive oxygen species (ROS), adenosine triphosphate (ATP), and serotonin (5-HT) were analyzed. Results: As compared to the CUMS group, mice in the CUMS + H group had increased IL-6 and ROS levels, but lower open-field activity, preference for sucrose, hippocampal neuronal membrane potential, ATP, and 5-HT levels, as well as MFN2 and PGC1α levels. Conclusions: Acute hyper-hypoxia plays an important role in the development of depression via the IL-6/PGC1α/MFN2 signaling pathway.

18.
Redox Biol ; 75: 103266, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39094400

RESUMO

Despite the protective nature of the blood-brain barrier (BBB) and brain-protecting tissues, some types of CNS injury or stress can cause cerebral cytokine production and profound alterations in brain function. Neuroinflammation, which can also be accompanied by increased cerebral cytokine production, has a remarkable impact on the pathogenesis of many neurological illnesses, including loss of BBB integrity and ischemic stroke, yet effective treatment choices for these diseases are currently lacking. Although little is known about the brain effects of Metformin (MF), a commonly prescribed first-line antidiabetic drug, prior research suggested that it may be useful in preventing BBB deterioration and the increased risk of stroke caused by tobacco smoking (TS). Therefore, reducing neuroinflammation by escalating anti-inflammatory cytokine production and declining pro-inflammatory cytokine production could prove an effective therapeutic strategy for ischemic stroke. Hence, the current investigation was planned to explore the potential role of MF against stroke and TS-induced neuroinflammation and reactive oxygen species (ROS) production. Our studies revealed that MF suppressed releasing pro-inflammatory mediators like tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) by aiming at the nuclear factor kappa B (NF-κB) signaling pathway in primary neurons and astrocytes. MF also upregulated anti-inflammatory mediators, like interleukin-10 (IL-10), and interleukin-4 (IL-4), by upregulating the Nrf2-ARE signaling pathway. Adolescent mice receiving MF along with TS exposure also showed a notable decrease in NF-κB expression compared to the mice not treated with MF and significantly decreased the level of TNF-α, IL-1ß, MCP-1, and MIP-2 and increased the levels of IL-10 and IL-4 through the activation of Nrf2-ARE signaling pathway. These results suggest that MF has anti-neuroinflammatory effects via inhibiting NF-κB signaling by activating Nrf2-ARE. These studies support that MF could be a strong candidate drug for treating and or preventing TS-induced neuroinflammation and ischemic stroke.

19.
Appl Spectrosc ; 78(7): 744-752, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39096170

RESUMO

Hemicyanine dyes are an ideal structure for building near-infrared fluorescent probes due to their excellent emission wavelength properties and biocompatibility in biological imaging field. Developing a near-infrared fluorescent probe capable of detecting cysteine (Cys) was the aim of this study. A novel developed fluorescent probe P showed high selectivity and sensitivity to Cys in the presence of various analytes. The detection limit of P was found to be 0.329 µM. The MTT assay showed that the probe was essentially non-cytotoxic. Furthermore, the probe was successfully used as cysteine imaging in living cells and mice.


Assuntos
Cisteína , Corantes Fluorescentes , Cisteína/análise , Cisteína/química , Corantes Fluorescentes/química , Animais , Camundongos , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Limite de Detecção , Carbocianinas/química , Espectrometria de Fluorescência/métodos , Células HeLa , Imagem Óptica/métodos
20.
Drug Des Devel Ther ; 18: 3383-3397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100222

RESUMO

Introduction: This comprehensive study investigated the therapeutic potential of α-asarone in mitigating myocardial oxidative damage, primarily induced by hexavalent chromium (Cr(VI)) exposure in mice. Methods: In this experiment, 24 mice were divided into four groups to assess the cardioprotective role of α-asarone. The study focused on two treatment groups, receiving 25 mg and 50 mg of α-asarone, respectively. These groups were compared against a control group subjected to Cr(VI) without α-asarone treatment, and a normal control negative group. The key biochemical parameters evaluated included serum levels of Creatine Kinase-MB (CK-MB) and Troponin I, markers indicative of myocardial damage. Additionally, the levels of Malondialdehyde (MDA) were measured to assess lipid peroxidation, alongside the evaluation of key inflammatory biomarkers in cardiac tissue homogenates, such as Tumor Necrosis Factor-α (TNF-α) and Interleukin-1ß (IL-1ß). Results Remarkably, α-asarone treatment resulted in a significant reduction in these markers compared to the control group. The treatment also elevated the activity of cardinal antioxidant enzymes like catalase (CAT) and superoxide dismutase (SOD), and reduced the glutathione (GSH). Furthermore, a notable upregulation of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) in cardiac tissue homogenates was observed, highlighting a potential pathway through which α-asarone exerts its protective effects. Histopathological analysis of cardiac tissues revealed that α-asarone ameliorated the structural lesions induced by Cr(VI). The study thus provides substantial evidence that α-asarone ameliorates Cr(VI)-induced cardiotoxicity through a multifaceted approach. It enhances cardiac enzyme function, modulates free radical generation, improves antioxidant status, and mitigates histopathological damage in cardiac tissues. Given these findings, α-asarone emerges as a promising agent against Cr(VI)-induced myocardial injury. Purpose: This study paves the way for further research into the cardioprotective properties of α-asarone and its potential application in clinical settings by specifically exploring the protective efficacy of α-asarone against Cr(VI)-induced cardiotoxicity and delineating the underlying biochemical and molecular mechanisms involved.


Assuntos
Derivados de Alilbenzenos , Anisóis , Cromo , Estresse Oxidativo , Animais , Derivados de Alilbenzenos/farmacologia , Anisóis/farmacologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Cardiotônicos/farmacologia , Antioxidantes/farmacologia , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA