Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Deliv ; 29(1): 1892-1902, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35748413

RESUMO

The present study aimed to design and optimize, a nanoconjugate of gabapentin (GPN)-melittin (MLT) and to evaluate its healing activity in rat diabetic wounds. To explore the wound healing potency of GPN-MLT nanoconjugate, an in vivo study was carried out. Diabetic rats were subjected to excision wounds and received daily topical treatment with conventional formulations of GPN, MLT, GPN-MLT nanoconjugate and a marketed formula. The outcome of the in vivo study showed an expedited wound contraction in GPN-MLT-treated animals. This was confirmed histologically. The nanoconjugate formula exhibited antioxidant activities as evidenced by preventing malondialdehyde (MDA) accumulation and superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic exhaustion. Further, the nanoconjugate showed superior anti-inflammatory activity as it inhibited the expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). This is in addition to enhancement of proliferation as indicated by increased expression of transforming growth factor-ß (TGF- ß), vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor receptor-ß (PDGFRB). Also, nanoconjugate enhanced hydroxyproline concentration and mRNA expression of collagen type 1 alpha 1 (Col 1A1). In conclusion, a GPN-MLT nanoconjugate was optimized with respect to particle size. Analysis of pharmacokinetic attributes showed the mean particle size of optimized nanoconjugate as 156.9 nm. The nanoconjugate exhibited potent wound healing activities in diabetic rats. This, at least partly, involve enhanced antioxidant, anti-inflammatory, proliferative and pro-collagen activities. This may help to develop novel formulae that could accelerate wound healing in diabetes.


Assuntos
Diabetes Mellitus Experimental , Fator A de Crescimento do Endotélio Vascular , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Colágeno/metabolismo , Diabetes Mellitus Experimental/metabolismo , Gabapentina/metabolismo , Gabapentina/uso terapêutico , Meliteno/metabolismo , Meliteno/uso terapêutico , Nanoconjugados/uso terapêutico , Ratos , Ratos Wistar , Pele/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
2.
Expert Opin Biol Ther ; 22(7): 895-909, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35687355

RESUMO

INTRODUCTION: Melittin (MLT), a natural membrane-active component, is the most prominent cytolytic peptide from bee venom. Remarkable biological properties of MLT, including anti-inflammatory, antimicrobial, anticancer, anti-protozoan, and antiarthritic activities, make it an up-and-coming therapeutic candidate for a wide variety of human diseases. Therapeutic applications of MLT may be hindered due to low stability, high toxicity, and weak tissue penetration. Different bio-nano scale modifications hold promise for improving its functionality and therapeutic efficacy. AREAS COVERED: In the current review, we aimed to provide a comprehensive insight into strategies used for MLT conjugations and modifications, cellular delivery of modified forms, and their clinical perspectives by reviewing the published literature on PubMed, Scopus, and Google Scholar databases. We also emphasized the MLT structure modifications, mechanism of action, and cellular toxicity. EXPERT OPINION: Developing new analogs and conjugates of MLT as a natural drug with improved functions and fewer side effects is crucial for the clinical translation of this approach worldwide, especially where the chemicals and synthetic drugs are more expensive or unavailable in the healthcare system. MLT-nanoconjugation may be one of the best-optimized strategies for improving peptide delivery, increasing its therapeutic efficacy, and providing minimal nonspecific cellular lytic activity. [Figure: see text].


Assuntos
Anti-Infecciosos , Venenos de Abelha , Humanos , Meliteno/efeitos adversos , Peptídeos
3.
Polymers (Basel) ; 13(15)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34372084

RESUMO

Biopolymers and nanomaterials are ideal candidates for environmental remediation and heavy metal removal. As hexavalent chromium (Cr6+) is a hazardous toxic pollutant of water, this study innovatively aimed to synthesize nanopolymer composites and load them with phycosynthesized Fe nanoparticles for the full Cr6+ removal from aqueous solutions. The extraction of chitosan (Cht) from prawn shells and alginate (Alg) from brown seaweed (Sargassum linifolium) was achieved with standard characteristics. The tow biopolymers were combined and cross-linked (via microemulsion protocol) to generate nanoparticles from their composites (Cht/Alg NPs), which had a mean diameter of 311.2 nm and were negatively charged (-23.2 mV). The phycosynthesis of iron nanoparticles (Fe-NPs) was additionally attained using S. linifolium extract (SE), and the Fe-NPs had semispherical shapes with a 21.4 nm mean diameter. The conjugation of Cht/Alg NPs with SE-phycosynthesized Fe-NPs resulted in homogenous distribution and stabilization of metal NPs within the polymer nanocomposites. Both nanocomposites exhibited high efficiency as adsorbents for Cr6+ at diverse conditions (e.g., pH, adsorbent dose, contact time and initial ion concentration) using batch adsorption evaluation; the most effectual conditions for adsorption were a pH value of 5.0, adsorbent dose of 4 g/L, contact time of 210 min and initial Cr6+ concentration of 75 ppm. These factors could result in full removal of Cr6+ from batch experiments. The composited nanopolymers (Cht/Alg NPs) incorporated with SE-phycosynthesized Fe-NPs are strongly recommended for complete removal of Cr6+ from aqueous environments.

4.
Int J Biol Macromol ; 167: 987-994, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33181215

RESUMO

The nano-conjugation of proteins is an active area of research due to potential biomedical and nanotechnological applications. Many protein-nanoconjugates were designed for various applications, such as drug delivery, molecular imaging, and liquid biopsy etc. However, the challenges remain to ensure protein stability and to retain the conformational state of the protein intact upon nano-conjugation. In this communication we have reported the status of stability and refolding ability of Au-NP conjugated zDHFR protein. The effect of nano-conjugation of zDHFR on the thermal stability and it's refolding from thermally denatured state have been extensively studied. Zebrafish Dihydrofolate reductase (zDHFR) is an essential enzyme which acts as a crucial part in synthesis of purine, thymidylate and various amino acids in cells. We have nano-conjugated zDHFR protein with Au-nanoparticles and studies were conducted for thermally denatured Au-NP conjugated zDHFR and compared with the non-conjugated protein. Refolding experiment of heat denatured Au-NP conjugated zDHFR was carried out to check the status of refolding and the result was compared with the non-conjugated protein. Our observation reveals that nano-conjugation stabilises the zDHFR protein against thermal denaturation. Furthermore, the nano-conjugation promotes refolding process of thermally unfolded DHFR such that the yield of refolding substantially increases.


Assuntos
Nanoestruturas/química , Dobramento de Proteína , Redobramento de Proteína , Tetra-Hidrofolato Desidrogenase/química , Animais , Fenômenos Químicos , Expressão Gênica , Ouro/química , Cinética , Nanopartículas Metálicas/química , Desnaturação Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/isolamento & purificação , Termodinâmica , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA