Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18158, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103454

RESUMO

Nonlinear optics (NLO) and its applications have attracted increasing research interest in recent years owing to their contribution to the development of photonic technology. Accordingly, in this study, we investigated the NLO response of pumpkin seed oil using the spatial self-phase modulation (SSPM) method. Significant NLO characteristics have been experimentally studied at 405 nm and 532 nm continuous wave (CW) laser wavelengths, yielding second-order nonlinear refractive index ( n 2 , t h ) values of 6.54 × 10 - 5 cm 2 / W and 2.73 × 10 - 5 cm 2 / W , respectively. The findings suggest that the absorption of the material leads to higher optical nonlinearity at shorter wavelengths owing to higher thermal effects. Furthermore, we implemented a light-controlled-light system based on the spatial cross-phase modulation (SXPM) technique employing pumpkin seed oil. We successfully achieved all-optical switching by designing the 'ON' and 'OFF' modes. The results of this study can be considered for the future development of NLO applications. Moreover, our work investigates the potential of pumpkin seed oil for designing low-cost and high-efficiency NLO devices, and this contribution opens up a novel practical avenue for oil-based optical devices.

2.
J Mass Spectrom ; 55(10): e4645, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32896065

RESUMO

In this work, the parametric quadrupole resonance caused by the phase modulation of waveform potential is studied. Based on analytical and numerical description of the ion motion in the quadrupole mass filter with the phase modulation, a stability island is found with good ion optical properties such as high ion transmission efficiency (16%), high mass resolution (peak width measured at 10% of peak height, R0.1 = 6000), the required separation time (100-150 radio frequency [RF] cycles), and good peak shape of trapezoid form. Furthermore, the analysis of the frequency spectrum of the applied potential and the quadrupole mass filter (QMF) acceptance are also presented; a resonance frequency is found from this spectrum. Finally, a suitable stability X-islands with relative modulation frequency, ν = 2 ± ß , ß = 1 P , 10 ≤ P ≤ 40 , is established and studied in detail. Here, ß is the imaginary part of the characteristic exponent of stable solutions to the Mathieu equation.

3.
Int J Mol Sci ; 20(24)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817593

RESUMO

Platinum nanoparticles were synthesized in graphene oxide aqueous solution using a laser ablation technique to investigate the effect of optical linear, nonlinear and thermal properties of platinum-graphene oxide nanocomposite solution. The samples were prepared with different ablation times. The platinum nanoparticles that formed a spherical shape on the surface of graphene oxide solution were authenticated using UV-visible spectrum and transmission electron microscopy patterns. The particle size decreased with increasing ablation time, and the concentration and volume fraction of samples were increased. To obtain the optical linear, nonlinear and thermal properties of platinum-graphene oxide nanocomposite solution, UV-visible spectroscopy, Z-scan, thermal lens and photoacoustic techniques were used. Consequently, the linear and nonlinear refractive indices increased with an increase in the volume fraction of platinum nanoparticles. It was observed from the spatial self-phase modulation patterns that, the optical nonlinear property of the graphene oxide was enhanced in the presence of platinum nanoparticles, and the nonlinearity increased with an increase in the volume fraction of platinum nanoparticles inside the graphene oxide solution. The thermal diffusivity and thermal effusivity of platinum nanoparticles graphene oxide were measured using a thermal lens and photoacoustic methods, respectively. The thermal diffusivity and thermal effusivity of samples were in the range of 0.0341 × 10-5 m2/s to 0.1223 × 10-5 m2/s and 0.163 W s1/2 cm-2 K-1 to 0.3192 W s1/2 cm-2 K-1, respectively. Consequently, the platinum enhanced the optical and thermal properties of graphene oxide.


Assuntos
Grafite/química , Nanopartículas Metálicas/química , Platina/química , Terapia a Laser , Técnicas Fotoacústicas
4.
Nano Lett ; 17(1): 445-452, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27935318

RESUMO

All forms of light manipulation rely on light-matter interaction, the primary mechanism of which is the modulation of its electromagnetic fields by the localized electromagnetic fields of atoms. One of the important factors that influence the strength of interaction is the polarization of the electromagnetic field. The generation and manipulation of light polarization have been traditionally accomplished with bulky optical components such as waveplates, polarizers, and polarization beam splitters that are optically thick. The miniaturization of these devices is highly desirable for the development of a new class of compact, flat, and broadband optical components that can be integrated together on a single photonics chip. Here we demonstrate, for the first time, a reflective metasurface polarization generator (MPG) capable of producing light beams of any polarizations all from a linearly polarized light source with a single optically thin chip. Six polarization light beams are achieved simultaneously including four linear polarizations along different directions and two circular polarizations, all conveniently separated into different reflection angles. With the Pancharatnam-Berry phase-modulation method, the MPG sample was fabricated with aluminum as the plasmonic metal instead of the conventional gold or silver, which allowed for its broadband operation covering the entire visible spectrum. The versatility and compactness of the MPG capable of transforming any incident wave into light beams of arbitrary polarizations over a broad spectral range are an important step forward in achieving a complete set of flat optics for integrated photonics with far-reaching applications.

5.
J Fluoresc ; 25(5): 1245-50, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26179074

RESUMO

Time-resolved microspectrofluorimetry and fluorescence microscopy imaging-two complementary fluorescence techniques-provide important information about the intracellular distribution, level of uptake and binding/interactions inside living cell of the labeled molecule of interest. They were employed to monitor the "fate" of AS1411 aptamer labeled by ATTO 425 in human living cells. Confocal microspectrofluorimeter adapted for time-resolved intracellular fluorescence measurements by using a phase-modulation principle with homodyne data acquisition was employed to obtain emission spectra and to determine fluorescence lifetimes in U-87 MG tumor brain cells and Hs68 non-tumor foreskin cells. Acquired spectra from both the intracellular space and the reference solutions were treated to observe the aptamer localization and its interaction with biological structures inside the living cell. The emission spectra and the maximum emission wavelengths coming from the cells are practically identical, however significant lifetime lengthening was observed for tumor cell line in comparison to non-tumor one.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Espaço Intracelular/metabolismo , Microscopia de Fluorescência/métodos , Oligodesoxirribonucleotídeos/metabolismo , Espectrometria de Fluorescência/métodos , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Espaço Intracelular/genética , Oligodesoxirribonucleotídeos/genética , Fatores de Tempo
6.
Biophys Physicobiol ; 12: 87-102, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27493858

RESUMO

Investigation of the rotational motion of a fluorescent probe tethered to a protein helps to elucidate the local properties of the solvent and protein near the conjugation site of the probe. In this study, we have developed an instrument for frequency-domain fluorescence (FDF) anisotropy measurements, and studied how the local properties around a protein, actin, can be elucidated from the rotational motion of a dye tethered to actin. Rhodamine 6G (R6G) was attached to Cys-374 using newly-synthesized R6G-maleimide with three different oligo(ethylene glycol) (OEG) linker lengths. The time-resolved anisotropy decay of R6G tethered to G-actin was revealed to be a combination of the two modes of the wobbling motion of R6G and the tumbling motion of G-actin. The rotational diffusion coefficient (RDC) of R6G wobbling was ~0.1 ns(-1) at 20°C and increased with OEG linker length. The use of the three R6G-actin conjugates of different linker lengths was useful to not only figure out the linker length dependence of the rotational motion of R6G but also validate the analyses. In the presence of a cosolvent of glycerol, although the tumbling motion of G-actin was retarded in response to the bulk viscosity, the wobbling motion of R6G tethered to actin exhibited an increase of RDC as glycerol concentration increased. This finding suggests an intricate relationship between the fluid properties of the bulk solvent and the local environment around actin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA