Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
J Nanobiotechnology ; 22(1): 596, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354525

RESUMO

Early diagnosis and treatment of gastric cancer (GC) play a vital role in improving efficacy, reducing mortality and prolonging patients' lives. Given the importance of early detection of gastric cancer, an electrochemical biosensor was developed for the ultrasensitive detection of miR-19b-3p by integrating MoS2-based nanozymes, hybridization chain reaction (HCR) with enzyme catalyzed reaction. The as-prepared MoS2-based nanocomposites were used as substrate materials to construct nanoprobes, which can simultaneously load probe DNA and HCR initiator for signal amplification. Moreover, the MoS2-based nanocomposites are also employed as nanozymes to amplify electrochemical response. The presence of miR-19b-3p induced the assembly of MoS2-based nanoprobes on the electrode surface, which can activate in-situ HCR reaction to load a large number of horseradish peroxidase (HRP) for signal amplification. Coupling with the co-catalytic ability of HRP and MoS2-based nanozymes, the designed electrochemical biosensor can detect as low as 0.7 aM miR-19b-3p. More importantly, this biosensor can efficiently analyze miR-19b-3p in clinical samples from healthy people and gastric cancer patients due to its excellent sensitivity and selectivity, suggesting that this biosensor has a potential application in early diagnosis of disease.


Assuntos
Técnicas Biossensoriais , Dissulfetos , Técnicas Eletroquímicas , Peroxidase do Rábano Silvestre , MicroRNAs , Molibdênio , Neoplasias Gástricas , Neoplasias Gástricas/diagnóstico , Humanos , MicroRNAs/genética , Molibdênio/química , Técnicas Eletroquímicas/métodos , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Técnicas Biossensoriais/métodos , Dissulfetos/química , Hibridização de Ácido Nucleico , Nanocompostos/química , Limite de Detecção
2.
ACS Nano ; 18(37): 25685-25694, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39223090

RESUMO

Phosphates within tumors function as key biomolecules, playing a significant role in sustaining the viability of tumors. To disturb the homeostasis of cancer cells, regulating phosphate within the organism proves to be an effective strategy. Herein, we report single-atom Ce-doped Pt hydrides (Ce/Pt-H) with high phosphatase-like activity for phosphate hydrolysis. The resultant Ce/Pt-H exhibits a 26.90- and 6.25-fold increase in phosphatase-like activity in comparison to Ce/Pt and Pt-H, respectively. Mechanism investigations elucidate that the Ce Lewis acid site facilitates the coordination with phosphate groups, while the surface hydrides enhance the electron density of Pt for promoting catalytic ability in H2O cleavage and subsequent nucleophilic attack of hydroxyl groups. Finally, by leveraging its phosphatase-like activity, Ce/Pt-H can effectively regulate intracellular phosphates to disrupt redox homeostasis and amplify oxidative stress within cancer cells, ultimately leading to tumor apoptosis. This work provides fresh insights into noble-metal-based phosphatase mimics for inducing tumor apoptosis.


Assuntos
Apoptose , Cério , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Cério/química , Cério/farmacologia , Apoptose/efeitos dos fármacos , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos
3.
ACS Nano ; 18(37): 25795-25812, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39226614

RESUMO

The activation of cellular ferroptosis is promising in tumor therapy. However, ferroptosis is parallelly inhibited by antiferroptotic substances, including glutathione peroxidase 4 (GPX4), dihydroorotate dehydrogenase (DHODH), and ferroptosis suppressor protein 1 (FSP1). Thus, it is highly desirable, yet challenging, to simultaneously suppress these three antiferroptotic substances for activating ferroptosis. Here, we rationally designed a hollow iron-doped SiO2-based nanozyme (FeSHS) loaded with brequinar (BQR) and lificiguat (YC-1), named FeSHS/BQR/YC-1-PEG, for tumor ferroptosis activation. FeSHS were developed through the continuous etching of SiO2 nanoparticles by iron ions, which exhibit pH/glutathione-responsive biodegradability, along with mimicking the activities of peroxidase, glutathione oxidase, and NAD(P)H oxidase. Specifically, glutathione depletion and NAD(P)H oxidation by FeSHS will suppress the expression of GPX4 and inhibit FSP1 by disrupting the NAD(P)H/FSP1/ubiquinone axis. In addition, the released BQR can suppress the expression of DHODH. Meanwhile, YC-1 is able to increase the cellular polyunsaturated fatty acids (PUFAs) by destroying the HIF-1α/lipid droplet axis. The elevation of levels of iron and PUFAs while simultaneously disrupting the GPX4/DHODH/FSP1 inhibitory pathways by our designed nanoplatform displayed high therapeutic efficacy both in vitro and in vivo. This work elucidates rationally designing smart nanoplatforms for ferroptosis activation and future tumor treatments.


Assuntos
Neoplasias da Mama , Ferroptose , Ferro , Dióxido de Silício , Dióxido de Silício/química , Ferroptose/efeitos dos fármacos , Humanos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Camundongos , Ferro/química , Ferro/metabolismo , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Ensaios de Seleção de Medicamentos Antitumorais , Nanopartículas/química
4.
J Nanobiotechnology ; 22(1): 585, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342215

RESUMO

Redox imbalance and oxidative stress are increasingly recognized as significant factors in health disorders such as neurodegenerative disorders, premature aging and cancer. However, detecting antioxidant levels that is crucial for managing oxidative stress, can be challenging due to existing assays' limitations, such as insensitivity to thiol-containing antioxidants. This study presents a simple fluorescence-based assay for antioxidant detection employing the enhanced photocatalytic oxidase-like activity of dithiothreitol (DTT)-assisted bovine serum albumin (BSA)-stabilized gold nanoclusters (DTT@BSA-AuNCs). The reported nanozyme exhibits remarkable stability, versatility, and catalytic activity. Under LED irradiation, DTT@BSA-AuNCs generate singlet oxygen, which converts non-fluorescent thiamine to fluorescent thiochrome, utilizing dissolved oxygen for catalysis. Antioxidants inhibit thiochrome formation, leading to fluorescence quenching. This method enables sensitive detection of antioxidants such as ascorbic acid and glutathione with limits of detection of 0.08 µM and 0.32 µM, respectively, under neutral pH, outperforming previous studies. The assay successfully detects antioxidants in human saliva and cancer cell models. The DTT@BSA-AuNCs-based assay offers a cost-effective, sensitive, and straightforward approach for detecting antioxidants in biological samples, facilitating improved monitoring of oxidative stress in various diseases.


Assuntos
Antioxidantes , Ouro , Nanopartículas Metálicas , Soroalbumina Bovina , Soroalbumina Bovina/química , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Catálise , Ditiotreitol/química , Saliva/química , Fluorometria/métodos , Oxirredutases/metabolismo , Oxirredutases/química , Limite de Detecção , Glutationa/química , Glutationa/metabolismo , Ácido Ascórbico/química , Animais , Estresse Oxidativo/efeitos dos fármacos , Oxirredução
5.
Adv Mater ; : e2408364, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340282

RESUMO

Membrane-based reverse electrodialysis is globally recognized as a promising technology for harnessing osmotic energy. However, its practical application is greatly restricted by the poor anti-fouling ability of existing membrane materials. Inspired by the structural and functional models of natural cytochrome c oxidases (CcO), the first use of atomically precise homonuclear diatomic iron composites as high-performance osmotic energy conversion membranes with excellent anti-fouling ability is demonstrated. Through rational tuning of the atomic configuration of the diatomic iron sites, the oxidase-like activity can be precisely tailored, leading to the augmentation of ion throughput and anti-fouling capacity. Composite membranes featuring direct Fe-Fe motif configurations embedded within cellulose nanofibers (CNF/Fe-DACs-P) surpass state-of-the-art CNF-based membranes with power densities of ca. 6.7 W m-2 and a 44.5-fold enhancement in antimicrobial performance. Combined, experimental characterization and density functional theory simulations reveal that homonuclear diatomic iron sites with metal-metal interactions can achieve ideally balanced adsorption and desorption of intermediates, thus realizing superior oxidase-like activity, enhanced ionic flux, and excellent antibacterial activity.

6.
J Transl Med ; 22(1): 814, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223625

RESUMO

BACKGROUND: Breast cancer, with its high morbidity and mortality rates, is a significant global health burden. Traditional treatments-surgery, chemotherapy, and radiotherapy-are widely used but come with drawbacks such as recurrence, metastasis, and significant side effects, including damage to healthy tissues. To address these limitations, new therapeutic strategies are being developed. Peroxidases (POD) can catalyze excess H2O2 in the tumor microenvironment to generate reactive oxygen species (ROS), which induce cancer cell apoptosis by disrupting redox homeostasis and modulating apoptosis-related proteins. However, natural enzymes face challenges like poor stability, high cost, and sensitivity to environmental conditions, limiting their application in breast cancer treatment. Nanozymes, nanomaterials with enzyme-like activity, offer a promising alternative by overcoming these limitations. METHODS: In this study, we successfully prepared Au@Pd nanozymes with peroxidase activity by depositing metallic Pd on Au nanoparticles (Au NPs) synthesized using a trisodium citrate reduction method and ascorbic acid reduction. The in vitro validation was conducted through a series of experiments, including ROS detection, flow cytometry, CCK-8 assay, DNA damage assessment, live/dead cell staining, Western blot (WB), and qPCR. Tumor treatment was performed via tail vein injection of the drug, followed by HE staining of the treated tissues and biochemical analysis of the blood. RESULTS: Au@Pd nanozymes can effectively accumulate at the tumor site through the EPR effect and exert peroxidase-like activity, catalyzing the excess H2O2 in the tumor microenvironment to produce ROS. This triggers apoptosis pathways and DNA damage, leading to the downregulation of the anti-apoptotic protein Bcl-2, upregulation of the pro-apoptotic protein Bax, and induction of apoptosis-related genes, demonstrating strong anti-tumor effects. CONCLUSIONS: This study developed an efficient nanozyme-mediated catalytic therapy strategy targeting the tumor microenvironment for the treatment of breast cancer cells.


Assuntos
Apoptose , Ouro , Nanopartículas Metálicas , Paládio , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Ouro/química , Humanos , Catálise , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Feminino , Paládio/uso terapêutico , Paládio/química , Paládio/farmacologia , Animais , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Peróxido de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Camundongos Nus
7.
Small ; : e2403679, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240068

RESUMO

Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)-crosslinked chitosan (CS)-based hydrogels decorated with the biomimetic metal-organic framework (MOF)-nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP-CS (MCGC), are prepared. With catalase (CAT)-like activity, these dual-metal MOF-nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H2O2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management.

8.
Int J Biol Macromol ; : 135608, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276877

RESUMO

X-ray Photodynamic Therapy (XPDT) is an emerging, deeply penetrating, and non-invasive tumor treatment that stimulates robust antitumor immune responses. However, its efficacy is often limited by low therapeutic delivery and immunosuppressant within the tumor microenvironment. This challenge can potentially be addressed by utilizing X-ray responsive polypyrrole­iron-glycol chitosan nanozymes (GCS-I-PPy NZs), which activate M1 macrophages. These nanozymes increase tumor infiltration and enhance the macrophages' intrinsic immune response and their ability to stimulate adaptive immunity. Authors have designed biocompatible, photosensitizer-containing GCS-I-PPy NZs using oxidation/reduction reactions. These nanozymes were internalized by M1 macrophages to form RAW-GCS-I-PPy NZs. Authors' results demonstrated that these engineered macrophages effectively delivered the nanozymes with high tumor accumulation. Within the tumor microenvironment, the accumulated GCS-I-PPy NZs underwent X-ray irradiation, generating reactive oxygen species (ROS). This ROS augmentation significantly enhanced the therapeutic effect of XPDT and synergistically promoted T cell infiltration into the tumor. These findings suggest that nano-engineered M1 macrophages can effectively boost the immune effects of XPDT, providing a promising strategy for enhancing cancer immunotherapy. The ability of GCS-I-PPy NZs to mediate M1 macrophage activation and increase tumor infiltration highlights their potential in overcoming the limitations of current XPDT approaches and improving therapeutic outcomes in melanoma and other cancers.

9.
J Colloid Interface Sci ; 678(Pt B): 925-937, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39270392

RESUMO

The effectiveness of chemokinetic therapy nanozymes is severely constrained because of the low H2O2 levels in the tumor microenvironment. Unlike other self-produced H2O2 nanozymes, the N-CNTs-encapsulated CoNi alloy (CoNiCoNC) with glucose oxidase and lactate oxidase activities has two ways to produce H2O2. It can facilitate the transformation of glucose and lactic acid into H2O2 simultaneously. First, the H2O2 generation pathway is favorable for aggravating energy metabolism. Second, some produced H2O2 can be decomposed by CoNiCoNC to H2O and O2 with the 4e- pathway to alleviate the TME hypoxia. Third, H2O2 can be catalyzed to form OH to enhance reactive oxygen species (ROS) content. Through proteomic analysis, nanozymes substantially impact the metabolic pathways of cancer cells because of their aggravating energy metabolism. The high levels of ROS can cause mitochondrial lipid peroxidation and cellular ferroptosis. Consequently, the two-way H2O2-selective nanoenzymatic platform realizes the synergistic effect of starvation therapy and chemokinetics.

10.
Mikrochim Acta ; 191(10): 575, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235626

RESUMO

Based on the peroxidase activity of Cu-hemin metal-organic framework (Cu-hemin MOF) nanozyme, a colorimetric enzyme-linked immunosensor was developed for the detection of furazolidone (FZD). Cu-hemin MOF is a bimetallic nanozyme that exhibited a stronger catalytic effect compared with single-metal organic framework nanoenzymes. Cu-hemin-MOF catalyzes hydrogen peroxide (H2O2) to produce hydroxyl radicals (•OH), which oxidizes the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB). The absorbance change is at 650 nm. The content of AOZ in animal food can be quickly and accurately determined by changes in absorbance. The linear range of the colorimetric biosensor for detecting FZD was 0.01 ~ 62.52 ng/mL, and the limit of detection was as low as 0.01 ng/mL. The recovery of spikes samples was in the range 94.2-108.0 % and reproducibility was less than 4.8%. In addition, the cross-reaction rate was less than 0.1% when detecting other metabolites except AOZ, indicating that the sensor has good applicability and specificity. This study not only provides a better understanding of the relationship between the dispersion of nanoenzymes and enzyme-like activity but also offers a general method for detecting antibiotics using the nanoenzyme colorimetric method.


Assuntos
Colorimetria , Cobre , Furazolidona , Ferro , Limite de Detecção , Estruturas Metalorgânicas , Colorimetria/métodos , Cobre/química , Furazolidona/análise , Furazolidona/química , Estruturas Metalorgânicas/química , Ferro/química , Benzidinas/química , Peróxido de Hidrogênio/química , Animais , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA