Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Arthroplasty ; 6(1): 49, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39350209

RESUMO

BACKGROUND: Surgical site infection (SSI) is a major problem following total hip arthroplasty (THA). This study investigated the impact of a standard intraoperative routine where the surgical team wears full-body exhaust suits (space suits) within a laminar airflow (LAF)-ventilated operating room (OR) on environmental contamination. Our primary objective was to identify potential modifiable intraoperative factors that could be better controlled to minimize SSI risk. METHODS: We implemented an approach involving simultaneous and continuous air sampling throughout actual primary cementless THA procedures. This method concurrently monitored both airborne particle and microbial contamination levels from the time the patient entered the OR for surgery until extubation. RESULTS: Airborne particulate and microbial contamination significantly increased during the first and second patient repositionings (postural changes) when the surgical team was not wearing space suits. However, their concentration exhibited inconsistent changes during the core surgical procedures, between incision and suturing, when the surgeons wore space suits. The microbial biosensor detected zero median microbes from draping to suturing. In contrast, the particle counter indicated a significant level of airborne particles during head resection and cup press-fitting, suggesting these procedures might generate more non-viable particles. CONCLUSIONS: This study identified a significant portion of airborne particles during the core surgical procedures as non-viable, suggesting that monitoring solely for particle counts might not suffice to estimate SSI risk. Our findings strongly support the use of space suits for surgeons to minimize intraoperative microbial contamination within LAF-ventilated ORs. Therefore, minimizing unnecessary traffic and movement of unsterile personnel is crucial. Additionally, since our data suggest increased contamination during patient repositioning, effectively controlling contamination during the first postural change plays a key role in maintaining low microbial contamination levels throughout the surgery. The use of sterile gowns during this initial maneuver might further reduce SSIs. Further research is warranted to investigate the impact of sterile attire on SSIs.

2.
Cureus ; 16(8): e66682, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39262535

RESUMO

Objective This study aimed to evaluate microbial contamination of contact lenses (CL) and their accessories among asymptomatic lens users and identify behavioral risk factors that might exacerbate the said contamination. Methodology Ninety-five asymptomatic soft CL users were recruited. In total, 380 samples were collected from the inner surface of lenses, the base of lens cases, the tip of the multipurpose solution bottle, and the solution itself. All swabs with samples were inoculated onto Columbia 5% sheep blood agar, MacConkey agar, Pseudomonas agar with cetrimide, and Sabouraud dextrose agar. Blood agar, MacConkey agar, and Pseudomonas agar with cetrimide were incubated at 37 °C for 24-48 hours. Fungal growth was investigated on Sabouraud dextrose agar, incubated at 25 °C, and examined daily for three weeks. Microscopic examination, culture-based methods, and biochemical tests were used to identify isolated microorganisms. A self-administered questionnaire on compliance with care and hygiene procedures was completed by each participant. Results The overall microbial contamination of tested samples was 38.7%. The most frequently contaminated items were lens cases (59, 62.1%), followed by bottles (44, 46.3%) and lenses (35, 36.8%). Meanwhile, the lowest incidence of contamination was seen in lens multipurpose solutions (9, 9.5%). The predominant microorganisms recovered were Coagulase-negative Staphylococci (CoNS) (94, 64%) and Gram-positive rods (29, 19.7%). Other identified potential pathogens were Staphylococcus aureus (11, 7.5%), Pseudomonas aeruginosa (5, 3.4%), Escherichia coli (1, 0.7%), and Candida albicans (2, 1.4%). The questionnaire revealed that contact lens users aged 18 to 20 showed a lack of compliance with proper hygienic care for contact lens maintenance. Risk factors such as male gender, smoking, showering, or swimming while wearing CL were related to microbiological contamination in at least one of the samples (P > 0.05). Conclusions The highest degree of contamination with highly virulent pathogens was determined in lens cases owing to insufficient lens care practices among study participants. Noncompliance with the lens cleaning procedures can lead to microbial colonization of the lens and its accessories, prompting inflammatory events in the eyes in the future.

3.
Cureus ; 16(7): e64782, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39156419

RESUMO

Background As mobile phones act as a potential source of microbial contamination, particularly in a hospital environment, the effectiveness of two most debated interventions namely ultraviolet radiation and disinfectant wipes in reducing the microbial contamination of mobile phones is compared. Objective To screen the mobile phones of healthcare personnel for the presence of microorganisms and to compare the effectiveness of ultraviolet radiation and disinfectant wipes in reducing microbial contamination. Methods and materials Pre-intervention and post-intervention swabs were collected before and after the use of each intervention respectively using 56 samples and cultured for growth in nutrient agar. Agar plates are subjected to quantitative analysis using bacterial colony count to reflect the efficacy of the specific intervention used. The data collected was entered in Microsoft Excel (Microsoft® Corp., Redmond, WA, USA) and analysis was done using standard statistical packages. Results While comparing the pre-intervention bacterial load with the post-intervention load, post-intervention bacterial contamination in terms of colony-forming units/CFU has drastically reduced after both interventions, which is validated by statistical significance. However, it was observed participants using disinfectant wipes as intervention had 2.07 times higher chance of having a low bacterial load which wasn't statistically significant. Conclusion Our study shows that with the use of any intervention from the above-mentioned interventions, bacterial load or bacterial contamination can be reduced significantly, thus pointing out that both ultraviolet radiation and disinfectant wipes are effective in reducing contamination of mobile phones. It was also found that male doctors have more bacterial load than females, which can be minimized by effectively changing behavioral habits.

4.
Methods Mol Biol ; 2827: 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985259

RESUMO

Plant cell, tissue, and organ cultures (PCTOC) have been used as experimental systems in basic research, allowing gene function demonstration through gene overexpression or repression and investigating the processes involved in embryogenesis and organogenesis or those related to the potential production of secondary metabolites, among others. On the other hand, PCTOC has also been applied at the commercial level for the vegetative multiplication (micropropagation) of diverse plant species, mainly ornamentals but also horticultural crops such as potato or fruit and tree species, and to produce high-quality disease-free plants. Moreover, PCTOC protocols are important auxiliary systems in crop breeding crops to generate pure lines (homozygous) to produce hybrids for the obtention of polyploid plants with higher yields or better performance. PCTOC has been utilized to preserve and conserve the germplasm of different crops or threatened species. Plant genetic improvement through genetic engineering and genome editing has been only possible thanks to the establishment of efficient in vitro plant regeneration protocols. Different companies currently focus on commercializing plant secondary metabolites with interesting biological activities using in vitro PCTOC. The impact of omics on PCTOC is discussed.


Assuntos
Células Vegetais , Técnicas de Cultura de Tecidos , Técnicas de Cultura de Células/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Células Vegetais/metabolismo , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo , Técnicas de Cultura de Tecidos/métodos
5.
Pharmaceutics ; 16(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065630

RESUMO

The microbial contamination of eye drop tips and caps varies between 7.7% and 100%. In seeking patient protection and continuous improvement, the Pharmacy Department in the Sterile Ophthalmological and Oncological Preparations Unit at Cochin Hospital AP-HP, Paris, France, conducted a two-phase study to compare the antimicrobial efficiency and practical use of standard packaging and a marketed eye drop container incorporating a self-decontaminating antimicrobial green technology by Pylote SAS at the tip and cap sites. The first phase was conducted in situ to identify the microbial contaminants of eye drops used in the hospital and community settings. A total of 110 eye drops were included for testing. Staphylococcus species were the most prevalent bacteria. Candida parapsilosis was detected in only one residual content sample and, at the same time, on the cap and tip. The second phase was performed in vitro, according to JIS Z2801. Reductions above one log in Staphylococcus aureus and Pseudomonas aeruginosa counts were noted in Pylote SAS eye drop packaging after 24 h of contact. The practical tests showed satisfactory results. Pylote SAS antimicrobial mineral oxide technology exhibited promising effects that combined effectiveness, safety, and sustainability to protect the patient by preventing infections due to the contamination of eye drop containers.

6.
Microorganisms ; 12(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38930526

RESUMO

BACKGROUND: Wastewater treatment plants (WWTPs) are crucial in the scope of European Commission circular economy implementation. However, bioaerosol production may be a hazard for occupational and public health. A scoping review regarding microbial contamination exposure assessment in WWTPs was performed. METHODS: This study was performed through PRISMA methodology in PubMed, Scopus and Web of Science. RESULTS: 28 papers were selected for data extraction. The WWTPs' most common sampled sites are the aeration tank (42.86%), sludge dewatering basin (21.43%) and grit chamber. Air sampling is the preferred sampling technique and culture-based methods were the most frequently employed assays. Staphylococcus sp. (21.43%), Bacillus sp. (7.14%), Clostridium sp. (3.57%), Escherichia sp. (7.14%) and Legionella sp. (3.57%) were the most isolated bacteria and Aspergillus sp. (17.86%), Cladosporium sp. (10.71%) and Alternaria sp. (10.71%) dominated the fungal presence. CONCLUSIONS: This study allowed the identification of the following needs: (a) common protocol from the field (sampling campaign) to the lab (assays to employ); (b) standardized contextual information to be retrieved allowing a proper risk control and management; (c) the selection of the most suitable microbial targets to serve as indicators of harmful microbial exposure. Filling these gaps with further studies will help to provide robust science to policy makers and stakeholders.

7.
Int Ophthalmol ; 44(1): 280, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922477

RESUMO

PURPOSE: The purpose of this study was to analyse the contamination rate of corneal samples stored in OCM at Lions Eye Bank of Western Australia over a 12-year period. METHODS: All OCM samples used to preserve corneas from 2011 to 2022 (inclusive) underwent microbiological testing. Samples were collected into aerobic and anaerobic culture bottles on day 3-5 of corneal preservation and 24 h after transfer to thinning medium. Samples were tested for 7 days using the BACTEC FX system. Corneas remained in quarantine until clearance was obtained. RESULTS: From 2011 to 2022, 3009 corneas were retrieved and 2756 corneas were stored in OCM. Thirty one (1.1%) positive samples were reported, with 20 growths of bacterial origin and 11 fungal. Microbial contamination was mostly identified on day 1 of culture (77.5%). Donors of contaminated samples had a mean age of 55 years, with 17 male and 14 female donors. The highest incidence of contamination came from donors whose cause of death was cancer. Death to enucleation times of contaminated samples ranged from 3.5 to 25.5 h (mean = 13.5 ± 7.3) and death to preservation time ranged from 4.1 to 27.5 h (mean = 14.8 ± 7.2). These did not significantly differ from the average time from death to enucleation (mean = 13.9 ± 3) and death to preservation (mean = 16.3 ± 4.2) of non-contaminated samples. CONCLUSION: Microbiological screening of corneas stored in OCM at LEBWA showed a very low rate of positive cultures with no predictive donor characteristics.


Assuntos
Bactérias , Córnea , Bancos de Olhos , Preservação de Órgãos , Doadores de Tecidos , Bancos de Olhos/estatística & dados numéricos , Humanos , Córnea/microbiologia , Feminino , Masculino , Pessoa de Meia-Idade , Austrália Ocidental/epidemiologia , Preservação de Órgãos/métodos , Doadores de Tecidos/estatística & dados numéricos , Adulto , Idoso , Bactérias/isolamento & purificação , Técnicas de Cultura de Órgãos , Transplante de Córnea , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Fungos/isolamento & purificação , Adulto Jovem
8.
Environ Pollut ; 350: 123976, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657893

RESUMO

The lack of knowledge regarding the extent of microbial contamination in Portuguese fitness centers (FC) puts attendees and athletes at risk for bioaerosol exposure. This study intends to characterize microbial contamination in Portuguese FC by passive sampling methods: electrostatic dust collectors (EDC) (N = 39), settled dust (N = 8), vacuum filters (N = 8), and used cleaning mops (N = 12). The obtained extracts were plated in selective culture media for fungi and bacteria. Filters, EDC, and mop samples' extracts were also screened for antifungal resistance and used for the molecular detection of the selected Aspergillus sections. The detection of mycotoxins was conducted using a high-performance liquid chromatograph (HPLC) system and to determine the cytotoxicity of microbial contaminants recovered by passive sampling, HepG2 (human liver carcinoma) and A549 (human alveolar epithelial) cells were employed. The results reinforce the use of passive sampling methods to identify the most critical areas and identify environmental factors that influence microbial contamination, namely having a swimming pool. The cardio fitness area presented the highest median value of total bacteria (TSA: 9.69 × 102 CFU m-2.day-1) and Gram-negative bacteria (VRBA: 1.23 CFU m-2.day-1), while for fungi it was the open space area, with 1.86 × 101 CFU m-2.day-1. Aspergillus sp. was present in EDC and in filters used to collect settled dust. Reduced azole susceptibility was observed in filters and EDC (on ICZ and VCZ), and in mops (on ICZ). Fumonisin B2 was the only mycotoxin detected and it was present in all sampling matrixes except settled dust. High and moderate cytotoxicity was obtained, suggesting that A549 cells were more sensitive to samples' contaminants. The observed widespread of critical toxigenic fungal species with clinical relevance, such as Aspergillus section Fumigati, as well as Fumonisin B2 emphasizes the importance of frequent and effective cleaning procedures while using shared mops appeared as a vehicle of cross-contamination.


Assuntos
Microbiologia do Ar , Monitoramento Ambiental , Fungos , Portugal , Humanos , Monitoramento Ambiental/métodos , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Micotoxinas/análise , Poeira/análise , Células Hep G2 , Células A549 , Bactérias/isolamento & purificação
9.
Biosens Bioelectron ; 254: 116200, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518562

RESUMO

Detection of microbial pathogens is important for food safety reasons, and for monitoring sanitation in laboratory environments and health care settings. Traditional detection methods such as culture-based and nucleic acid-based methods are time-consuming, laborious, and require expensive laboratory equipment. Recently, ATP-based bioluminescence methods were developed to assess surface contamination, with commercial products available. In this study, we introduce a biosensor based on a CMOS image sensor for ATP-mediated chemiluminescence detection. The original lens and IR filter were removed from the CMOS sensor revealing a 12 MP periodic microlens/pixel array on an area of 6.5 mm × 3.6 mm. UltraSnap swabs are used to collect samples from solid surfaces including personal electronic devices, and office and laboratory equipment. Samples mixed with chemiluminescence reagents were placed directly on the surface of the image sensor. Close proximity of the sample to the photodiode array leads to high photon collection efficiency. The population of microorganisms can be assessed and quantified by analyzing the intensity of measured chemiluminescence. We report a linear range and limit of detection for measuring ATP in UltraSnap buffer of 10-1000 nM and 225 fmol, respectively. The performance of the CMOS-based device was compared to a commercial luminometer, and a high correlation with a Pearson's correlation coefficient of 0.98589 was obtained. The Bland-Altman plot showed no significant bias between the results of the two methods. Finally, microbial contamination of different surfaces was analyzed with both methods, and the CMOS biosensor exhibited the same trend as the commercial luminometer.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Semicondutores , Trifosfato de Adenosina
10.
BMC Complement Med Ther ; 24(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166914

RESUMO

INTRODUCTION: Herbal medicine is a medical system based on the utilization of plants or plant extracts for therapy. The continual increase in global consumption and the trade of herbal medicine has raised safety concerns in many regions. These concerns are mainly linked to microbial contamination, which could spread infections with multi-resistant bacteria in the community, and heavy metal contamination that may lead to cancers or internal organs' toxicity. METHODS: This study was performed using an experimental design. A total of 47 samples, herbal medicine products sold in local stores in Qassim region, were used in the experiments. They were tested for bacterial contamination, alongside 32 samples for heavy metal analysis. Bacterial contamination was determined by the streak plate method and further processed to determine their antimicrobial susceptibility patterns using MicroScan WalkAway96 pulse; heavy metals were determined using a spectrometer instrument. RESULTS: A total of 58 microorganisms were isolated. All samples were found to be contaminated with at least one organism except three samples. The majority of the isolated bacterial species were gram negative bacteria, such as Klebsiella spp., Pseudomonas spp. and E. coli., which could be of fecal origin and may lead to pneumonia, skin, or internal infections. Furthermore, most of the gram-positive bacteria were found to be multi-drug resistant. Moreover, for heavy metals, all samples had levels exceeding the regulatory limits. CONCLUSION: This study demonstrated the presence of bacteria and heavy metals in samples of herbal medicines. Using these contaminated products may spread resistant infections, metal toxicities, or even cancers in the community.


Assuntos
Metais Pesados , Neoplasias , Plantas Medicinais , Medicina Herbária , Estudos Prospectivos , Arábia Saudita , Escherichia coli , Metais Pesados/análise , Plantas Medicinais/microbiologia , Bactérias , Extratos Vegetais , Neoplasias/tratamento farmacológico
11.
Artigo em Inglês | MEDLINE | ID: mdl-38060279

RESUMO

Excessive and continuous use of cosmetic products containing heavy metals can lead to harmful effects. International regulations mandate limited quantities of heavy metals contamination in cosmetic preparations to ensure consumer safety. This research aims to evaluate heavy metal and microbial contamination levels in selected cosmetic products available in the Palestinian market. We collected 35 samples randomly from 23 companies, representing four product types, and analyzed them for the presence of seven heavy metals: zinc (Zn), cadmium (Cd), lead (Pb), chromium (Cr), iron (Fe), copper (Cu), and arsenic (As) using an atomic absorption spectrometer. We also interviewed pharmacists who sold these cosmetics to assess their knowledge of allowed limits and toxic effects associated with increased heavy metal content in cosmetics. The results indicated that all tested products exceeded the allowed limit for Cd (9.5 ± 2.3 ppm), Cu (33.8 ± 9.2 ppm), and Zn (151.0 ± 7.4 ppm). However, none of the tested samples showed microbial contamination. These findings underscore the significant heavy metal contamination of cosmetics present in the Palestinian market. Thus, there is a pressing need to register and quality-test all cosmetic products sold in the Palestinian market and to raise the pharmacists' awareness and knowledge regarding heavy metals in cosmetics.


Assuntos
Cosméticos , Metais Pesados , Humanos , Cádmio , Árabes , Cobre , Cromo
12.
Environ Sci Pollut Res Int ; 31(5): 7043-7057, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157168

RESUMO

A lab-scale gravity-driven bioreactor (GDB) was designed and constructed to evaluate the simultaneous treatment of black liquor and domestic wastewater. The GDB was operated with a mixture of black liquor and domestic wastewater at a ratio of 1:1 and maintained at an average organic loading rate of 1235 mg-COD/L-Day. The wastewater was fed to the primary sedimentation tank at a flow rate of approximately 12 mL/min and subsequently passed through serially connected anaerobic and aerobic chambers with the same flow rate. Each wastewater sample was allowed to undergo a hydraulic retention time of approximately 72 h, ensuring effective treatment. The GDB was actively operated for nine samples (W1-W9) at a weekly frequency. The entire process was conducted within the workstation's ambient temperature range of 30-35 °C to sustain microbial activity and treatment efficiency in an open environment. The performance of the GDB was evaluated in terms of various pollution indicators, including COD, BOD5, lignin removal, TDS, TSS, EC, PO43-, SO42-, microbial load (CFU/mL and MPN index), total nitrogen, and color reduction. The results showed that the GDB achieved promising treatment efficiencies: 84.5% for COD, 71.80% for BOD5, 82.8% for TDS, 100% for TSS, 74.71% for E.C., 67.25% for PO43-, 81% for SO42-, and 69.36% for TN. Additionally, about 80% reduction in lignin content and 57% color reduction were observed after the treatment. The GDB substantially reduced microbial load in CFU/mL (77.98%) and MPN (90%). This study marks the first to report on wastewater treatment from two different sources (black liquor and domestic wastewater) using a simple GDB design. Furthermore, it highlights the GDB's potential as a cost-effective, environmentally friendly, and efficient solution for wastewater treatment, with no need for supplementary chemical or physical agents and zero operational costs.


Assuntos
Águas Residuárias , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Lignina , Reatores Biológicos
13.
Microorganisms ; 11(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38138003

RESUMO

Radiation methods are widely used for disinfection and sterilization applications. Microorganisms demonstrate known, variable tolerance levels to inactivation with lower doses of ionizing and non-ionizing radiation based on multiple mechanisms of resistance in their structures and nucleic acid repair mechanisms. The radiation dose required to ensure microbial inactivation during sterilization is typically based on the understanding and routine monitoring of the natural population and resistance of microorganisms on products exposed to radiation sterilization processes. This report describes the isolation of Roseomonas mucosa in a device manufacturing environment that was detected during routine device bioburden and dose verification monitoring. Sources of Gram-negative bacteria in the environment were investigated. Non-sterile examination gloves used during manufacturing were found to be a persistent source of R. mucosa and other microbial contaminants. The source of contamination was determined to be from the glove manufacturing process. Maintenance and routine microbiological controls during glove manufacturing, including water systems, are required to reduce the risks of gloves being a source of unexpected microbiological contamination.

14.
Ann Med Surg (Lond) ; 85(11): 5445-5449, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37915661

RESUMO

Background: Different stages of assisted reproductive technologies are susceptible to contamination by various microorganisms. Objective: The aim of the study was to investigate the relationship between microbial contamination of embryo transfer catheters and the pregnancy outcome after embryo transfer. Methods: This cohort study was conducted on 60 patients candied for in vitro fertilization and embryo transfer cycles from 2021 to 2022. All embryos were transferred using a sterile syringe. The catheter contamination was checked by the microbial culture method, and in the case of microbial culture that were negative, polymerase chain reaction was done to confirm the result. The data analyzed using STATA 17 to determine the impact of catheter contamination on the clinical pregnancy rate. Results: The average age of peoples whose microbial culture was positive was lower than that of people whose microbial culture was negative (P<0.05). Also the results showed that people who live in villages have more positive microbial cultures than people who live in cities (P<0.05). Also there is no difference between the number of successful implantations and the pregnancy outcome between people whose microbial culture results were positive or negative. Conclusion: The results of the current study showed that the contamination of the embryo transfer catheter with microorganisms under our investigation did not affect the pregnancy outcome.

15.
Microorganisms ; 11(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38004663

RESUMO

Moulds are ubiquitous components of outdoor and indoor air and local conditions, temperature, humidity and season can influence their concentration in the air. The impact of these factors on mould exposure in hospitals and the resulting risk of infection for low to moderately immunocompromised patients is unclear. In the present retrospective analysis for the years 2018 to 2022, the monthly determined mould contamination of the outdoor and indoor air at the University Hospital Frankfurt am Main is compared with the average air temperature and the relative humidity. Mould infections (Aspergillus spp., Mucorales) of low to moderately immunosuppressed patients of a haematological-oncological normal ward were determined clinically according to the criteria of the European Organisation for Research and Treatment of Cancer (EORTC, Brussels, Belgium) and of the National Reference Centre for Surveillance of Nosocomial Infections (NRC-NI, Berlin, Germany). The data revealed that in the summer months (May-October), increased mould contamination was detectable in the outdoor and indoor air compared to the winter months (November-April). The mould levels in the patient rooms followed the detection rates of the outdoor air. Two nosocomial Aspergillus infections, one nosocomial Mucorales (Rhizopus spp.) infection (according to both NRC-NI and EORTC criteria) and five Aspergillus spp. infections (according to EORTC criteria) occurred in 4299 treated patients (resulting in 41,500 patient days). In our study, the incidence density rate of contracting a nosocomial mould infection (n = 3) was approximately 0.07 per 1000 patient days and appears to be negligible.

16.
Am J Infect Control ; 51(12): 1417-1424, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37182760

RESUMO

BACKGROUND: Bacterial airborne contamination in the operating room during surgery indicates an increased risk for surgical site infection. The conventional surveillance method for bacteria in the air is by air sampling, plating, and counting of colony-forming units (CFU). Particle counting measures particles in the air, typically in sizes of 1-20 µm, and has been suggested as an alternative to CFU measurements. The primary aim was to investigate the correlation between the number of airborne CFU and particles during surgery. The secondary aim was to explore whether different ventilation settings influence the correlation between CFU and particles. METHODS: The databases Cochrane, Embase, and Medline were searched for relevant publications. Due to the heterogeneity of the data, meta-analysis was not possible and a narrative analysis was performed instead. RESULTS: The review included 11 studies. Two of the studies (n = 2) reported strong correlation between particles and CFU (Rp = 0.76 and Rc = 0.74). The remaining studies observed moderate correlation (n = 3), low correlation (n = 3), or no correlation (n = 3). Based on the primary results from this study, ventilation attribution to distinguish the correlation between particles and CFU had no or little contribution. CONCLUSIONS: Due to the lack of convincing evidence of correlation and lack of high-quality studies performing measurements in a standardized way, the studies could not provide the necessary evidence that show that particle counting could be used as a substitution for conventional air bacterial assessment. Further studies are warranted to strengthen the conclusion.


Assuntos
Microbiologia do Ar , Bactérias , Humanos , Salas Cirúrgicas , Infecção da Ferida Cirúrgica , Ventilação , Contagem de Colônia Microbiana
17.
Heliyon ; 9(4): e15466, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37151673

RESUMO

Green leafy vegetables (such as cocoyam (Colocasia spp) leaves, spinach (Spinach spp), amaranths (Amaranthus spp), roselle leaves (Hibiscus spp), and lettuce (Lactuca spp)) form a major part of Ghanaian meals providing essential vitamin such as A, B and C and minerals including iron and calcium as well as essential bioactive compounds. However, the practices involved in the production, distribution and handling of these nutrient rich vegetables, by most value chain actors in Ghana, unfortunately pre-dispose them to contamination with pathogens, heavy metals and pesticides residues. These have therefore raised public health concerns regarding the safety and quality of these green leafy vegetables. Understanding the current perspectives of the type of pathogens, heavy metals and pesticide contaminants that are found in leafy vegetables and their health impacts on consumers will go a long way in helping to identify appropriate mitigation measures that could be used to improve the practices involved and thereby help safeguard human health. This review examined reported cases of microbial, heavy metal and pesticides residue contamination of green leafy vegetables in Ghana from 2005 to 2022. Notable pathogenic microorganisms were Ascaris eggs and larvae, faecal coliform, Salmonella spp., Staphylococcus aureus Streptococci, Clostridium perfringes, and Escherichia coli. In addition, Lead (Pb), Cadmium (Cr), Chromium (Cr), Zinc (Zn), Iron (Fe), Copper (Cu) and Manganese (Mn) have been detected in green leafy vegetables over the years in most Ghanaian cities. Pesticides residues from organochlorine, organophosphorus and synthetic pyrethroid have also been reported. Overall, microbial, heavy metals and pesticide residue contamination of Ghanaian green leafy vegetables on the farms and markets were significant. Hence, mitigation measures to curb the contamination of these vegetables, through the food chain, is urgently required to safeguard public health.

18.
Toxics ; 11(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112601

RESUMO

This study reports the search of available data published regarding microbial occupational exposure assessment in poultries, following the PRISMA methodology. Air collection through filtration was the most frequently used. The most commonly used passive sampling method was material collection such as dust, cages, soils, sediment, and wastewater. Regarding assays applied, the majority of studies comprised culture-based methods, but molecular tools were also frequently used. Screening for antimicrobial susceptibility was performed only for bacteria; cytotoxicity, virological and serological assays were also performed. Most of the selected studies focused on bacteria, although fungi, endotoxins, and ß-glucans were also assessed. The only study concerning fungi and mycotoxins reported the carcinogenic mycotoxin AFB1. This study gives a comprehensive overview of microbial contamination in the poultry industry, emphasizing this setting as a potential reservoir of microbial pathogens threatening human, animal, and environmental health. Additionally, this research helps to provide a sampling and analysis protocol proposal to evaluate the microbiological contamination in these facilities. Few articles were found reporting fungal contamination in poultry farms worldwide. In addition, information concerning fungal resistance profile and mycotoxin contamination remain scarce. Overall, a One Health approach should be incorporated in exposure assessments and the knowledge gaps identified in this paper should be addressed in further research.

19.
Ann Lab Med ; 43(5): 477-484, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080749

RESUMO

Background: Sterility and safety assurance of hematopoietic stem cell (HSC) products is critical in transplantation. Microbial contamination can lead to product disposal and increases the risk of unsuccessful clinical outcomes. Therefore, it is important to implement and maintain good practice guidelines and regulations for the HSC collection and processing unit in each hospital. We aimed to share our experiences and suggest strategies to improve the quality assurance of HSC processing. Methods: We retrospectively analyzed microbial culture results of 11,743 HSC products processed over a 25-year period (January 1996 to May 2021). Because of reorganization of the HSC management system in 2008, the 25-year period was divided into periods 1 (January 1996 to December 2007) and 2 (January 2008 to May 2021). We reviewed all culture results of the HSC products and stored aliquot samples and collected culture results for peripheral blood and catheter samples. Results: Of the 11,743 products in total, 35 (0.3%) were contaminated by microorganisms, including 19 (0.5%) of 3,861 products during period 1 and 16 (0.2%) of 7,882 products during period 2. Penicillium was the most commonly identified microorganism (15.8%) during period 1 and coagulase-negative Staphylococcus was the most commonly identified (31.3%) during period 2. HSC product contamination occurred most often during HSC collection and processing. Conclusions: The contamination rate decreased significantly during period 2, when the HSC management system was reorganized. Our results imply that handling HSC products by trained personnel and adopting established protocols, including quality assurance programs, aid in decreasing the contamination risk.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Humanos , Células-Tronco Hematopoéticas , Estudos Retrospectivos , Melhoria de Qualidade , Staphylococcus
20.
Sci Total Environ ; 879: 163007, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36965719

RESUMO

Ultraviolet irradiation C (UVC) has emerged as an effective strategy for microbial control in indoor public spaces. UVC is commonly applied for air, surface, and water disinfection. Unlike common 254 nm UVC, far-UVC at 222 nm is considered non-harmful to human health, being safe for occupied spaces, and still effective for disinfection purposes. Therefore, and allied to the urgency to mitigate the current pandemic of SARS-CoV-2, an increase in UVC-based technology devices appeared in the market with levels of pathogens reduction higher than 99.9 %. This environmentally friendly technology has the potential to overcome many of the limitations of traditional chemical-based disinfection approaches. The novel UVC-based devices were thought to be used in public indoor spaces such as hospitals, schools, and public transport to minimize the risk of pathogens contamination and propagation, saving costs by reducing manual cleaning and equipment maintenance provided by manpower. However, a lack of information about UVC-based parameters and protocols for disinfection, and controversies regarding health and environmental risks still exist. In this review, fundamentals on UVC disinfection are presented. Furthermore, a deep analysis of UVC-based technologies available in the market for the disinfection of public spaces is addressed, as well as their advantages and limitations. This comprehensive analysis provides valuable inputs and strategies for the development of effective, reliable, and safe UVC disinfection systems.


Assuntos
COVID-19 , Desinfecção , Humanos , Desinfecção/métodos , SARS-CoV-2 , COVID-19/prevenção & controle , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA