Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 877
Filtrar
1.
J Ethnopharmacol ; 336: 118737, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39182705

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pogostemonis Herba has long been used in traditional Chinese medicine to treat inflammatory disorders. Patchouli essential oil (PEO) is the primary component of Pogostemonis Herba, and it has been suggested to offer curative potential when applied to treat ulcerative colitis (UC). However, the pharmacological mechanisms of PEO for treating UC remain to be clarified. AIM OF THE STUDY: To elucidate the pharmacological mechanisms of PEO for treating UC. METHODS AND RESULTS: In the present study, transcriptomic and network pharmacology approaches were combined to clarify the mechanisms of PEO for treating UC. Our results reveal that rectal PEO administration in UC model mice significantly alleviated symptoms of UC. In addition, PEO effectively suppressed colonic inflammation and oxidative stress. Mechanistically, PEO can ameliorate UC mice by modulating gut microbiota, inhibiting inflammatory targets (OPTC, PTN, IFIT3, EGFR, and TLR4), and inhibiting the PI3K-AKT pathway. Next, the 11 potential bioactive components that play a role in PEO's anti-UC mechanism were identified, and the therapeutic efficacy of the pogostone (a bioactive component) in UC mice was partially validated. CONCLUSION: This study highlights the mechanisms through which PEO can treat UC, providing a rigorous scientific foundation for future efforts to develop and apply PEO for treating UC.


Assuntos
Colite Ulcerativa , Óleos Voláteis , Animais , Colite Ulcerativa/tratamento farmacológico , Óleos Voláteis/farmacologia , Camundongos , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Anti-Inflamatórios/farmacologia , Pogostemon/química , Estresse Oxidativo/efeitos dos fármacos , Farmacologia em Rede , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia
2.
Curr Top Med Chem ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39400022

RESUMO

INTRODUCTION: Heterogeneous Acute Myeloid Leukemia (AML) causes substantial worldwide morbidity and death. AML is characterized by excessive proliferation of immature myeloid cells in the bone marrow and impaired apoptotic regulator expression. METHOD: B-Cell Lymphoma 2 (BCL-2), an anti-apoptotic protein overexpressed in AML, promotes leukemic cell survival and chemoresistance. Thus, reducing BCL-2 may treat AML. Anticancer activities are found in Aloe barbadensis Miller (Aloe vera). Thus, this work used molecular modeling to assess Aloe vera bioactive chemicals as BCL-2 inhibitors. Molecular docking simulation showed that all identified Aloe vera phytocompounds have strong BCL-2 binding affinities (-6.7 to -8.7 kcal/mol). RESULT: Campesterol and α-tocopherol were identified as promising compounds for BCL-2 inhibitor research based on their drug-likeness, pharmacokinetics, and toxicity profiles. The stability and conformational of the BCL-2-compound complexes showed that the compounds were stable in BCL-2's binding pocket. CONCLUSION: Campesterol and α-tocopherol are promising BCL-2 inhibitors that might become effective anti-leukemic therapies with additional in vitro and in vivo research.

3.
Adv Sci (Weinh) ; : e2407593, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412093

RESUMO

Mechanically robust and tough polymeric materials are in high demand for applications ranging from flexible electronics to aerospace. However, achieving both high toughness and strength in polymers remains a significant challenge due to their inherently contradictory nature. Here, a universal strategy for enhancing the toughness and strength of polymer blends using ligand-modulated metal-organic framework (MOF) nanoparticles is presented, which are engineered to have adjustable hydrophilicity and lipophilicity by varying the types and ratios of ligands. Molecular dynamics (MD) simulations demonstrate that these nanoparticles can effectively regulate the interfaces between chemically distinct polymers based on their amphiphilicity. Remarkably, a mere 0.1 wt.% of MOF nanoparticles with optimized amphiphilicity (ML-MOF(5:5)) delivered ≈3.4- and ≈34.1-fold increase in strength and toughness of poly (lactic acid) (PLA)/poly (butylene succinate) (PBS) blend, respectively. Moreover, these amphiphilicity-tailorable MOF nanoparticles universally enhance the mechanical properties of various polymer blends, such as polypropylene (PP)/polyethylene (PE), PP/polystyrene (PS), PLA/poly (butylene adipate-co-terephthalate) (PBAT), and PLA/polycaprolactone (PCL)/PBS. This simple universal method offers significant potential for strengthening and toughening various polymer blends.

4.
Int J Mol Sci ; 25(19)2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39408805

RESUMO

c-Src is involved in multiple signaling pathways and serves as a critical target in various cancers. Growing evidence suggests that prolonging a drug's residence time (RT) can enhance its efficacy and selectivity. Thus, the development of c-Src antagonists with longer residence time could potentially improve therapeutic outcomes. In this study, we employed molecular dynamics simulations to explore the binding modes and dissociation processes of c-Src with antagonists characterized by either long or short RTs. Our results reveal that the long RT compound DAS-DFGO-I (DFGO) occupies an allosteric site, forming hydrogen bonds with residues E310 and D404 and engaging in hydrophobic interactions with residues such as L322 and V377. These interactions significantly contribute to the long RT of DFGO. However, the hydrogen bonds between the amide group of DFGO and residues E310 and D404 are unstable. Substituting the amide group with a sulfonamide yielded a new compound, DFOGS, which exhibited more stable hydrogen bonds with E310 and D404, thereby increasing its binding stability with c-Src. These results provide theoretical guidance for the rational design of long residence time c-Src inhibitors to improve selectivity and efficacy.


Assuntos
Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteína Tirosina Quinase CSK/química , Proteína Tirosina Quinase CSK/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/química , Quinases da Família src/metabolismo , Ligação Proteica , Interações Hidrofóbicas e Hidrofílicas , Sítio Alostérico , Sítios de Ligação
5.
Heliyon ; 10(19): e38337, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39403495

RESUMO

In this study, we aimed to utilize phospholipids from the bacterium Pseudomonas putida (PP) as a plentiful, safe, and accessible resource for creating nanoliposomes to deliver doxorubicin (Dox) to MCF-7 breast cancer cells. This bacterium provides a cost-effective source of phospholipids commonly used in nanoliposome production, with no toxicity or adverse environmental impact. To this end, molecular dynamics (MD) simulations were first conducted to evaluate the feasibility of this approach and to analyze the behavior and interaction of Dox with the nanoliposomes. The phospholipids of PP were then extracted using Folch's technique. Subsequently, Dox-loaded PP-derived nanoliposomes (PNL-Dox) were developed using the thin-film method. The physicochemical properties of the fabricated nanocarrier were then investigated and the anticancer effects of this system were tested on MCF-7 cells. The results of the MD simulations indicated that Dox reacted with all of the phospholipids through hydrogen bonds without affecting the fluidity, stability, and thickness of the nanoliposome membrane. Additionally, a small number of Dox molecules interacted with the nanocarrier membrane, while the remaining were located in its interior. The physicochemical investigation results showed that PNL-Dox had an average particle size and zeta potential of 271.7 ± 7.1 nm and -8.8 ± 3.3 mV, respectively. Scanning electron microscopy revealed that the particles were spherical and did not show any signs of aggregation. Drug release of PNL-Dox was gradual at pH 7.4 and 6.5, with a significantly higher release at pH 6.5. In vitro studies demonstrated successful uptake of PNL-Dox by MCF-7 cells, resulting in cytotoxicity within 24 and 48 h of treatment. Also, it increased apoptosis and reduced the production of reactive oxygen species (ROS) in these cells. Our study showcased the potential of PP phospholipids to form a promising anti-cancer drug delivery system, opening up new possibilities for the treatment of all types of cancers.

6.
Chem Biodivers ; : e202402040, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374344

RESUMO

ß-Arbutin, a natural glucoside hydroquinone derivative known for its skin-whitening properties through tyrosinase inhibition in melanin synthesis, may pose potential risks of allergy and carcinogenicity due to the release of hydroquinone during use. This study explores the inhibitory effects of phenyl-ß-D-pyranoglucoside (compound 1), 4-methoxyphenyl-ß-D-pyranoglucoside (compound 2), 4-hydroxymethylphenyl-ß-D-pyranoglucoside (compound 3), and ß-arbutin (compound 4) on tyrosinase using enzyme kinetics, molecular docking, and molecular dynamics simulations. Results show compounds 1, 3, and 4 exhibit competitive inhibition, while compound 2 shows mixed inhibition. Docking analysis reveals phenyl rings of all compounds interact with the enzyme's active site, with compound 3 forming a metal bond with copper ions. MD simulations indicate high stability for compounds 2, 3, and 4, with compound 3 showing the lowest RMSD and compact Rg, suggesting stronger binding. Compound 1 is less stable and less inhibitory. These insights are valuable for designing effective tyrosinase inhibitors.

7.
Arch Biochem Biophys ; 761: 110157, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307263

RESUMO

Allergic asthma, a chronic inflammatory illness that affects millions worldwide, has serious economic and health consequences. Despite advances in therapy, contemporary treatments have poor efficacy and negative effects. This study investigates hematopoietic prostaglandin D2 synthase (HPGDS) as a potential target for novel asthma therapies. Targeting HPGDS may provide innovative treatment methods. A library of phytochemicals was used to find putative HPGDS inhibitors by structure-based and ligand-based virtual screening. Among the 2295 compounds screened, four compounds (ZINC208828240, ZINC95627530, ZINC14727536, and ZINC14711790) demonstrated strong binding affinities of -10.4, -10.3, -9.2, -9.1 kcal/mol respectively with key residues, suggesting their potential as a highly effective HPGDS inhibitor. Molecular dynamics (MD) simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) computations were further performed to evaluate the stability and binding affinity of the complexes. MD simulations and MMPBSA confirmed that compound ZINC14711790 showed high stability and binding affinity (binding energy -31.52 kcal/mol) than other compounds, including HQL-79, suggesting that this compound might be used as promising inhibitors to treat asthma. RMSD and RMSF analysis also revealed that ZINC14711790 exhibited strong dynamic stability. The findings of this study show the efficacy of ZINC14711790 as HPGDS inhibitors with high binding affinity, dynamic stability, and appropriate ADMET profile.

8.
ACS Nano ; 18(39): 26839-26847, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39287594

RESUMO

Diblock oligomeric peptide-polymer amphiphiles (PPAs) are biohybrid materials that offer versatile functionality by integrating the sequence-dependent properties of peptides with the synthetic versatility of polymers. Despite their potential as biocompatible materials, the rational design of PPAs for assembly into multichain nanoparticles remains challenging due to the complex intra- and intermolecular interactions emanating from the polymer and peptide segments. To systematically explore the impact of monomer composition on nanoparticle assembly, PPAs were synthesized with a random coil peptide (XTEN2) and oligomeric alkyl acrylates with different side chains: ethyl, tert-butyl, n-butyl, and cyclohexyl. Experimental characterization using electron and atomic force microscopies demonstrated that the tail hydrophobicity impacted accessible morphologies. Moreover, the characterization of different assembly protocols (i.e., bath sonication and thermal annealing) revealed that certain tail compositions provide access to kinetically trapped assemblies. All-atom molecular dynamics simulations of micelle formation unveiled key interactions and differences in core hydration, dictating the PPA assembly behavior. These findings highlight the complexity of PPA assembly dynamics and serve as valuable benchmarks to guide the design of PPAs for a variety of applications, including catalysis, mineralization, targeted sequestration, antimicrobial activity, and cargo transportation.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Polímeros , Peptídeos/química , Peptídeos/síntese química , Peptídeos/farmacologia , Polímeros/química , Polímeros/síntese química , Interações Hidrofóbicas e Hidrofílicas , Micelas , Tensoativos/química , Tensoativos/síntese química , Tamanho da Partícula , Nanopartículas/química
9.
Materials (Basel) ; 17(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39336264

RESUMO

Liquid-core nanocapsules (NCs) coated with amphiphilic hyaluronic acid (AmHA) have been proposed for the preparation of drug and food formulations. Herein, we focused on the use of ultrasound techniques to (i) optimize the polysaccharide chain length with respect to the properties of NCs stabilized with AmHAs and (ii) form oil-core nanocapsules with a coating composed of AmHAs. The results indicate that sonication is a convenient and effective method that allows for a controlled reduction in HA molecular weight. The initial (H-HA) and degraded (L-HA) polysaccharides were then reacted with dodecylamine to obtain hydrophobic HA derivatives (HA-C12s). Then, NCs were prepared based on HA-C12s using ultrasound-assisted emulsification of glyceryl triacetate oil. The nanocapsules coated with L-HA-C12 showed greater stability compared to the longer-chain polysaccharide. Molecular dynamics (MD) simulations revealed that HA-C12 readily adsorbs at the water-oil interphase, adopting a more compact conformation compared to that in the aqueous phase. The dodecyl groups are immersed in the oil droplet, while the main polysaccharide chain remaining in the aqueous phase forms hydrogen bonds or water bridges with the polar part of the triglycerides, thus increasing the stability of the NC. Our research underscores the usefulness of ultrasound technology in preparing suitable formulations of bioactive substances.

10.
Molecules ; 29(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39339411

RESUMO

Radiopharmaceuticals are currently a key tool in cancer diagnosis and therapy. Metal-based radiopharmaceuticals are characterized by a radiometal-chelator moiety linked to a bio-vector that binds the biological target (e.g., a protein overexpressed in a particular tumor). The right match between radiometal and chelator influences the stability of the complex and the drug's efficacy. Therefore, the coupling of the radioactive element to the correct chelator requires consideration of several features of the radiometal, such as its oxidation state, ionic radius, and coordination geometry. In this work, we systematically investigated about 120 radiometal-chelator complexes taken from the Cambridge Structural Database. We considered 25 radiometals and about 30 chelators, featuring both cyclic and acyclic geometries. We used quantum mechanics methods at the density functional theoretical level to generate the general AMBER force field parameters and to perform 1 µs-long all-atom molecular dynamics simulations in explicit water solution. From these calculations, we extracted several key molecular descriptors accounting for both electronic- and dynamical-based properties. The whole workflow was carefully validated, and selected test-cases were investigated in detail. Molecular descriptors and force field parameters for the complexes considered in this study are made freely available, thus enabling their use in predictive models, molecular modelling, and molecular dynamics investigations of the interaction of compounds with macromolecular targets. Our work provides new insights in understanding the properties of radiometal-chelator complexes, with a direct impact for rational drug design of this important class of drugs.


Assuntos
Quelantes , Simulação de Dinâmica Molecular , Teoria Quântica , Quelantes/química , Compostos Radiofarmacêuticos/química , Complexos de Coordenação/química , Estrutura Molecular
11.
Int J Biol Macromol ; 279(Pt 3): 135398, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39245112

RESUMO

The real-time structural changes of the molecular space conformation of myofibrillar protein microgels (MPM) after heat treatment (90 °C, 30 min) were analyzed by molecular dynamics simulation, and the structural properties and changes of MPM at the oil-water interface were analyzed by the combination of Raman spectroscopy and molecular dynamics simulation. The shift in the oil ratio had a major impact on the transformation of disulfide bonds within the protein molecule. Simultaneously, it caused tryptophan and tyrosine residues (I850 cm-1/ I850 cm-1 > 1) to become exposed, increasing the locations of amino acid residues in the protein that interact with the oil phase. HIPE with different oil phases influenced the change in spatial structural conformation of MPM, and there was a flexible structural change in the molecular space. The HIPE system, which was stabilized by 3.0 wt% MPM and 0.75 oil phase, exhibited a thixotropic recovery of >70 % and the highest elastic modulus G' (822.14 Pa) based on the rheological behavior. It is expected to provide a theoretical basis for the development and utilization of high internal phase emulsion stabilized by microgel protein in food industry.


Assuntos
Microgéis , Simulação de Dinâmica Molecular , Óleos , Análise Espectral Raman , Água , Água/química , Óleos/química , Microgéis/química , Reologia , Proteínas/química
12.
Comput Struct Biotechnol J ; 23: 3118-3131, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39229338

RESUMO

The gene PIK3CA, encoding the catalytic subunit p110α of PI3Kα, is the second most frequently mutated gene in cancer, with the highest frequency oncogenic mutants occurring in the C-terminus of the kinase domain. The C-terminus has a dual function in regulating the kinase, playing a putative auto-inhibitory role for kinase activity and being absolutely essential for binding to the cell membrane. However, the molecular mechanisms by which these C-terminal oncogenic mutations cause PI3Kα overactivation remain unclear. To understand how a spectrum of C-terminal mutations of PI3Kα alter kinase activity compared to the WT, we perform unbiased and biased Molecular Dynamics simulations of several C-terminal mutants and report the free energy landscapes for the C-terminal "closed-to-open" transition in the WT, H1047R, G1049R, M1043L and N1068KLKR mutants. Results are consistent with HDX-MS experimental data and provide a molecular explanation why H1047R and G1049R reorient the C-terminus with a different mechanism compared to the WT and M1043L and N1068KLKR mutants. Moreover, we show that in the H1047R mutant, the cavity, where the allosteric ligands STX-478 and RLY-2608 bind, is more accessible contrary to the WT. This study provides insights into the molecular mechanisms underlying activation of oncogenic PI3Kα by C-terminal mutations and represents a valuable resource for continued efforts in the development of mutant selective inhibitors as therapeutics.

13.
Acta Pharmacol Sin ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256608

RESUMO

GPR20, an orphan G protein-coupled receptor (GPCR), shows significant expression in intestinal tissue and represents a potential therapeutic target to treat gastrointestinal stromal tumors. GPR20 performs high constitutive activity when coupling with Gi. Despite the pharmacological importance of GPCR constitutive activation, determining the mechanism has long remained unclear. In this study, we explored the constitutive activation mechanism of GPR20 through large-scale unbiased molecular dynamics simulations. Our results unveil the allosteric nature of constitutively activated GPCR signal transduction involving extracellular and intracellular domains. Moreover, the constitutively active state of the GPR20 requires both the N-terminal cap and Gi protein. The N-terminal cap of GPR20 functions like an agonist and mediates long-range activated conformational shift. Together with the previous study, this study enhances our knowledge of the self-activation mechanism of the orphan receptor, facilitates the drug discovery efforts that target GPR20.

14.
Molecules ; 29(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274876

RESUMO

Gaussia luciferase (Gluc) is currently known as the smallest naturally secreted luciferase. Due to its small molecular size, high sensitivity, short half-life, and high secretion efficiency, it has become an ideal reporter gene and is widely used in monitoring promoter activity, studying protein-protein interactions, protein localization, high-throughput drug screening, and real-time monitoring of tumor occurrence and development. Although studies have shown that different Gluc mutations exhibit different bioluminescent properties, their mechanisms have not been further investigated. The purpose of this study is to reveal the relationship between the conformational changes of Gluc mutants and their bioluminescent properties through molecular dynamics simulation combined with neural relationship inference (NRI) and Markov models. Our results indicate that, after binding to the luciferin coelenterazine (CTZ), the α-helices of the 109-119 residues of the Gluc Mutant2 (GlucM2, the flash-type mutant) are partially unraveled, while the α-helices of the same part of the Gluc Mutant1 (GlucM1, the glow-type mutant) are clearly formed. The results of Markov flux analysis indicate that the conformational differences between glow-type and flash-type mutants when combined with luciferin substrate CTZ mainly involve the helicity change of α7. The most representative conformation and active pocket distance analysis indicate that compared to the flash-type mutant GlucM2, the glow-type mutant GlucM1 has a higher degree of active site closure and tighter binding. In summary, we provide a theoretical basis for exploring the relationship between the conformational changes of Gluc mutants and their bioluminescent properties, which can serve as a reference for the modification and evolution of luciferases.


Assuntos
Luciferases , Cadeias de Markov , Simulação de Dinâmica Molecular , Luciferases/metabolismo , Luciferases/genética , Luciferases/química , Conformação Proteica , Mutação , Animais , Copépodes/enzimologia , Copépodes/genética , Imidazóis/química , Imidazóis/metabolismo , Ligação Proteica , Medições Luminescentes , Pirazinas
15.
Mol Divers ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298085

RESUMO

The ubiquitin-specific protease 7 (USP7), as a member of deubiquitination enzymes, represents an attractive therapeutic target for various cancers, including prostate cancer and liver cancer. The change of the inhibitor stereocenter from the S to R stereochemistry (S-ALM → R-ALM34) markedly improved USP7 inhibitory activity. However, the molecular mechanism for the stereo-selectivity of enantiomeric inhibitors to USP7 is still unclear. In this work, molecular docking, molecular dynamics (MD) simulations, molecular mechanics/Generalized-Born surface area (MM/GBSA) calculations, and free energy landscapes were performed to address this mystery. MD simulations revealed that S-ALM34 showed a high degree of conformational flexibility compared to the R-ALM34 counterpart, and S-ALM34 binding led to the enhanced intradomain motions of USP7, especially the BL1 and BL2 loops and the two helices α4 and α5. MM/GBSA calculations showed that the binding strength of R-ALM34 to USP7 was stronger than that of S-ALM34 by - 4.99 kcal/mol, a similar trend observed by experimental data. MM/GBSA free energy decomposition was further performed to differentiate the ligand-residue spectrum. These analyses not only identified the hotspot residues interacting with R-ALM34, but also revealed that the hydrophobic interactions from F409, K420, H456, and Y514 play the major determinants in the binding of R-ALM34 to USP7. This result is anticipated to shed light on energetic basis and conformational dynamics information to aid in the design of more potent and selective inhibitors targeting USP7.

16.
Sci Rep ; 14(1): 19439, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169082

RESUMO

Developing new therapeutic strategies to target specific molecular pathways has become a primary focus in modern drug discovery science. Fibroblast growth factor receptor 2 (FGFR2) is a critical signaling protein involved in various cellular processes and implicated in numerous diseases, including cancer. Existing FGFR2 inhibitors face limitations like drug resistance and specificity issues. In this study, we present an integrated structure-based bioinformatics analysis to explore the potential of FGFR2 inhibitors-like compounds from the PubChem database with the Tanimoto threshold of 80%. We conducted a structure-based virtual screening approach on a dataset comprising 2336 compounds sourced from the PubChem database. Primarily, the selection of promising compounds was based on several criteria, such as drug-likeness, binding affinities, docking scores, and selectivity. Further, we conducted all-atom molecular dynamics (MD) simulations for 200 ns, followed by an essential dynamics analysis. Finally, a promising FGFR2 inhibitor with PubChem CID:507883 (1-[7-(1H-benzimidazol-2-yl)-4-fluoro-1H-indol-3-yl]-2-(4-benzoylpiperazin-1-yl)ethane-1,2-dione) was screened out from the study. This compound indicates a higher potential for inhibiting FGFR2 than the control inhibitor, Zoligratinib. The identified compound, CID:507883 shows >80% structural similarity with Zoligratinib. ADMET analysis showed promising pharmacokinetic potential of the screened compound. Overall, the findings indicate that the compound CID:507883 may have promising potential to serve as a lead candidate against FGFR2 and could be further exploited in therapeutic development.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Ligação Proteica , Desenvolvimento de Medicamentos , Relação Estrutura-Atividade
17.
Chem Biodivers ; : e202401338, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109709

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) is a pentose phosphate pathway (PPP) enzyme that generates NADPH, which is required for cellular redox equilibrium and reductive biosynthesis. It has been demonstrated that abnormal G6PD activation promotes cancer cell proliferation and metastasis. To date, no G6PD inhibitor has passed clinical testing successfully enough to be launched as a medicine. As a result, in this investigation, cannabinoids were chosen to evaluate their anticancer potential by targeting G6PD. Molecular docking indicated that three molecules, Tetrahydrocannabinolic acid (THCA), Cannabichromenic acid (CBCA), and tetrahydrocannabivarin (THCV), have the highest binding affinities for G6PD of -8.61, -8.39, and 8.01 Kcal mol. ADMET analysis found that all of them were safe prospective drug candidates. Molecular dynamics (MD) simulation and MM-PBSA analysis confirm the structural compactness and lower conformational variation of protein-ligand complexes, thereby maintaining structural stability and rigidity. Thus, our in silico investigation exhibited all three cannabinoids as potential competitive inhibitors of G6PD.

18.
Expert Opin Drug Discov ; 19(10): 1259-1279, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39105536

RESUMO

INTRODUCTION: Molecular Dynamics (MD) simulations can support mechanism-based drug design. Indeed, MD simulations by capturing biomolecule motions at finite temperatures can reveal hidden binding sites, accurately predict drug-binding poses, and estimate the thermodynamics and kinetics, crucial information for drug discovery campaigns. Small-Guanosine Triphosphate Phosphohydrolases (GTPases) regulate a cascade of signaling events, that affect most cellular processes. Their deregulation is linked to several diseases, making them appealing drug targets. The broad roles of small-GTPases in cellular processes and the recent approval of a covalent KRas inhibitor as an anticancer agent renewed the interest in targeting small-GTPase with small molecules. AREA COVERED: This review emphasizes the role of MD simulations in elucidating small-GTPase mechanisms, assessing the impact of cancer-related variants, and discovering novel inhibitors. EXPERT OPINION: The application of MD simulations to small-GTPases exemplifies the role of MD simulations in the structure-based drug design process for challenging biomolecular targets. Furthermore, AI and machine learning-enhanced MD simulations, coupled with the upcoming power of quantum computing, are promising instruments to target elusive small-GTPases mutations and splice variants. This powerful synergy will aid in developing innovative therapeutic strategies associated to small-GTPases deregulation, which could potentially be used for personalized therapies and in a tissue-agnostic manner to treat tumors with mutations in small-GTPases.


Assuntos
Antineoplásicos , Desenho de Fármacos , Simulação de Dinâmica Molecular , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Descoberta de Drogas/métodos , Aprendizado de Máquina , Sítios de Ligação , Termodinâmica , GTP Fosfo-Hidrolases/metabolismo
19.
BMC Infect Dis ; 24(1): 893, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217296

RESUMO

The present study utilized network pharmacology to identify therapeutic targets and mechanisms of Rehmannia glutinosa in sepsis treatment. RNA-sequencing was conducted on peripheral blood samples collected from 23 sepsis patients and 10 healthy individuals. Subsequently, the RNA sequence data were analyzed for differential expression. Identification of active components and their putative targets was achieved through the HERB and SwissTarget Prediction databases, respectively. Functional enrichment analysis was performed using GO and KEGG pathways. Additionally, protein-protein interaction networks were constructed and survival analysis of key targets was conducted. Single-cell RNA sequencing provided cellular localization data, while molecular docking explored interactions with central targets. Results indicated significant involvement of identified targets in inflammation and Th17 cell differentiation. Survival analysis linked several targets with mortality rates, while molecular docking highlighted potential interactions between active components and specific targets, such as rehmaionoside a with ADAM17 and rehmapicrogenin with CD81. Molecular dynamics simulations confirmed the stability of these interactions, suggesting Rehmannia glutinosa's role in modulating immune functions in sepsis.


Assuntos
Simulação de Acoplamento Molecular , Farmacologia em Rede , Rehmannia , Sepse , Humanos , Sepse/tratamento farmacológico , Rehmannia/química , Masculino , Feminino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Mapas de Interação de Proteínas , Idoso , Adulto , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Proteína ADAM17/metabolismo , Proteína ADAM17/genética
20.
Sci Rep ; 14(1): 19585, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179615

RESUMO

The World Health Organization (WHO) has declared the monkeypox outbreak a public health emergency, as there is no specific therapeutics for monkeypox virus (MPXV) disease. This study focused on docking various commercial drugs and plant-derived compounds against the E8 envelope protein crucial for MPXV attachment and pathogenesis. The target protein structure was modeled based on the vaccinia virus D8L protein. Notably, maraviroc and punicalagin emerged as potential ligands, with punicalagin exhibiting higher binding affinity (- 9.1 kcal/mol) than maraviroc (- 7.8 kcal/mol). Validation through 100 ns molecular dynamics (MD) simulations demonstrated increased stability of the E8-punicalagin complex, with lower RMSD, RMSF, and Rg compared to maraviroc. Enhanced hydrogen bonding, lower solvent accessibility, and compact motions also attributed to higher binding affinity and stability of the complex. MM-PBSA calculations revealed van der Waals, electrostatic, and non-polar solvation as principal stabilizing energies. The binding energy decomposition per residue favored stable interactions between punicalagin and the protein's active site residues (Arg20, Phe56, Glu228, Tyr232) compared to maraviroc. Overall study suggests that punicalagin can act as a potent inhibitor against MPXV. Further research and experimental investigations are warranted to validate its efficacy and safety.


Assuntos
Maraviroc , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas do Envelope Viral , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/antagonistas & inibidores , Maraviroc/química , Maraviroc/farmacologia , Monkeypox virus/química , Monkeypox virus/metabolismo , Antivirais/química , Antivirais/farmacologia , Ligação de Hidrogênio , Ligação Proteica , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA