Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000443

RESUMO

The advent of comprehensive genomic profiling using next-generation sequencing (NGS) has unveiled an abundance of potentially actionable genetic aberrations that have shaped our understanding of the cancer biology landscape. Isocitrate dehydrogenase (IDH) is an enzyme present in the cytosol (IDH1) and mitochondria (IDH2 and IDH3). In the mitochondrion, it catalyzes the irreversible oxidative decarboxylation of isocitrate, yielding the production of α-ketoglutarate and nicotinamide adenine dinucleotide phosphate (NADPH) as well as carbon dioxide (CO2). In the cytosol, IDH catalyzes the decarboxylation of isocitrate to α-ketoglutarate as well as the reverse reductive carboxylation of α-ketoglutarate to isocitrate. These rate-limiting steps in the tricarboxylic acid cycle, as well as the cytoplasmic response to oxidative stress, play key roles in gene regulation, cell differentiation, and tissue homeostasis. Mutations in the genes encoding IDH1 and IDH2 and, less commonly, IDH3 have been found in a variety of cancers, most commonly glioma, acute myeloid leukemia (AML), chondrosarcoma, and intrahepatic cholangiocarcinoma. In this paper, we intend to elucidate the theorized pathophysiology behind IDH isomer mutation, its implication in cancer manifestation, and discuss some of the available clinical data regarding the use of novel IDH inhibitors and their role in therapy.


Assuntos
Isocitrato Desidrogenase , Terapia de Alvo Molecular , Neoplasias , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/metabolismo , Humanos , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Mutação , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
2.
J Photochem Photobiol B ; 257: 112966, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38970968

RESUMO

BACKGROUND/AIM: Although photobiomodulation therapy (PBMt) is available to alleviate post-operative side effects of malignant diseases, its application is still controversial due to some potential of cancer recurrence and occurrence of a secondary malignancy. We investigated effect of PBMt on mitochondrial function in HT29 colon cancer cells. METHODS: HT29 cell proliferation was determined with MTT assay after PBMt. Immunofluorescent staining was performed to determine mitochondrial biogenesis and reactive oxygen species (ROS). Mitochondrial membrane potential was measured with Mitotracker. Western blotting was executed to determine expression of fission, fusion, UCP2, and cyclin B1 and D1 proteins. In vivo study was performed by subcutaneously inoculating cancer cells into nude mice and immunohistochemistry was done to determine expression of FIS1, MFN2, UCP2, and p-AKT. RESULTS: The proliferation and migration of HT29 cells reached maximum with PBMt (670 nm, light emitting diode, LED) at 2.0 J/cm2 compared to control (P < 0.05) with more expression of cyclin B1 and cyclin D1 (P < 0.05). Immunofluorescent staining showed that ROS and mitochondrial membrane potential were enhanced after PBMt compared to control. ATP synthesis of mitochondria was also higher in the PBMt group than in the control (P < 0.05). Expression levels of fission and fusion proteins were significantly increased in the PBMt group than in the control (P < 0.05). Electron microscopy revealed that the percentage of mitochondria showing fission was not significantly different between the two groups. Oncometabolites including D-2-hydoxyglutamate in the supernatant of cell culture were higher in the PBMt group than in the control with increased UCP2 expression (P < 0.05). Both tumor size and weight of xenograft in nude mice model were bigger and heavier in the PBMt group than in the control (P < 0.05). Immunohistologically, mitochondrial biogenesis proteins UCP2 and p-AKT in xenograft of nude mice were expressed more in the PBMt group than in the control (P < 0.05). CONCLUSIONS: Treatment with PBM using red light LED may induce proliferation and progression of HT29 cancer cells by increasing mitochondrial activity and fission.


Assuntos
Proliferação de Células , Neoplasias do Colo , Potencial da Membrana Mitocondrial , Camundongos Nus , Mitocôndrias , Espécies Reativas de Oxigênio , Humanos , Células HT29 , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Animais , Proliferação de Células/efeitos da radiação , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/radioterapia , Neoplasias do Colo/metabolismo , Potencial da Membrana Mitocondrial/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Movimento Celular/efeitos da radiação , Ciclina B1/metabolismo , Dinâmica Mitocondrial/efeitos da radiação , Ciclina D1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Trends Biochem Sci ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876954

RESUMO

Mutations in metabolic enzymes are associated with hereditary and sporadic forms of cancer. For example, loss-of-function mutations affecting fumarate hydratase (FH), the tricarboxylic acid (TCA) cycle enzyme, result in the accumulation of millimolar levels of fumarate that cause an aggressive form of kidney cancer. A distinct feature of fumarate is its ability to spontaneously react with thiol groups of cysteines in a chemical reaction termed succination. Although succination of a few proteins has been causally implicated in the molecular features of FH-deficient cancers, the stoichiometry, wider functional consequences, and contribution of succination to disease development remain largely unexplored. We discuss the functional implications of fumarate-induced succination in FH-deficient cells, the available methodologies, and the current challenges in studying this post-translational modification.

4.
Essays Biochem ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38919140

RESUMO

2-Hydroxyglutarate (2HG) is an oncometabolite that can contribute to tumor progression. Two enantiomer forms, L-2HG and D-2HG, arise from independent pathways starting from the precursor α-ketoglutarate (αKG). L-2HG production occurs through the promiscuous activities of malate dehydrogenase (MDH) and lactate dehydrogenase (LDH) under acidic and/or hypoxic conditions. D-2HG frequently accumulates by gain-of-function mutations in the genes encoding two isoforms of isocitrate dehydrogenase (IDH1 and IDH2). Cognate metabolite repair enzymes, L- and D-2-hydroxyglutarate dehydrogenases, oxidize the enantiomers and cause abnormally high 2HG accumulation and disease when mutated. Elevated levels of either oncometabolite affect redox homeostasis, metabolism, and immune system functioning. Moreover, the oncometabolites inhibit several α-ketoglutarate-dependent dioxygenases resulting in epigenetic changes such as DNA and histone hypermethylation as well as deficiencies in DNA repair. L-2HG, and D-2HG in some cases, inhibit degradation of hypoxia-inducible factor (HIF1α), a transcription factor that alters gene expression to adapt to hypoxic conditions, favoring tumorigenesis. Patients with the rare disease 2-hydroxyglutaric aciduria (2HGA) have exceedingly high levels of 2HG, which is neurotoxic, causing developmental delays and brain abnormalities. D-2HG also has specific effects on collagen production and NADPH pools. Recently, D-2HG has been targeted in new chemotherapies aimed at disrupting the gain-of-function IDH1 and IDH2 mutants, resulting in successful clinical trials for several cancers.

5.
Proc Natl Acad Sci U S A ; 121(23): e2318843121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805277

RESUMO

The development and performance of two mass spectrometry (MS) workflows for the intraoperative diagnosis of isocitrate dehydrogenase (IDH) mutations in glioma is implemented by independent teams at Mayo Clinic, Jacksonville, and Huashan Hospital, Shanghai. The infiltrative nature of gliomas makes rapid diagnosis necessary to guide the extent of surgical resection of central nervous system (CNS) tumors. The combination of tissue biopsy and MS analysis used here satisfies this requirement. The key feature of both described methods is the use of tandem MS to measure the oncometabolite 2-hydroxyglutarate (2HG) relative to endogenous glutamate (Glu) to characterize the presence of mutant tumor. The experiments i) provide IDH mutation status for individual patients and ii) demonstrate a strong correlation of 2HG signals with tumor infiltration. The measured ratio of 2HG to Glu correlates with IDH-mutant (IDH-mut) glioma (P < 0.0001) in the tumor core data of both teams. Despite using different ionization methods and different mass spectrometers, comparable performance in determining IDH mutations from core tumor biopsies was achieved with sensitivities, specificities, and accuracies all at 100%. None of the 31 patients at Mayo Clinic or the 74 patients at Huashan Hospital were misclassified when analyzing tumor core biopsies. Robustness of the methodology was evaluated by postoperative re-examination of samples. Both teams noted the presence of high concentrations of 2HG at surgical margins, supporting future use of intraoperative MS to monitor for clean surgical margins. The power of MS diagnostics is shown in resolving contradictory clinical features, e.g., in distinguishing gliosis from IDH-mut glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Mutação , Glioma/genética , Glioma/cirurgia , Glioma/patologia , Isocitrato Desidrogenase/genética , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Espectrometria de Massas em Tandem/métodos , Glutaratos/metabolismo , Espectrometria de Massas/métodos , Ácido Glutâmico/metabolismo , Ácido Glutâmico/genética
6.
Cells ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38607068

RESUMO

Lysophosphatidic acid (LPA) is a phospholipid that displays potent signalling activities that are regulated in both an autocrine and paracrine manner. It can be found both extra- and intracellularly, where it interacts with different receptors to activate signalling pathways that regulate a plethora of cellular processes, including mitosis, proliferation and migration. LPA metabolism is complex, and its biosynthesis and catabolism are under tight control to ensure proper LPA levels in the body. In cancer patient specimens, LPA levels are frequently higher compared to those of healthy individuals and often correlate with poor responses and more aggressive disease. Accordingly, LPA, through promoting cancer cell migration and invasion, enhances the metastasis and dissemination of tumour cells. In this review, we summarise the role of LPA in the regulation of critical aspects of tumour biology and further discuss the available pre-clinical and clinical evidence regarding the feasibility and efficacy of targeting LPA metabolism for effective anticancer therapy.


Assuntos
Neoplasias , Humanos , Transdução de Sinais/fisiologia , Movimento Celular , Lisofosfolipídeos/metabolismo
7.
Genome Biol ; 25(1): 66, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468344

RESUMO

BACKGROUND: Oncometabolites, often generated as a result of a gene mutation, show pro-oncogenic function when abnormally accumulated in cancer cells. Identification of such mutation-associated metabolites will facilitate developing treatment strategies for cancers, but is challenging due to the large number of metabolites in a cell and the presence of multiple genes associated with cancer development. RESULTS: Here we report the development of a computational workflow that predicts metabolite-gene-pathway sets. Metabolite-gene-pathway sets present metabolites and metabolic pathways significantly associated with specific somatic mutations in cancers. The computational workflow uses both cancer patient-specific genome-scale metabolic models (GEMs) and mutation data to generate metabolite-gene-pathway sets. A GEM is a computational model that predicts reaction fluxes at a genome scale and can be constructed in a cell-specific manner by using omics data. The computational workflow is first validated by comparing the resulting metabolite-gene pairs with multi-omics data (i.e., mutation data, RNA-seq data, and metabolome data) from acute myeloid leukemia and renal cell carcinoma samples collected in this study. The computational workflow is further validated by evaluating the metabolite-gene-pathway sets predicted for 18 cancer types, by using RNA-seq data publicly available, in comparison with the reported studies. Therapeutic potential of the resulting metabolite-gene-pathway sets is also discussed. CONCLUSIONS: Validation of the metabolite-gene-pathway set-predicting computational workflow indicates that a decent number of metabolites and metabolic pathways appear to be significantly associated with specific somatic mutations. The computational workflow and the resulting metabolite-gene-pathway sets will help identify novel oncometabolites and also suggest cancer treatment strategies.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Mutação , Metaboloma
8.
Res Sq ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38464189

RESUMO

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant uniquely preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site. Here, we employed static and dynamic structural methods and found that, compared to R132H, the R132Q active site adopted a conformation primed for catalysis with optimized substrate binding and hydride transfer to drive improved conventional and neomorphic activity over R132H. This active site remodeling revealed a possible mechanism of resistance to selective mutant IDH1 therapeutic inhibitors. This work enhances our understanding of fundamental IDH1 mechanisms while pinpointing regions for improving inhibitor selectivity.

9.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38260668

RESUMO

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant uniquely preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site. Here, we employed static and dynamic structural methods and found that, compared to R132H, the R132Q active site adopted a conformation primed for catalysis with optimized substrate binding and hydride transfer to drive improved conventional and neomorphic activity over R132H. This active site remodeling revealed a possible mechanism of resistance to selective mutant IDH1 therapeutic inhibitors. This work enhances our understanding of fundamental IDH1 mechanisms while pinpointing regions for improving inhibitor selectivity.

10.
Heliyon ; 10(2): e24454, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293535

RESUMO

"Oncometabolite" 2-hydroxyglutarate (2-HG) is an aberrant metabolite found in tumor cells, exerting a pivotal influence on tumor progression. Recent studies have unveiled its impact on the proliferation, activation, and differentiation of anti-tumor T cells. Moreover, 2-HG regulates the function of innate immune components, including macrophages, dendritic cells, natural killer cells, and the complement system. Elevated levels of 2-HG hinder α-KG-dependent dioxygenases (α-KGDDs), contributing to tumorigenesis by disrupting epigenetic regulation, genome integrity, hypoxia-inducible factors (HIF) signaling, and cellular metabolism. The chiral molecular structure of 2-HG produces two enantiomers: D-2-HG and L-2-HG, each with distinct origins and biological functions. Efforts to inhibit D-2-HG and leverage the potential of L-2-HG have demonstrated efficacy in cancer immunotherapy. This review delves into the metabolism, biological functions, and impacts on the tumor immune microenvironment (TIME) of 2-HG, providing a comprehensive exploration of the intricate relationship between 2-HG and antitumor immunity. Additionally, we examine the potential clinical applications of targeted therapy for 2-HG, highlighting recent breakthroughs as well as the existing challenges.

11.
Environ Int ; 180: 108219, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37778286

RESUMO

Succinate dehydrogenase inhibitors (SDHi) are fungicides used to control the proliferation of pathogenic fungi in crops. Their mode of action is based on blocking the activity of succinate dehydrogenase (SDH), a universal enzyme expressed by all species harboring mitochondria. The SDH is involved in two interconnected metabolic processes for energy production: the transfer of electrons in the mitochondrial respiratory chain and the oxidation of succinate to fumarate in the Krebs cycle. In humans, inherited SDH deficiencies may cause major pathologies including encephalopathies and cancers. The cellular and molecular mechanisms related to such genetic inactivation have been well described in neuroendocrine tumors, in which it induces an oxidative stress, a pseudohypoxic phenotype, a metabolic, epigenetic and transcriptomic remodeling, and alterations in the migration and invasion capacities of cancer cells, in connection with the accumulation of succinate, an oncometabolite, substrate of the SDH. We will discuss recent studies reporting toxic effects of SDHi in non-target organisms and their implications for risk assessment of pesticides. Recent data show that the SDH structure is highly conserved during evolution and that SDHi can inhibit SDH activity in mitochondria of non-target species, including humans. These observations suggest that SDHi are not specific inhibitors of fungal SDH. We hypothesize that SDHi could have toxic effects in other species, including humans. Moreover, the analysis of regulatory assessment reports shows that most SDHi induce tumors in animals without evidence of genotoxicity. Thus, these substances could have a non-genotoxic mechanism of carcinogenicity that still needs to be fully characterized and that could be related to SDH inhibition. The use of pesticides targeting mitochondrial enzymes encoded by tumor suppressor genes raises questions on the risk assessment framework of mitotoxic pesticides. The issue of SDHi fungicides is therefore a textbook case that highlights the urgent need for changes in regulatory assessment.


Assuntos
Fungicidas Industriais , Praguicidas , Animais , Humanos , Fungicidas Industriais/toxicidade , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Fungos/metabolismo , Ácido Succínico , Succinatos
12.
Cancers (Basel) ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686573

RESUMO

INTRODUCTION: Cancer is the leading cause of death worldwide, with the most frequent being breast cancer in women, prostate cancer in men and colon cancer in both sexes. The use of metabolomics to find new biomarkers can provide knowledge about possible interventions based on the presence of oncometabolites in different cancer types. OBJECTIVES: The primary purpose of this review is to analyze the characteristic metabolome of three of the most frequent cancer types. We further want to identify the existence and success rate of metabolomics-based intervention in patients suffering from those cancer types. Our conclusions are based on the analysis of the methodological quality of the studies. METHODS: We searched for studies that investigated the metabolomic characteristics in patients suffering from breast cancer, prostate cancer or colon cancer in clinical trials. The data were analyzed, as well as the effects of specific interventions based on identified metabolomics and one or more oncometabolites. The used databases were PubMed, Virtual Health Library, Web of Science, EBSCO and Cochrane Library. Only nine studies met the selection criteria. Study bias was analyzed using the Cochrane risk of bias tool. This systematic review protocol was registered at the International Prospective Register of Systematic Reviews (PROSPERO: CRD42023401474). RESULTS: Only nine studies about clinical trials were included in this review and show a moderate quality of evidence. Metabolomics-based interventions related with disease outcome were conflictive with no or small changes in the metabolic characteristics of the different cancer types. CONCLUSIONS: This systematic review shows some interesting results related with metabolomics-based interventions and their effects on changes in certain cancer oncometabolites. The small number of studies we identified which fulfilled our inclusion criteria in this systematic review does not allow us to draw definitive conclusions. Nevertheless, some results can be considered as promising although further research is needed. That research must focus not only on the presence of possible oncometabolites but also on possible metabolomics-based interventions and their influence on the outcome in patients suffering from breast cancer, prostate cancer or colon cancer.

13.
Cells ; 12(10)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37408249

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with poor prognosis. Gemcitabine is the first-line therapy for PDAC, but gemcitabine resistance is a major impediment to achieving satisfactory clinical outcomes. This study investigated whether methylglyoxal (MG), an oncometabolite spontaneously formed as a by-product of glycolysis, notably favors PDAC resistance to gemcitabine. We observed that human PDAC tumors expressing elevated levels of glycolytic enzymes together with high levels of glyoxalase 1 (GLO1), the major MG-detoxifying enzyme, present with a poor prognosis. Next, we showed that glycolysis and subsequent MG stress are triggered in PDAC cells rendered resistant to gemcitabine when compared with parental cells. In fact, acquired resistance, following short and long-term gemcitabine challenges, correlated with the upregulation of GLUT1, LDHA, GLO1, and the accumulation of MG protein adducts. We showed that MG-mediated activation of heat shock response is, at least in part, the molecular mechanism underlying survival in gemcitabine-treated PDAC cells. This novel adverse effect of gemcitabine, i.e., induction of MG stress and HSR activation, is efficiently reversed using potent MG scavengers such as metformin and aminoguanidine. We propose that the MG blockade could be exploited to resensitize resistant PDAC tumors and to improve patient outcomes using gemcitabine therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Aldeído Pirúvico , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Resposta ao Choque Térmico , Neoplasias Pancreáticas
14.
Proc Natl Acad Sci U S A ; 120(24): e2305245120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276392

RESUMO

The activation and expansion of T cells that recognize cancer cells is an essential aspect to antitumor immunity. Tumors may escape destruction by the immune system through ectopic expression of inhibitory immune ligands typically exemplified by the PD-L1/PD-1 pathway. Here, we reveal another facet of tumor evasion from T cell surveillance. By secretome profiling of necrotic tumor cells, we identified an oncometabolite spermidine as a unique inhibitor of T cell receptor (TCR) signaling. Mechanistically, spermidine causes the downregulation of the plasma membrane cholesterol levels, resulting in the suppression of TCR clustering. Using syngeneic mouse models, we show that spermidine is abundantly detected in the tumor immune microenvironment (TIME) and that administration of the polyamine synthesis inhibitor effectively enhanced CD8+ T cell-dependent antitumor responses. Further, the combination of the polyamine synthesis inhibitor with anti-PD-1 immune checkpoint antibody resulted in a much stronger antitumor immune response. This study reveals an aspect of immunosuppressive TIME, wherein spermidine functions as a metabolic T cell checkpoint that may offer a unique approach for promoting tumor immunotherapy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Espermidina/farmacologia , Espermidina/metabolismo , Linfócitos T CD8-Positivos , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Imunoterapia/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Antígeno B7-H1/metabolismo
15.
Mol Cell ; 83(13): 2347-2356.e8, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37311462

RESUMO

Oncogenic mutations in isocitrate dehydrogenases 1 and 2 (IDH1/2) produce 2-hydroxyglutarate (2HG), which inhibits dioxygenases that modulate chromatin dynamics. The effects of 2HG have been reported to sensitize IDH tumors to poly-(ADP-ribose) polymerase (PARP) inhibitors. However, unlike PARP-inhibitor-sensitive BRCA1/2 tumors, which exhibit impaired homologous recombination, IDH-mutant tumors have a silent mutational profile and lack signatures associated with impaired homologous recombination. Instead, 2HG-producing IDH mutations lead to a heterochromatin-dependent slowing of DNA replication accompanied by increased replication stress and DNA double-strand breaks. This replicative stress manifests as replication fork slowing, but the breaks are repaired without a significant increase in mutation burden. Faithful resolution of replicative stress in IDH-mutant cells is dependent on poly-(ADP-ribosylation). Treatment with PARP inhibitors increases DNA replication but results in incomplete DNA repair. These findings demonstrate a role for PARP in the replication of heterochromatin and further validate PARP as a therapeutic target in IDH-mutant tumors.


Assuntos
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/genética , Heterocromatina/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína BRCA2/genética , Recombinação Homóloga/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação , Isocitrato Desidrogenase/genética
16.
Heliyon ; 9(6): e16684, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37292314

RESUMO

This pilot study aimed primarily to evaluate plasma levels of a novel metabolite, creatine riboside, in patients with cervical cancer (discovery and validation cohorts, n = 11 for each) compared with non-cancer subjects (controls, n = 30). We found that the pre-treatment plasma creatine riboside level was significantly higher in the discovery cohort than in controls. The cut-off value determined from the discovery cohort distinguished 90.9% of the patients in the validation cohort from controls. Unbiased principal component analysis of plasma metabolites in high-creatine riboside samples demonstrated enrichment of pathways involved in arginine and creatine metabolism. These data indicate the potential utility of plasma creatine riboside as a biomarker of cervical cancer.

17.
Metabolites ; 13(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37233659

RESUMO

Peritoneal cancers present significant clinical challenges with poor prognosis. Understanding the role of cancer cell metabolism and cancer-promoting metabolites in peritoneal cancers can provide new insights into the mechanisms that drive tumor progression and can identify novel therapeutic targets and biomarkers for early detection, prognosis, and treatment response. Cancer cells dynamically reprogram their metabolism to facilitate tumor growth and overcome metabolic stress, with cancer-promoting metabolites such as kynurenines, lactate, and sphingosine-1-phosphate promoting cell proliferation, angiogenesis, and immune evasion. Targeting cancer-promoting metabolites could also lead to the development of effective combinatorial and adjuvant therapies involving metabolic inhibitors for the treatment of peritoneal cancers. With the observed metabolomic heterogeneity in cancer patients, defining peritoneal cancer metabolome and cancer-promoting metabolites holds great promise for improving outcomes for patients with peritoneal tumors and advancing the field of precision cancer medicine. This review provides an overview of the metabolic signatures of peritoneal cancer cells, explores the role of cancer-promoting metabolites as potential therapeutic targets, and discusses the implications for advancing precision cancer medicine in peritoneal cancers.

18.
Molecules ; 28(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903561

RESUMO

Mutations in homodimeric isocitrate dehydrogenase (IDH) enzymes at specific arginine residues result in the abnormal activity to overproduce D-2 hydroxyglutarate (D-2HG), which is often projected as solid oncometabolite in cancers and other disorders. As a result, depicting the potential inhibitor for D-2HG formation in mutant IDH enzymes is a challenging task in cancer research. The mutation in the cytosolic IDH1 enzyme at R132H, especially, may be associated with higher frequency of all types of cancers. So, the present work specifically focuses on the design and screening of allosteric site binders to the cytosolic mutant IDH1 enzyme. The 62 reported drug molecules were screened along with biological activity to identify the small molecular inhibitors using computer-aided drug design strategies. The designed molecules proposed in this work show better binding affinity, biological activity, bioavailability, and potency toward the inhibition of D-2HG formation compare to the reported drugs in the in silico approach.


Assuntos
Isocitrato Desidrogenase , Neoplasias , Humanos , Isocitrato Desidrogenase/genética , Regulação Alostérica , Glutaratos/química , Mutação , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia
19.
Neurosci Bull ; 39(3): 393-408, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36229714

RESUMO

Glioma is the most common and lethal intrinsic primary tumor of the brain. Its controversial origins may contribute to its heterogeneity, creating challenges and difficulties in the development of therapies. Among the components constituting tumors, glioma stem cells are highly plastic subpopulations that are thought to be the site of tumor initiation. Neural stem cells/progenitor cells and oligodendrocyte progenitor cells are possible lineage groups populating the bulk of the tumor, in which gene mutations related to cell-cycle or metabolic enzymes dramatically affect this transformation. Novel approaches have revealed the tumor-promoting properties of distinct tumor cell states, glial, neural, and immune cell populations in the tumor microenvironment. Communication between tumor cells and other normal cells manipulate tumor progression and influence sensitivity to therapy. Here, we discuss the heterogeneity and relevant functions of tumor cell state, microglia, monocyte-derived macrophages, and neurons in glioma, highlighting their bilateral effects on tumors. Finally, we describe potential therapeutic approaches and targets beyond standard treatments.


Assuntos
Neoplasias Encefálicas , Glioma , Células-Tronco Neurais , Humanos , Glioma/metabolismo , Neuroglia/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Células-Tronco Neurais/metabolismo , Microglia/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral
20.
J Biol Chem ; 298(12): 102639, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36309089

RESUMO

Succination is the spontaneous reaction between the respiratory intermediate fumarate and cellular thiols that forms stable S-(2-succino)-adducts such as S-(2-succino)cysteine (2SC). 2SC is a biomarker for conditions associated with elevated fumarate levels, including diabetes, obesity, and certain cancers, and succination likely contributes to disease progression. Bacillus subtilis has a yxe operon-encoded breakdown pathway for 2SC that involves three distinct enzymatic conversions. The first step is N-acetylation of 2SC by YxeL to form N-acetyl-2SC (2SNAC). YxeK catalyzes the oxygenation of 2SNAC, resulting in its breakdown to oxaloacetate and N-acetylcysteine, which is deacetylated by YxeP to give cysteine. The monooxygenase YxeK is key to the pathway but is rare, with close homologs occurring infrequently in prokaryote and fungal genomes. The existence of additional 2SC breakdown pathways was not known prior to this study. Here, we used comparative genomics to identify a S-(2-succino) lyase (2SL) that replaces yxeK in some yxe gene clusters. 2SL genes from Enterococcus italicus and Dickeya dadantii complement B. subtilis yxeK mutants. We also determined that recombinant 2SL enzymes efficiently break down 2SNAC into fumarate and N-acetylcysteine, can perform the reverse reaction, and have minor activity against 2SC and other small molecule thiols. The strong preferences both YxeK and 2SL enzymes have for 2SNAC indicate that 2SC acetylation is a conserved breakdown step. The identification of a second naturally occurring 2SC breakdown pathway underscores the importance of 2SC catabolism and defines a general strategy for 2SC breakdown involving acetylation, breakdown, and deacetylation.


Assuntos
Cisteína , Liases , Cisteína/metabolismo , Acetilcisteína , Compostos de Sulfidrila , Fumaratos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA