Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Radiol Prot ; 44(3)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39142296

RESUMO

In response to the International Commission on Radiological Protection, which lowered the lens equivalent dose limit, Japan lowered the lens dose limit from 150 mSv y-1to 100 mSv/5 years and 50 mSv y-1, with this new rule taking effect on 1 April 2021. DOSIRIS®is a dosimeter that can accurately measure lens dose. Herein, we investigated lens dose in interventional cardiology physicians 1 year before and after the reduction of the lens dose limit using a neck dosimeter and lens dosimeter measurements. With an increase in the number of cases, both personal dose equivalent at 0.07 mm depth [Hp(0.07), neck dosimeter] and personal dose equivalent at 3 mm depth [Hp(3), lens dosimeter] increased for most of the physicians. The Hp(3) of the lens considering the shielding effect of the Pb glasses using lens dosimeter exceeded 20 mSv y-1for two of the 14 physicians. Protection from radiation dose will become even more important in the future, as these two physicians may experience radiation dose exceeding 100 mSv/5 years. The average dose per procedure increased, but not significantly. There was a strong correlation between the neck dosimeter and lens dosimeter scores, although there was no significant change before and after the lens dose limit was lowered. This correlation was particularly strong for physicians who primarily treated patients. As such, it is possible to infer accurate lens doses from neck doses in physicians who primarily perform diagnostics. However, it is desirable to use a dosimeter that can directly measure Hp(3) because of the high lens dose.


Assuntos
Cristalino , Exposição Ocupacional , Doses de Radiação , Proteção Radiológica , Humanos , Cristalino/efeitos da radiação , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Japão , Cardiologia
2.
J Radiol Prot ; 44(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38194908

RESUMO

Cancer is a major health challenge and causes millions of deaths worldwide each year, and the incidence of lung cancer has increased. Augmented fluoroscopic bronchoscopy (AFB) procedures, which combine bronchoscopy and fluoroscopy, are crucial for diagnosing and treating lung cancer. However, fluoroscopy exposes patients and physicians to radiation, and therefore, the procedure requires careful monitoring. The National Council on Radiation Protection and Measurement and the International Commission on Radiological Protection have emphasised the importance of monitoring patient doses and ensuring occupational radiation safety. The present study evaluated radiation doses during AFB procedures, focusing on patient skin doses, the effective dose, and the personal dose equivalent to the eye lens for physicians. Skin doses were measured using thermoluminescent dosimeters. Peak skin doses were observed on the sides of the patients' arms, particularly on the side closest to the x-ray tube. Differences in the procedures and experience of physicians between the two hospitals involved in this study were investigated. AFB procedures were conducted more efficiently at Hospital A than at Hospital B, resulting in lower effective doses. Cone-beam computed tomography (CT) contributes significantly to patient effective doses because it has higher radiographic parameters. Despite their higher radiographic parameters, AFB procedures resulted in smaller skin doses than did image-guided interventional and CT fluoroscopy procedures. The effective doses differed between the two hospitals of this study due to workflow differences, with cone-beam CT playing a dominant role. No significant differences in left and right eyeHp(3) values were observed between the hospitals. For both hospitals, theHp(3) values were below the recommended limits, indicating that radiation monitoring may not be required for AFB procedures. This study provides insights into radiation exposure during AFB procedures, concerning radiation dosimetry, and safety for patients and physicians.


Assuntos
Neoplasias Pulmonares , Exposição Ocupacional , Médicos , Exposição à Radiação , Humanos , Broncoscopia , Fluoroscopia , Doses de Radiação , Neoplasias Pulmonares/diagnóstico por imagem , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise
3.
Rev. colomb. anestesiol ; 51(4)dic. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1535702

RESUMO

Introduction Anesthetists play an important role during interventional radiology procedures. Like the main operator, anesthetists may also be subject to significant radiation levels in the fluoroscopy suite. Due to its complexity, hepatic chemoembolization procedures demand high fluoroscopic times and digital subtraction angiography images, exposing patients and medical staff to high radiation doses. Objective To assess and quantify the radiation to which one anesthetist was exposed over the course of seven consecutive hepatic chemoembolization procedures, and compare it to the exposure received by the main operator. Methods Medical staff dosimetry was evaluated during seven consecutive hepatic chemoembolization procedures conducted in a private hospital in Recife (Brazil), using thermoluminiscent dosimeters placed in regions of the head and torso. Results For the seven procedures evaluated in this study, the anesthetist received, on average, absorbed doses to the glabella, left eyebrow, right eyebrow and effective dose of 142.4 ± 72 µSv, 117.3 ± 66 µSv, 137.8 ± 71 µSv and 12.4 ± 8.4 µSv, respectively. Conclusions In some cases, ocular dose and effective dose received by the anesthetist may be 4 and 4.7 times greater, respectively, when compared to the main operator. According to the results of this study, the current occupational annual dose limit to the lens of the eye of 20 mSv can be exceeded with only two hepatic chemoembolization procedures per week if adequate radiation protection conditions are not guaranteed.


Introducción El anestesiólogo desempeña un papel importante durante los procedimientos de radiología intervencionista. Al igual que el operador principal, el anestesiólogo también puede estar expuesto a niveles significativos de radiación en la sala de fluoroscopía. Debido a su complejidad, durante los procedimientos de quimioembolización hepática se deben utilizar imágenes de fluoroscopía y angiografía de sustracción digital por períodos prolongados, exponiendo a los pacientes y al personal médico a dosis elevadas de radiación. Objetivo Evaluar y cuantificar la radiación a la cual se expuso un anestesiólogo durante el transcurso de siete procedimientos consecutivos de quimioembolización hepática, y comparar con la exposición recibida por el operador principal. Métodos Evaluación de la dosimetría ocupacional durante siete procedimientos consecutivos de quimioembolización hepática realizados en un hospital privado de Recife (Brasil) por medio de dosímetros termoluminiscentes ubicados en regiones de la cabeza y el torso. Resultados Para los siete procedimientos evaluados en este estudio, el anestesiólogo recibió, en promedio, dosis absorbidas en el entrecejo, la ceja izquierda, la ceja derecha y dosis efectivas de 142,4 ± 72 µSv, 117,3 ± 66 µSv, 137,8 ± 71 µSv y 12,4 ± 8,4 µSv, respectivamente. Conclusiones En algunos casos, la dosis ocular y la dosis efectiva que recibe el anestesiólogo puede ser, respectivamente, entre 4 y 4,7 veces más alta que la que recibe el operador principal. De acuerdo con los resultados de este estudio, el límite ocupacional anual de dosis en cristalino (20 mSv) se puede superar con apenas dos procedimientos de quimioembolización hepática a la semana en caso de no garantizarse las condiciones adecuadas de protección contra la radiación.

4.
Nucl Eng Technol ; 55(2): 725-733, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37635951

RESUMO

The Korea Institute of Radiological and Medical Sciences has started a radiation epidemiological study, titled "Korean Radiation Worker Study," to evaluate the health effects of occupational exposure to radiation. As a part of this study, we investigated the methodologies and results of reconstructing organ-specific absorbed doses based on personal dose equivalent, Hp(10), reported from 1984 to 2019 for 20,605 Korean radiation workers. For the organ dose reconstruction, representative exposure scenarios (i.e., radiation energy and exposure geometry) were first determined according to occupational groups, and dose coefficients for converting Hp(10) to organ absorbed doses were then appropriately taken based on the exposure scenarios. Individual annual doses and individual cumulative doses were reconstructed for 27 organs, and the highest values were observed in the thyroid doses (on average 0.77 mGy/y and 10.47 mGy, respectively). Mean values of individual cumulative absorbed doses for the red bone marrow, colon, and lungs were 7.83, 8.78, and 8.43 mSv, respectively. Most of the organ doses were maximum for industrial radiographers, followed by nuclear power plant workers, medical workers, and other facility workers. The organ dose database established in this study will be utilized for organ-specific risk estimation in the Korean Radiation Worker Study.

5.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 78(4): 364-371, 2022 Apr 20.
Artigo em Japonês | MEDLINE | ID: mdl-35296572

RESUMO

PURPOSE: In the revised Regulation on Prevention of Ionizing Radiation Hazards (April 2020), the equivalent dose limit for the lens of the eye was lowered to "100 mSv in 5 years and 50 mSv in 1 year." It is necessary to reduce occupational exposure in the healthcare sector. The purpose of this study was to facilitate comparison with the equivalent dose limit in an endoscopic retrograde cholangiopancreatography (ERCP) examination by measuring the scattered dose in an X-ray room as an individual dose equivalent. METHODS: The scattered dose was measured by dosimeters positioned in a grid pattern in the X-ray room. The dose rate was measured with and without the use of a protective cloth (0.25 mm Pb equivalent) suspended around the X-ray tube extending to the patient. The dose reduction rate of the material was evaluated during the simulated ERCP. RESULTS: The maximum dose rate at the position of the surgeon performing an ERCP inspection in the standing position was 2.9 mSv/h (3 mm dose equivalent rate) at 150 cm from the ground. The number of ERCP examinations to comply with the equivalent dose limit of the equivalent dose of the lens of the eye without the protective cloth was 28 per year. CONCLUSION: The results of this study suggest that individual dose equivalent measurements in the X-ray clinic may facilitate comparison with the equivalent dose limit.


Assuntos
Cristalino , Exposição Ocupacional , Proteção Radiológica , Colangiopancreatografia Retrógrada Endoscópica , Humanos , Exposição Ocupacional/prevenção & controle , Doses de Radiação , Proteção Radiológica/métodos , Raios X
6.
Antioxidants (Basel) ; 9(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825731

RESUMO

The purpose of this study was to evaluate the relationship between blood redox status, dose and antioxidant dietary intake of different hospital staff groups exposed to low doses of ionizing radiation (LDIR) (Interventional Radiology and Cardiology, Radiation Oncology, and Nuclear Medicine) and non-exposed. Personal dose equivalent (from last year and cumulative), plasma antioxidant markers (total antioxidant capacity, extracellular superoxide dismutase activity, and glutathione/oxidized glutathione ratio), oxidative stress markers (nitrites and nitrates, and lipid peroxidation) and dietary intake (antioxidant capacity using ORAC values) were collected and analyzed from 28 non-exposed healthcare workers and 42 healthcare workers exposed to LDIR. Hospital staff exposed to LDIR presented a redox imbalance in blood that seems to correlate with dose. Workers from the Nuclear Medicine Unit were the most affected group with the lowest value of plasma antioxidant response and the highest value of plasma thiobarbituric acid reactive substances, TBARS (indicator of lipid peroxidation) of all four groups. Cumulative personal dose equivalent positively correlated with nitrites and negatively correlated with total antioxidant capacity in blood. The diet of healthcare workers from Nuclear Medicine Unit had higher ORAC values than the diet of non-exposed. Therefore, occupational exposure to LDIR, especially for the Nuclear Medicine Unit, seems to produce an imbalanced redox status in blood that would correlate with cumulative personal dose equivalent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA