Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.765
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Aging Neurosci ; 16: 1383163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966801

RESUMO

The molecular mechanisms underlying neuronal dysfunction in Alzheimer's disease (AD) remain uncharacterized. Here, we identify genes, molecular pathways and cellular components associated with whole-brain dysregulation caused by amyloid-beta (Aß) and tau deposits in the living human brain. We obtained in-vivo resting-state functional MRI (rs-fMRI), Aß- and tau-PET for 47 cognitively unimpaired and 16 AD participants from the Translational Biomarkers in Aging and Dementia cohort. Adverse neuronal activity impacts by Aß and tau were quantified with personalized dynamical models by fitting pathology-mediated computational signals to the participant's real rs-fMRIs. Then, we detected robust brain-wide associations between the spatial profiles of Aß-tau impacts and gene expression in the neurotypical transcriptome (Allen Human Brain Atlas). Within the obtained distinctive signature of in-vivo neuronal dysfunction, several genes have prominent roles in microglial activation and in interactions with Aß and tau. Moreover, cellular vulnerability estimations revealed strong association of microglial expression patterns with Aß and tau's synergistic impact on neuronal activity (q < 0.001). These results further support the central role of the immune system and neuroinflammatory pathways in AD pathogenesis. Neuronal dysregulation by AD pathologies also associated with neurotypical synaptic and developmental processes. In addition, we identified drug candidates from the vast LINCS library to halt or reduce the observed Aß-tau effects on neuronal activity. Top-ranked pharmacological interventions target inflammatory, cancer and cardiovascular pathways, including specific medications undergoing clinical evaluation in AD. Our findings, based on the examination of molecular-pathological-functional interactions in humans, may accelerate the process of bringing effective therapies into clinical practice.

2.
J Alzheimers Dis ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38968047

RESUMO

Background: Urinary Alzheimer-associated neuronal thread protein (AD7c-NTP) is a biomarker for the early diagnosis of Alzheimer's disease (AD). It remains unclear whether hepatorenal function affects the urinary AD7c-NTP level. Objective: To evaluate the effects of hepatorenal function on urinary AD7c-NTP level. Methods: We enrolled 453 participants aged 60-100 years. An automated chemistry analyzer was used to determine the indicators of serum hepatorenal function. Enzyme-linked immunosorbent assay was used to measure the urinary AD7c-NTP level. Results: Spearman's correlation analysis showed a negative correlation between urinary AD7c-NTP levels and indicators of hepatorenal function, including albumin (r = -0.181, p < 0.001), albumin/globulin ratio (r = -0.224, p < 0.001), cholinesterase (r = -0.094, p = 0.046), total carbon dioxide (r = -0.102, p = 0.030), and glomerular filtration rate (r = -0.260, p < 0.001), as well as a positive correlation with globulin (r = 0.141, p = 0.003), aspartate transaminase (r = 0.186, p < 0.001), blood urine nitrogen (r = 0.210, p < 0.001), creatinine (r = 0.202, p < 0.001), uric acid (r = 0.229, p < 0.001), and cystatin C (r = 0.265, p < 0.001). The least absolute shrinkage and selection operator (LASSO) regression analysis and multiple linear regression model analyses showed that the statistically significant hepatorenal indicators for predicting AD7c-NTP were A/G (p = 0.007), AST (p = 0.002), BUN (p = 0.019), and UA (p = 0.003). Conclusions: The effects of hepatorenal indicators should be considered when using urinary AD7c-NTP levels in clinical settings.

3.
Front Physiol ; 15: 1406448, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952869

RESUMO

Receptor protein tyrosine phosphatases γ and ζ (RPTPγ and RPTPζ) are transmembrane signaling proteins with extracellular carbonic anhydrase-like domains that play vital roles in the development and functioning of the central nervous system (CNS) and are implicated in tumor suppression, neurodegeneration, and sensing of extracellular [CO2] and [HCO3 -]. RPTPγ expresses throughout the body, whereas RPTPζ preferentially expresses in the CNS. Here, we investigate differential RPTPγ-RPTPζ expression in three sources derived from a wild-type laboratory strain of C57BL/6 mice: (a) mixed neuron-astrocyte hippocampal (HC) cultures 14 days post isolation from P0-P2 pups; (b) P0-P2 pup hippocampi; and (c) 9- to 12-week-old adult hippocampi. Regarding RPTPγ, we detect the Ptprg variant-1 (V1) transcript, representing canonical exons 1-30. Moreover, we newly validate the hypothetical assembly [XM_006517956] (propose name, Ptprg-V3), which lacks exon 14. Both transcripts are in all three HC sources. Regarding RPTPζ, we confirm the expression of Ptprz1-V1, detecting it in pups and adults but not in cultures, and Ptprz1-V3 through Ptprz1-V7 in all three preparations. We newly validate hypothetical assemblies Ptprz1-X1 (in cultures and pups), Ptprz1-X2 (in all three), and Ptprz1-X5 (in pups and adults) and propose to re-designate them as Ptprz1-V0, Ptprz1-V2, and Ptprz1-V8, respectively. The diversity of RPTPγ and RPTPζ splice variants likely corresponds to distinct signaling functions, in different cellular compartments, during development vs later life. In contrast to previous studies that report divergent RPTPγ and RPTPζ protein expressions in neurons and sometimes in the glia, we observe that RPTPγ and RPTPζ co-express in the somata and processes of almost all HC neurons but not in astrocytes, in all three HC preparations.

4.
Neurol Sci ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38949742

RESUMO

Here we described an 18-year-old woman who were initially misdiagnosed as psychiatric disorders in a psychiatric institution. She was transferred to our neurological ward because of impaired consciousness. Neuronal antibody testing confirmed the diagnosis of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. Cerebral magnetic resonance imaging (MRI) revealed a concomitant disorder named reversible splenial lesion syndrome (RESLES). After administration of combined immunotherapy, the patient recovered completely 3 months after discharge. To our knowledge, co-occurrence of RESLES and anti-NMDAR encephalitis was only described in two patients with teratoma and we provide another case without teratoma. We highlight that anti-NMDAR antibodies can be added to the multiple causes of RESLES. It is therefore imperative for clinicians to detect anti-neuronal antibodies in patients with RESLES to avoid missed diagnosis.

5.
Biotechnol J ; 19(7): e2400068, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987218

RESUMO

SH-SY5Y is a human neuroblastoma cell line that can be differentiated into several neuronal phenotypes, depending on culture conditions. For this reason, this cell line has been widely used as an in vitro model of neurodegenerative conditions, such as Parkinson's disease (PD). However, most studies published to date used fetal bovine serum (FBS) as culture medium supplement for SH-SY5Y cell differentiation. We report on the testing of human platelet lysate (hPL) as a culture medium supplement to support SH-SY5Y cell culture. Both standard hPL and a fibrinogen-depleted hPL (FD-hPL) formulation, which does not require the addition of anticoagulants to culture media, promoted an increase in SH-SY5Y cell proliferation in comparison to FBS, without compromising metabolic activity. SH-SY5Y cells cultured in hPL or FD-hPL also displayed a higher number of neurite extensions and stained positive for MAP2 and synaptophysin, in the absence of differentiation stimuli; reducing hPL or FD-hPL concentration to 1% v/v did not affect cell proliferation or metabolic activity. Furthermore, following treatment with retinoic acid (RA) and further stimulation with brain-derived neurotrophic factor (BDNF) and nerve growth factor beta (NGF-ß), the percentage of SH-SY5Y cells stained positive for dopaminergic neuronal differentiation markers (tyrosine hydroxylase [TH] and Dopamine Transporter [DAT]) was higher in hPL or FD-hPL than in FBS, and gene expression of dopaminergic markers TH, DAT, and DR2 was also detected. Overall, the data herein presented supports the use of hPL to differentiate SH-SY5Y cells into a neuronal phenotype with dopaminergic features, and the adoption of FD-hPL as a fully xenogeneic free alternative to FBS to support the use of SH-SY5Y cells as a neurodegeneration model.


Assuntos
Plaquetas , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Neurônios Dopaminérgicos , Neuroblastoma , Humanos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Linhagem Celular Tumoral , Plaquetas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/citologia , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Meios de Cultura/farmacologia , Tretinoína/farmacologia , Fenótipo
6.
Neuromolecular Med ; 26(1): 29, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014255

RESUMO

Vascular dementia (VaD) is a cognitive disorder characterized by a decline in cognitive function resulting from cerebrovascular disease. The hippocampus is particularly susceptible to ischemic insults, leading to memory deficits in VaD. Astaxanthin (AST) has shown potential therapeutic effects in neurodegenerative diseases. However, the mechanisms underlying its protective effects in VaD and against hippocampal neuronal death remain unclear. In this study, We used the bilateral common carotid artery occlusion (BCCAO) method to establish a chronic cerebral hypoperfusion (CCH) rat model of VaD and administered a gastric infusion of AST at 25 mg/kg per day for 4 weeks to explore its therapeutic effects. Memory impairments were assessed using Y-maze and Morris water maze tests. We also performed biochemical analyses to evaluate levels of hippocampal neuronal death and apoptosis-related proteins, as well as the impact of astaxanthin on the PI3K/Akt/mTOR pathway and oxidative stress. Our results demonstrated that AST significantly rescued memory impairments in VaD rats. Furthermore, astaxanthin treatment protected against hippocampal neuronal death and attenuated apoptosis. We also observed that AST modulated the PI3K/Akt/mTOR pathway, suggesting its involvement in promoting neuronal survival and synaptic plasticity. Additionally, AST exhibited antioxidant properties, mitigating oxidative stress in the hippocampus. These findings provide valuable insights into the potential therapeutic effects of AST in VaD. By elucidating the mechanisms underlying the actions of AST, this study highlights the importance of protecting hippocampal neurons and suggests potential targets for intervention in VaD. There are still some unanswered questions include long-term effects and optimal dosage of the use in human. Further research is warranted to fully understand the therapeutic potential of AST and its application in the clinical treatment of VaD.


Assuntos
Apoptose , Demência Vascular , Hipocampo , Transtornos da Memória , Neurônios , Fármacos Neuroprotetores , Estresse Oxidativo , Ratos Sprague-Dawley , Xantofilas , Animais , Xantofilas/uso terapêutico , Xantofilas/farmacologia , Hipocampo/efeitos dos fármacos , Demência Vascular/tratamento farmacológico , Ratos , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Estresse Oxidativo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Morte Celular/efeitos dos fármacos , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Teste do Labirinto Aquático de Morris/efeitos dos fármacos
7.
ACS Chem Neurosci ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026168

RESUMO

Exosomes have shown good potential for alleviating neurological deficits and delaying memory deterioration, but the neuroprotective effects of exosomes remain unknown. Methylmalonic acidemia is a metabolic disorder characterized by the accumulation of methylmalonic acid (MMA) in various tissues that inhibits neuronal survival and function, leading to accelerated neurological deterioration. Effective therapies to mitigate these symptoms are lacking. The purpose of this study was to explore the neuroprotective effects of plasma exosomes on cells and a mouse model of MMA-induced injury. We evaluated the ability of plasma exosomes to reduce the neuronal apoptosis, cross the blood-brain barrier, and affect various parameters related to neuronal function. MMA promoted cell apoptosis, disrupted the metabolic balance, and altered the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), and synaptophysin-1 (Syp-1), and these changes may be involved in MMA-induced neuronal apoptosis. Additionally, plasma exosomes normalized learning and memory and protected against MMA-induced neuronal apoptosis. Our findings indicate that neurological deficits are linked to the pathogenesis of methylmalonic acidemia, and healthy plasma exosomes may exert neuroprotective and therapeutic effects by altering the expression of exosomal microRNAs, facilitating neuronal functional recovery in the context of this inherited metabolic disease. Intravenous plasma-derived exosome treatment may be a novel clinical therapeutic strategy for methylmalonic acidemia.

8.
Int J Biochem Cell Biol ; 174: 106631, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038642

RESUMO

Neuropathic lysosomal storage diseases (NLSDs), including ceroid lipofuscinosis neuronal 3 (CLN3) disease and Gaucher disease type 2 (GD2), are typically present in adolescents; however, there are no approved therapies. CLN3 disease is the most common of the 13 types of neuronal ceroid lipofuscinosis, and Gaucher disease is the most common type of lysosomal storage disease. These NLSDs share oxidative stress and lysosomal dysfunction with Parkinson's disease. In this study, we used patient-derived cells (PDCs) and resorcinol to develop a therapeutic agent based on peroxisome proliferator-activated receptor γ (PPARγ) activation. PPARγ is a major regulator of autophagy and reactive oxygen species (ROS). Resorcinol, a polyphenolic compound, has been reported to exhibit PPARγ agonistic potential. Protein levels were analyzed by immunoblotting and immunofluorescence microscopy. Changes in cellular metabolism, including ROS levels, lipid droplet content, and lysosomal activity, were measured by flow cytometry. Resorcinol reduced ROS levels by suppressing hypoxia-inducible factor 1α levels in CLN3-PDCs. Resorcinol upregulated autophagy and reduced lipid accumulation in CLN3-PDCs; however, these effects were abolished by autophagy inhibitors. Resorcinol increased nuclear PPARγ levels in CLN3-PDCs, and PPARγ antagonists abolished the therapeutic effects of resorcinol. Moreover, Resorcinol upregulated nuclear PPARγ levels and lysosomal activity in GD2-PDCs, and reduced lipid accumulation and ROS levels. In summary, resorcinol alleviated the shared pathogenesis of CLN3 disease and GD2 through PPARγ upregulation. These findings suggest that resorcinol is a potential therapeutic candidate for alleviating NLSD progression.

9.
JCI Insight ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042470

RESUMO

The goal of this study was to determine if transplantation of enteric neural stem cells (ENSCs) can rescue the enteric nervous system (ENS), restore gut motility, reduce colonic inflammation, and improve survival in the Ednrb knock-out (KO) mouse model of Hirschsprung disease (HSCR). ENSCs were isolated from mouse intestine, expanded to form neurospheres, and microinjected into the colon of recipient Ednrb KO mice. Transplanted ENSCs were identified in recipient colons as cell clusters in "neo-ganglia". Immunohistochemical evaluation demonstrated extensive cell migration away from the sites of cell delivery and across the muscle layers. Electrical field stimulation and optogenetics showed significantly enhanced contractile activity of aganglionic colonic smooth muscle following ENSC transplantation and confirmed functional neuromuscular integration of the transplanted ENSC-derived neurons. ENSC injection also partially restored the colonic migrating motor complex. Histological examination revealed a significant reduction in inflammation in ENSC-transplanted aganglionic recipient colon compared to sham-operated mice. Interestingly, mice that received cell transplant also had prolonged survival compared with controls. This study demonstrates that ENSC transplantation can improve outcomes in HSCR by restoring gut motility and reducing the severity of Hirschsprung-associated enterocolitis, the leading cause of death in human HSCR.

10.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999126

RESUMO

Given the pivotal role of neuronal populations in various biological processes, assessing their collective output is crucial for understanding the nervous system's complex functions. Building on our prior development of a spiral scanning mechanism for the rapid acquisition of Raman spectra from single cells and incorporating machine learning for label-free evaluation of cell states, we investigated whether the Paint Raman Express Spectroscopy System (PRESS) can assess neuronal activities. We tested this hypothesis by examining the chemical responses of glutamatergic neurons as individual neurons and autonomic neuron ganglia as neuronal populations derived from human-induced pluripotent stem cells. The PRESS successfully acquired Raman spectra from both individual neurons and ganglia within a few seconds, achieving a signal-to-noise ratio sufficient for detailed analysis. To evaluate the ligand responsiveness of the induced neurons and ganglia, the Raman spectra were subjected to principal component and partial least squares discriminant analyses. The PRESS detected neuronal activity in response to glutamate and nicotine, which were absent in the absence of calcium. Additionally, the PRESS induced dose-dependent neuronal activity changes. These findings underscore the capability of the PRESS to assess individual neuronal activity and elucidate neuronal population dynamics and pharmacological responses, heralding new opportunities for drug discovery and regenerative medicine advancement.


Assuntos
Ácido Glutâmico , Células-Tronco Pluripotentes Induzidas , Neurônios , Análise Espectral Raman , Análise Espectral Raman/métodos , Neurônios/metabolismo , Neurônios/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Nicotina/farmacologia , Análise de Componente Principal
11.
Exp Neurol ; : 114880, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972370

RESUMO

Research has revealed that prolonged or repeated exposure to isoflurane, a common general anesthetic, can lead to cognitive and behavioral deficiencies, particularly in early life. The brain contains a wealth of LanCL1, an antioxidant enzyme that is thought to mitigate oxidative stress. Nevertheless, its precise function in mammals remains uncertain. This study uncovered a decrease in the expression of LanCL1 due to prolonged isoflurane anesthesia, accompanied by anesthesia-induced neurotoxicity in vivo and in vitro. To better understand LanCL1's essential function, LanCL1 overexpressing adenoviruses were employed to increase LanCL1 levels. The outcomes were analyzed using western blot and immunofluorescence methods. According to the findings, extended exposure to isoflurane anesthesia may lead to developmental neurotoxicity in vivo and in vitro. The anesthesia-induced neurotoxicity was concomitant with a reduction in LanCL1 expression. Moreover, the study revealed that overexpression of LanCL1 can mitigate the neurotoxic effects of isoflurane anesthesia, resulting in improved synaptic growth, less reactive oxygen species enhanced cell viability and rescued memory deficits in the developing brain. In conclusion, prolonged anesthesia-induced LanCL1 deficiency could be responsible for neurotoxicity and subsequent cognitive impairments in the developing brain. Additional LanCL1 counteracts this neurotoxic effect and protects neurons from long-term isoflurane anesthesia.

12.
Stroke ; 55(8): 2151-2162, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38946544

RESUMO

BACKGROUND: GPR65 (G protein-coupled receptor 65) can sense extracellular acidic environment to regulate pathophysiological processes. Pretreatment with the GPR65 agonist BTB09089 has been proven to produce neuroprotection in acute ischemic stroke. However, whether delayed BTB09089 treatment and neuronal GPR65 activation promote neurorestoration remains unknown. METHODS: Ischemic stroke was induced in wild-type (WT) or GPR65 knockout (GPR65-/-) mice by photothrombotic ischemia. Male mice were injected intraperitoneally with BTB09089 every other day at days 3, 7, or 14 poststroke. AAV-Syn-GPR65 (adenoassociated virus-synapsin-GPR65) was utilized to overexpress GPR65 in the peri-infarct cortical neurons of GPR65-/- and WT mice. Motor function was monitored by grid-walk and cylinder tests. The neurorestorative effects of BTB09089 were observed by immunohistochemistry, Golgi-Cox staining, and Western blotting. RESULTS: BTB09089 significantly promoted motor outcomes in WT but not in GPR65-/- mice, even when BTB09089 was delayed for 3 to 7 days. BTB09089 inhibited the activation of microglia and glial scar progression in WT but not in GPR65-/- mice. Meanwhile, BTB09089 reduced the decrease in neuronal density in WT mice, but this benefit was abolished in GPR65-/- mice and reemerged by overexpressing GPR65 in peri-infarct cortical neurons. Furthermore, BTB09089 increased the GAP43 (growth-associated protein-43) and synaptophysin puncta density, dendritic spine density, dendritic branch length, and dendritic complexity by overexpressing GPR65 in the peri-infarct cortical neurons of GPR65-/- mice, which was accompanied by increased levels of p-CREB (phosphorylated cAMP-responsive element-binding protein). In addition, the therapeutic window of BTB09089 was extended to day 14 by overexpressing GPR65 in the peri-infarct cortical neurons of WT mice. CONCLUSIONS: Our findings indicated that delayed BTB09089 treatment improved neurological functional recovery and brain tissue repair poststroke through activating neuronal GRP65. GPR65 overexpression may be a potential strategy to expand the therapeutic time window of GPR65 agonists for neurorehabilitation after ischemic stroke.


Assuntos
AVC Isquêmico , Camundongos Knockout , Neurônios , Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/agonistas , Camundongos , AVC Isquêmico/metabolismo , Masculino , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Reabilitação do Acidente Vascular Cerebral , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL
13.
Dev Biol ; 515: 79-91, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019425

RESUMO

The trigeminal ganglion, the largest of the vertebrate cranial ganglia, is comprised of sensory neurons that relay sensations of pain, touch, and temperature to the brain. These neurons are derived from two embryonic cell types, the neural crest and ectodermal placodes, whose interactions are critical for proper ganglion formation. While the T-cell leukemia homeobox 3 (Tlx3) gene is known to be expressed in placodally-derived sensory neurons and necessary for their differentiation, little was known about Tlx3 expression and/or function in the neural crest-derived component of the developing trigeminal ganglion. By combining lineage labeling with in situ hybridization in the chick embryo, we show that neural crest-derived cells that contribute to the cranial trigeminal ganglion express Tlx3 at a time point that coincides with the onset of ganglion condensation. Importantly, loss of Tlx3 function in vivo diminishes the overall size and abundance of neurons within the trigeminal ganglion. Conversely, ectopic expression of Tlx3 in migrating cranial neural crest results in their premature neuronal differentiation. Taken together, our results demonstrate a critical role for Tlx3 in neural crest-derived cells during chick trigeminal gangliogenesis.

14.
ASN Neuro ; 16(1): 2368382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024550

RESUMO

Ventromedial hypothalamic nucleus (VMN) growth hormone-releasing hormone (Ghrh) neurotransmission shapes counterregulatory hormone secretion. Dorsomedial VMN Ghrh neurons express the metabolic-sensitive transcription factor steroidogenic factor-1/NR5A1 (SF-1). In vivo SF-1 gene knockdown tools were used here to address the premise that in male rats, SF-1 may regulate basal and/or hypoglycemic patterns of Ghrh, co-transmitter biosynthetic enzyme, and estrogen receptor (ER) gene expression in these neurons. Single-cell multiplex qPCR analyses showed that SF-1 regulates basal profiles of mRNAs that encode Ghrh and protein markers for neurochemicals that suppress (γ-aminobutyric acid) or enhance (nitric oxide; glutamate) counterregulation. SF-1 siRNA pretreatment respectively exacerbated or blunted hypoglycemia-associated inhibition of glutamate decarboxylase67 (GAD67/GAD1) and -65 (GAD65/GAD2) transcripts. Hypoglycemia augmented or reduced nitric oxide synthase and glutaminase mRNAs, responses that were attenuated by SF-1 gene silencing. Ghrh and Ghrh receptor transcripts were correspondingly refractory to or increased by hypoglycemia, yet SF-1 knockdown decreased both gene profiles. Hypoglycemic inhibition of ER-alpha and G protein-coupled-ER gene expression was amplified by SF-1 siRNA pretreatment, whereas as ER-beta mRNA was amplified. SF-1 knockdown decreased (corticosterone) or elevated [glucagon, growth hormone (GH)] basal counterregulatory hormone profiles, but amplified hypoglycemic hypercorticosteronemia and -glucagonemia or prevented elevated GH release. Outcomes document SF-1 control of VMN Ghrh neuron counterregulatory neurotransmitter and ER gene transcription. SF-1 likely regulates Ghrh nerve cell receptivity to estradiol and release of distinctive neurochemicals during glucose homeostasis and systemic imbalance. VMN Ghrh neurons emerge as a likely substrate for SF-1 control of glucose counterregulation in the male rat.


Assuntos
Hormônio Liberador de Hormônio do Crescimento , Neurônios , Ratos Sprague-Dawley , Fator Esteroidogênico 1 , Núcleo Hipotalâmico Ventromedial , Animais , Masculino , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/genética , Núcleo Hipotalâmico Ventromedial/metabolismo , Fator Esteroidogênico 1/metabolismo , Fator Esteroidogênico 1/genética , Neurônios/metabolismo , Ratos , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/genética , Regulação da Expressão Gênica , Hipoglicemia/metabolismo , RNA Interferente Pequeno/farmacologia
15.
Mod Pathol ; : 100565, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025405

RESUMO

Over the last years, insights in the cancer neuroscience field increased rapidly and a potential role for neurons in colorectal carcinogenesis has been recognized. However, knowledge on the neuronal distribution, subtypes, origin and associations with clinicopathological characteristics in human studies is sparse. In this study, colorectal tumor tissues from the Netherlands Cohort Study on diet and cancer (n=490) and an in-cohort validation population (n=529) were immunohistochemically stained for the pan-neuronal markers neurofilament (NF) and protein gene product 9.5 (PGP9.5) to study the association between neuronal marker expression and clinicopathological characteristics. In addition, tumor and healthy colon tissue were stained for neuronal subtype markers and their immunoreactivity in colorectal cancer (CRC) stroma was analyzed. NF and PGP9.5 positive nerve fibers were found within the tumor stroma and were mostly characterized by the neuronal subtype markers vasoactive intestinal protein (VIP) and neuronal nitric oxide synthase (nNOS), suggesting that inhibitory neurons are the most prominent neuronal subtype in CRC. NF and PGP9.5 protein expression were not consistently associated with tumor stage, sublocation, differentiation grade and median survival. NF immunoreactivity was associated with a worse CRC-specific survival in the study cohort (p=0.025), independent of other prognostic factors (HR=2.31; 95% CI 1.33-4.03; p=0.003), but these results were not observed in the in-cohort validation group. PGP9.5 on the other hand, was associated with a worse CRC-specific survival in the in-cohort validation (p=0.046) but not in the study population. This effect disappeared in multivariate analyses (HR=0.81; 95% CI 0.50-1.32; p=0.393) indicating that this effect was dependent on other prognostic factors. This study demonstrates that the tumor stroma of CRC patients mainly harbors inhibitory neurons and that NF as a single marker is significantly associated with a poorer CRC-specific survival in the study cohort but necessitates future validation.

16.
FASEB J ; 38(13): e23800, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38979931

RESUMO

Insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM), has emerged as a pathological feature in Alzheimer's disease (AD). Given the shared role of insulin resistance in T2DM and AD, repurposing peripheral insulin sensitizers is a promising strategy to preserve neuronal insulin sensitivity and prevent AD. 1-Deoxynojirimycin (DNJ), a bioactive iminosugar, exhibited insulin-sensitizing effects in metabolic tissues and was detected in brain tissue post-oral intake. However, its impact on brain and neuronal insulin signaling has not been described. Here, we investigated the effect of DNJ treatment on insulin signaling and AD markers in insulin-resistant human SK-N-SH neuroblastoma, a cellular model of neuronal insulin resistance. Our findings show that DNJ increased the expression of insulin signaling genes and the phosphorylation status of key molecules implicated in insulin resistance (Y1146-pIRß, S473-pAKT, S9-GSK3B) while also elevating the expression of glucose transporters Glut3 and Glut4, resulting in higher glucose uptake upon insulin stimuli. DNJ appeared to mitigate the insulin resistance-driven increase in phosphorylated tau and Aß1-42 levels by promoting insulin-induced phosphorylation of GSK3B (a major tau kinase) and enhancing mRNA expression of the insulin-degrading enzyme (IDE) pivotal for insulin and Aß clearance. Overall, our study unveils probable mechanisms underlying the potential benefits of DNJ for AD, wherein DNJ attenuates tau and amyloid pathologies by reversing neuronal insulin resistance. This provides a scientific basis for expanding the use of DNJ-containing products for neuroprotective purposes and prompts further research into compounds with similar mechanisms of action.


Assuntos
1-Desoxinojirimicina , Doença de Alzheimer , Resistência à Insulina , Neurônios , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Humanos , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/análogos & derivados , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Linhagem Celular Tumoral , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 3/genética , Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosforilação/efeitos dos fármacos , Biomarcadores/metabolismo
17.
CNS Neurosci Ther ; 30(7): e14831, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961317

RESUMO

AIMS: Comorbid anxiodepressive-like symptoms (CADS) in chronic pain are closely related to the overactivation of the lateral habenula (LHb). Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been implicated to play a key role in regulating neuronal excitability. However, the role of HCN channels in the LHb during CADS has not yet been characterized. This study aimed to investigate the effect of HCN channels in the LHb on CADS during chronic pain. METHODS: After chronic neuropathic pain induction by spared nerve injury (SNI), mice underwent a sucrose preference test, forced swimming test, tail suspension test, open-field test, and elevated plus maze test to evaluate their anxiodepressive-like behaviors. Electrophysiological recordings, immunohistochemistry, Western blotting, pharmacological experiments, and virus knockdown strategies were used to investigate the underlying mechanisms. RESULTS: Evident anxiodepressive-like behaviors were observed 6w after the SNI surgery, accompanied by increased neuronal excitability, enhanced HCN channel function, and increased expression of HCN2 isoforms in the LHb. Either pharmacological inhibition or virus knockdown of HCN2 channels significantly reduced LHb neuronal excitability and ameliorated both pain and depressive-like behaviors. CONCLUSION: Our results indicated that the LHb neurons were hyperactive under CADS in chronic pain, and this hyperactivation possibly resulted from the enhanced function of HCN channels and up-regulation of HCN2 isoforms.


Assuntos
Depressão , Habenula , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Animais , Habenula/metabolismo , Habenula/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Masculino , Depressão/metabolismo , Neuralgia/metabolismo , Neuralgia/psicologia , Camundongos Endogâmicos C57BL , Dor Crônica/metabolismo , Dor Crônica/psicologia , Canais de Potássio
18.
Phytomedicine ; 132: 155803, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38876008

RESUMO

BACKGROUND: Electromagnetic radiation is relevant to human life, and radiation can trigger neurodegenerative diseases by altering the function of the central nervous system through oxidative stress, mitochondrial dysfunction, and protein degradation. Astragaloside IV (AS-IV) is anti-oxidative, anti-apoptotic, activates the BDNF-TrkB pathway and enhances synaptic plasticity in radiated mice, which can exert its neuroprotection. However, the exact molecular mechanisms are still unclear. PURPOSE: This study investigated whether AS-IV could play a neuroprotective role by regulating BDNF-TrkB pathway in radiation damage and its underlying molecular mechanisms. METHODS: Transgenic mice (Thy1-YFP line H) were injected with AS-IV (40 mg/kg/day body weight) by intraperitoneal injection daily for 4 weeks, followed by X-rays. PC12 cells and primary cortical neurons were also exposed to UVA after 24 h of AS-IV treatment (25 µg/ml and 50 µg/ml) in vitro. The impact of radiation on learning and cognitive functions was visualized in the Morris water maze assay. Subsequently, Immunofluorescence and Golgi-Cox staining analyses were utilized to investigate the structural damage of neuronal dendrites and the density of dendritic spines. Transmission electron microscopy was performed to examine how the radiation affected the ultrastructure of neurons. Finally, western blotting analysis and Quantitative RT-PCR were used to evaluate the expression levels and locations of proteins in vitro and in vivo. RESULTS: Radiation induced BDNF-TrkB signaling dysregulation and decreased the levels of neuron-related functional genes (Ngf, Bdnf, Gap-43, Ras, Psd-95, Arc, Creb, c-Fos), PSD-95 and F-actin, which subsequently led to damage of neuronal ultrastructure and dendrites, loss of dendritic spines, and decreased dendritic complexity index, contributing to spatial learning and memory deficits. These abnormalities were prevented by AS-IV treatment. In addition, TrkB receptor antagonists antagonized these neuroprotective actions of AS-IV. 7,8-dihydroxyflavone and AS-IV had neuroprotective effects after radiation. CONCLUSION: AS-IV inhibits morphological damage of neurons and cognitive dysfunction in mice after radiation exposure, resulting in a neuroprotective effect, which were mediated by activating the BDNF-TrkB pathway.

19.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892125

RESUMO

A total of 3102 neurons were recorded before and following acute and chronic methylphenidate (MPD) administration. Acute MPD exposure elicits mainly increases in neuronal and behavioral activity in dose-response characteristics. The response to chronic MPD exposure, as compared to acute 0.6, 2.5, or 10.0 mg/kg MPD administration, elicits electrophysiological and behavioral sensitization in some animals and electrophysiological and behavioral tolerance in others when the neuronal recording evaluations were performed based on the animals' behavioral responses, or amount of locomotor activity, to chronic MPD exposure. The majority of neurons recorded from those expressing behavioral sensitization responded to chronic MPD with further increases in firing rate as compared to the initial MPD responses. The majority of neurons recorded from animals expressing behavioral tolerance responded to chronic MPD with decreases in their firing rate as compared to the initial MPD exposures. Each of the six brain areas studied-the ventral tegmental area, locus coeruleus, dorsal raphe, nucleus accumbens, prefrontal cortex, and caudate nucleus (VTA, LC, DR, NAc, PFC, and CN)-responds significantly (p < 0.001) differently to MPD, suggesting that each one of the above brain areas exhibits different roles in the response to MPD. Moreover, this study demonstrates that it is essential to evaluate neuronal activity responses to psychostimulants based on the animals' behavioral responses to acute and chronic effects of the drug from several brain areas simultaneously to obtain accurate information on each area's role in response to the drug.


Assuntos
Comportamento Animal , Núcleo Caudado , Metilfenidato , Neurônios , Núcleo Accumbens , Córtex Pré-Frontal , Área Tegmentar Ventral , Animais , Metilfenidato/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Ratos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/metabolismo , Núcleo Caudado/efeitos dos fármacos , Núcleo Caudado/fisiologia , Núcleo Caudado/metabolismo , Masculino , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Comportamento Animal/efeitos dos fármacos , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/fisiologia , Ratos Sprague-Dawley , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/fisiologia , Núcleo Dorsal da Rafe/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia
20.
Genome Biol ; 25(1): 162, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902825

RESUMO

BACKGROUND: The functional coupling between alternative pre-mRNA splicing (AS) and the mRNA quality control mechanism called nonsense-mediated decay (NMD) can modulate transcript abundance. Previous studies have identified several examples of such a regulation in developing neurons. However, the systems-level effects of AS-NMD in this context are poorly understood. RESULTS: We developed an R package, factR2, which offers a comprehensive suite of AS-NMD analysis functions. Using this tool, we conducted a longitudinal analysis of gene expression in pluripotent stem cells undergoing induced neuronal differentiation. Our analysis uncovers hundreds of AS-NMD events with significant potential to regulate gene expression. Notably, this regulation is significantly overrepresented in specific functional groups of developmentally downregulated genes. Particularly strong association with gene downregulation is detected for alternative cassette exons stimulating NMD upon their inclusion into mature mRNA. By combining bioinformatic analyses with CRISPR/Cas9 genome editing and other experimental approaches we show that NMD-stimulating cassette exons regulated by the RNA-binding protein PTBP1 dampen the expression of their genes in developing neurons. We also provided evidence that the inclusion of NMD-stimulating cassette exons into mature mRNAs is temporally coordinated with NMD-independent gene repression mechanisms. CONCLUSIONS: Our study provides an accessible workflow for the discovery and prioritization of AS-NMD targets. It further argues that the AS-NMD pathway plays a widespread role in developing neurons by facilitating the downregulation of functionally related non-neuronal genes.


Assuntos
Processamento Alternativo , Regulação para Baixo , Neurônios , Degradação do RNAm Mediada por Códon sem Sentido , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Animais , Camundongos , Neurônios/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Éxons , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Celular/genética , Neurogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA