Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 714
Filtrar
1.
J Cell Sci ; 137(19)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39404604

RESUMO

Cells naturally produce vesicles that bud from different lipid membranes using dedicated molecular machineries. Enveloped RNA viruses, including human immunodeficiency virus type 1 (HIV-1), also generate particles that bud from host cell membranes by hijacking cellular factors and signaling pathways similar to those involved in the budding of extracellular vesicles. HIV-1 buds from the host cell plasma membrane mainly via the self-assembly of Gag, a structural protein. Gag is a polyprotein that forms assembly complexes containing viral genomic RNA (gRNA), host cell lipids and proteins. HIV-1 Gag binds and segregates host cell plasma membrane lipids while self-assembling simultaneously on the gRNA and the plasma membrane. This self-assembly causes membrane bending and formation of a new viral particle with the help of host cell proteins, likely including cortical actin-associated factors. However, it is unclear whether the energy of Gag self-assembly is sufficient to generate new HIV-1 particles. In this Review, we discuss these processes in the light of the past and recent virology literature, incorporating lessons from studies on the quantitative biophysics of viral self-assembly, and explore how Gag might reorganize the plasma membrane and divert host cell membrane curving proteins and cortical actin-related factors to achieve particle assembly and budding.


Assuntos
Membrana Celular , HIV-1 , Montagem de Vírus , HIV-1/metabolismo , HIV-1/fisiologia , Humanos , Montagem de Vírus/fisiologia , Membrana Celular/metabolismo , Membrana Celular/virologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Vírion/metabolismo , Biofísica , Fenômenos Biofísicos
2.
Cancers (Basel) ; 16(19)2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39409945

RESUMO

Background: Lung cancer is one of the leading causes of cancer-related mortality. Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) differ in aggressiveness, proliferation speed, metastasis propensity, and prognosis. Since tumor cells notably change lipid metabolism, especially phospholipids and fatty acids (FA), this study aimed to identify FA alterations in lung cancer tissues. Methods: Our study included patients with newly diagnosed, histologically confirmed SCLC (n = 27) and NSCLC (n = 37). Samples were collected from both malignant and healthy tissues from each patient, providing they were within subject design. Results: In both NSCLC and SCLC tumor tissues, FA contents were shifted toward pro-inflammatory profiles, with increased levels of some individual n-6 polyunsaturated FA (PUFA), particularly arachidonic acid, and elevated activity of Δ6 desaturase. Compared to healthy counterparts, lower levels of alpha-linolenic acid (18:3n-3) and total saturated FA (SFA) were found in NSCLC, while decreased levels of linoleic acid (18:2n-6) and all individual n-3 FA were found in SCLC tissue in comparison to the healthy tissue control. When mutually compared, SCLC tissue had higher levels of total SFA, especially stearic acid, while higher levels of linoleic acid, total PUFA, and n-3 and n-6 PUFA were detected in NSCLC. Estimated activities of Δ6 desaturase and elongase were higher in SCLC than in NSCLC. Conclusions: Our findings indicate a notable impairment of lipid metabolism in two types of lung cancer tissues. These type-specific alterations may be associated with differences in their progression and also point out different therapeutic targets.

3.
Cureus ; 16(8): e68180, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39347133

RESUMO

Phytochemicals are compounds found in plants that have various biological activities and health benefits. Although phytochemicals have diverse therapeutic applications, they confront several challenges, such as poor solubility, instability, and low bioavailability. Phytosomes are used to overcome those challenges. The phytosome is a complex of phytochemicals and phospholipids that transports the drug to the target site, thereby increasing phytochemical absorption and bioavailability. The present study focuses on phytosome preparation methods and evaluation parameters, as well as the role of phytosomes in various ailments such as COVID-19, pulmonary fibrosis, asthma, migraine, arthritis, obesity, neuroprotective, antioxidant, anti-inflammatory, cancer, diabetes, metabolic syndrome, hyperlipidemic, and antimicrobial, which demonstrates phytosome complexes are more potent when compared to free extracts. Due to poor absorption and metabolism, phytoconstituents may not be effective in their free form. Phytosomes make phytoconstituents more bioavailable, stable, and effective. It also discusses recent formulations of phytosomes that can act as an effective or alternative regimen for various health conditions.

4.
Atherosclerosis ; : 118569, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39227208

RESUMO

Phospholipids (PL) are major components of cellular membranes and changes in PL metabolism have been associated with the pathogenesis of numerous diseases. Lysophosphatidylcholine (LPC) in particular, is a comparably abundant component of oxidatively damaged tissues. LPC originates from the cleavage of phosphatidylcholine (PC) by phospholipase A2 or the reaction of lipids with reactive oxygen species (ROS) such as HOCl. Another explanation of increased LPC concentration is the decreased re-acylation of LPC into PC. While there are also several other lysophospholipids, LPC is the most abundant lysophospholipid in mammals and will therefore be the focus of this review. LPC is involved in many physiological processes. It induces the migration of lymphocytes, fostering the production of pro-inflammatory compounds by inducing oxidative stress. LPC also "signals" via G protein-coupled and Toll-like receptors and has been implicated in the development of different diseases. However, LPCs are not purely "bad": this is reflected by the fact that the concentration and fatty acyl composition of LPC varies under different conditions, in plasma of healthy and diseased individuals, in tissues and different tumors. Targeting LPC and lipid metabolism and restoring homeostasis might be a potential therapeutic method for inflammation-related diseases.

5.
Proc Natl Acad Sci U S A ; 121(35): e2322422121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39178227

RESUMO

Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) is an immediate early gene that plays a vital role in learning and memory. Arc protein has structural and functional properties similar to viral Group-specific antigen (Gag) protein and mediates the intercellular RNA transfer through virus-like capsids. However, the regulators and secretion pathway through which Arc capsids maneuver cargos are unclear. Here, we identified that phosphatidylinositol-3-phosphate (PI3P) mediates Arc capsid assembly and secretion through the endosomal-multivesicular body (MVB) pathway. Indeed, reconstituted Arc protein preferably binds to PI3P. In HEK293T cells, Arc forms puncta that colocalize with FYVE, an endosomal PI3P marker, as well as Rab5 and CD63, early endosomal and MVB markers, respectively. Superresolution imaging resolves Arc accumulates within the intraluminal vesicles of MVB. CRISPR double knockout of RalA and RalB, crucial GTPases for MVB biogenesis and exocytosis, severely reduces the Arc-mediated RNA transfer efficiency. RalA/B double knockdown in cultured rat cortical neurons increases the percentage of mature dendritic spines. Intake of extracellular vesicles purified from Arc-expressing wild-type, but not RalA/B double knockdown, cells in mouse cortical neurons reduces their surface GlutA1 levels. These results suggest that unlike the HIV Gag, whose membrane targeting requires interaction with plasma-membrane-specific phosphatidyl inositol (4,5) bisphosphate (PI(4,5)P2), the assembly of Arc capsids is mediated by PI3P at endocytic membranes. Understanding Arc's secretion pathway helps gain insights into its role in intercellular cargo transfer and highlights the commonality and distinction of trafficking mechanisms between structurally resembled capsid proteins.


Assuntos
Proteínas do Citoesqueleto , Proteínas do Tecido Nervoso , Fosfatos de Fosfatidilinositol , Humanos , Animais , Fosfatos de Fosfatidilinositol/metabolismo , Células HEK293 , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Corpos Multivesiculares/metabolismo , Capsídeo/metabolismo , Camundongos , Ratos , Endossomos/metabolismo
6.
J Lipid Res ; 65(10): 100631, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39182604

RESUMO

Sphingosine kinases (SphKs), enzymes that produce the bioactive lipids dihydrosphingosine 1-phosphate (dhS1P) and sphingosine 1-phosphate (S1P), are associated with various diseases, including cancer and infections. For this reason, a number of SphK inhibitors have been developed. Although off-target effects have been described for selected agents, SphK inhibitors are mostly used in research without monitoring the effects on the sphingolipidome. We have now investigated the effects of seven commonly used SphK inhibitors (5c, ABC294640 (opaganib), N,N-dimethylsphingosine, K145, PF-543, SLM6031434, and SKI-II) on profiles of selected sphingolipids in Chang, HepG2, and human umbilical vein endothelial cells. While we observed the expected (dh)S1P reduction for N,N-dimethylsphingosine, PF-543, SKI-II, and SLM6031434, 5c showed hardly any effect. Remarkably, for K145 and ABC294640, both reported to be specific for SphK2, we observed dose-dependent strong increases in dhS1P and S1P across cell lines. Compensatory effects of SphK1 could be excluded, as this observation was also made in SphK1-deficient HK-2 cells. Furthermore, we observed effects on dihydroceramide desaturase activity for all inhibitors tested, as has been previously noted for ABC294640 and SKI-II. In additional mechanistic studies, we investigated the massive increase of dhS1P and S1P after short-term cell treatment with ABC294640 and K145 in more detail. We found that both compounds affect sphingolipid de novo synthesis, with 3-ketodihydrosphingosine reductase and dihydroceramide desaturase as their targets. Our study indicates that none of the seven SphK inhibitors tested was free of unexpected on-target and/or off-target effects. Therefore, it is important to monitor cellular sphingolipid profiles when SphK inhibitors are used in mechanistic studies.

7.
J Cosmet Dermatol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169540

RESUMO

BACKGROUND: Dietary marine omega-3 fatty acids and phospholipids have individually shown favorable effects on skin barrier function. Krill oil offers a combination of omega-3 in phospholipid form which might enhance the efficacy in supporting skin health. AIMS: The aim was to investigate the impact of two different doses of krill oil on skin transepidermal water loss (TEWL) in healthy adults. Secondary outcomes were skin hydration, elasticity and the omega-3 index. METHODS: Two randomized, double-blind, placebo-controlled, pilot studies were conducted in healthy adults with a baseline TEWL of >10 and ≤24.9 g/m2/h. In study 1, 51 participants consumed 1 g of krill oil or placebo daily. In study 2, 50 participants consumed 2 g of krill oil or placebo daily. The outcomes were assessed at baseline, 6 and 12 weeks. RESULTS: The krill oil supplemented groups significantly increased their omega-3 index versus placebo in both studies. Furthermore, the krill oil groups in both studies showed statistically significant beneficial reductions in TEWL (from 14.47 ± 3.65 to 13.83 ± 3.78 in study 1 and from 14.25 ± 3.21 to 13.02 ± 2.76 in study 2) and increases in hydration and elasticity when compared to placebo. There were significant linear relationships between changes in the omega-3 index and changes in TEWL, hydration and elasticity in both studies. CONCLUSIONS: Daily oral supplementation with 1 and 2 g of krill oil showed significant and dose-dependent improvements in skin TEWL, hydration, and elasticity compared to placebo that correlated with changes in the omega-3 index.

8.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062855

RESUMO

Inflammation is a driving force of tendinopathy. The oxidation of phospholipids by free radicals is a consequence of inflammatory reactions and is an important indicator of tissue damage. Here, we have studied the impact of oxidized phospholipids (OxPAPC) on the function of human tenocytes. We observed that treatment with OxPAPC did not alter the morphology, growth and capacity to produce collagen in healthy or diseased tenocytes. However, since OxPAPC is a known modulator of the function of immune cells, we analyzed whether OxPAPC-treated immune cells might influence the fate of tenocytes. Co-culture of tenocytes with immature, monocyte-derived dendritic cells treated with OxPAPC (Ox-DCs) was found to enhance the proliferation of tenocytes, particularly those from diseased tendons. Using transcriptional profiling of Ox-DCs, we identified amphiregulin (AREG), a ligand for EGFR, as a possible mediator of this proliferation enhancing effect, which we could confirm using recombinant AREG. Of note, diseased tenocytes were found to express higher levels of EGFR compared to tenocytes isolated from healthy donors and show a stronger proliferative response upon co-culture with Ox-DCs, as well as AREG treatment. In summary, we identify an AREG-EGFR axis as a mediator of a DC-tenocyte crosstalk, leading to increased tenocyte proliferation and possibly tendon regeneration.


Assuntos
Anfirregulina , Proliferação de Células , Técnicas de Cocultura , Células Dendríticas , Oxirredução , Fosfolipídeos , Tenócitos , Humanos , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Anfirregulina/metabolismo , Anfirregulina/genética , Proliferação de Células/efeitos dos fármacos , Tenócitos/metabolismo , Tenócitos/citologia , Tenócitos/efeitos dos fármacos , Fosfolipídeos/metabolismo , Receptores ErbB/metabolismo , Células Cultivadas , Masculino , Feminino , Pessoa de Meia-Idade
9.
Front Pharmacol ; 15: 1406493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953111

RESUMO

Background: Ezetimibe, which lowers cholesterol by blocking the intestinal cholesterol transporter Niemann-Pick C1 like 1, is reported to reduce hepatic steatosis in humans and animals. Here, we demonstrate the changes in hepatic metabolites and lipids and explain the underlying mechanism of ezetimibe in hepatic steatosis. Methods: We fed Otsuka Long-Evans Tokushima Fatty (OLETF) rats a high-fat diet (60 kcal % fat) with or vehicle (control) or ezetimibe (10 mg kg-1) via stomach gavage for 12 weeks and performed comprehensive metabolomic and lipidomic profiling of liver tissue. We used rat liver tissues, HepG2 hepatoma cell lines, and siRNA to explore the underlying mechanism. Results: In OLETF rats on a high-fat diet, ezetimibe showed improvements in metabolic parameters and reduction in hepatic fat accumulation. The comprehensive metabolomic and lipidomic profiling revealed significant changes in phospholipids, particularly phosphatidylcholines (PC), and alterations in the fatty acyl-chain composition in hepatic PCs. Further analyses involving gene expression and triglyceride assessments in rat liver tissues, HepG2 hepatoma cell lines, and siRNA experiments unveiled that ezetimibe's mechanism involves the upregulation of key phospholipid biosynthesis genes, CTP:phosphocholine cytidylyltransferase alpha and phosphatidylethanolamine N-methyl-transferase, and the phospholipid remodeling gene lysophosphatidylcholine acyltransferase 3. Conclusion: This study demonstrate that ezetimibe improves metabolic parameters and reduces hepatic fat accumulation by influencing the composition and levels of phospholipids, specifically phosphatidylcholines, and by upregulating genes related to phospholipid biosynthesis and remodeling. These findings provide valuable insights into the molecular pathways through which ezetimibe mitigates hepatic fat accumulation, emphasizing the role of phospholipid metabolism.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38996385

RESUMO

Health care workers have faced a significant challenge because of the rise in cancer incidence around the world during the past 10 years. Among various forms of malignancy skin cancer is most common, so there is need for the creation of an efficient and safe skin cancer treatment that may offer targeted and site-specific tumor penetration, and reduce unintended systemic toxicity. Nanocarriers have thus been employed to get around the issues with traditional anti-cancer drug delivery methods. Invasomes are lipid-based nanovesicles having small amounts of terpenes and ethanol or a mixture of terpenes and penetrate the skin more effectively. Compared to other lipid nanocarriers, invasomes penetrate the skin at a substantially faster rate. Invasomes possess a number of advantages, including improved drug effectiveness, higher compliance, patient convenience, advanced design, multifunctionality, enhanced targeting capabilities, non-invasive delivery methods, potential for combination therapies, and ability to overcome biological barriers,. These attributes position invasomes as a promising and innovative platform for the future of cancer treatment. The current review provides insights into invasomes, with a fresh organizational scheme and incorporates the most recent cancer research, including their composition, historical development and methods of preparation, the penetration mechanism involving effect of various formulation variables and analysis of anticancer mechanism and the application of invasomes.

11.
Cell Metab ; 36(8): 1745-1763.e6, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851189

RESUMO

Impaired self-renewal of Kupffer cells (KCs) leads to inflammation in metabolic dysfunction-associated steatohepatitis (MASH). Here, we identify neutrophil cytosolic factor 1 (NCF1) as a critical regulator of iron homeostasis in KCs. NCF1 is upregulated in liver macrophages and dendritic cells in humans with metabolic dysfunction-associated steatotic liver disease and in MASH mice. Macrophage NCF1, but not dendritic cell NCF1, triggers KC iron overload, ferroptosis, and monocyte-derived macrophage infiltration, thus aggravating MASH progression. Mechanistically, elevated oxidized phospholipids induced by macrophage NCF1 promote Toll-like receptor (TLR4)-dependent hepatocyte hepcidin production, leading to increased KC iron deposition and subsequent KC ferroptosis. Importantly, the human low-functional polymorphic variant NCF190H alleviates KC ferroptosis and MASH in mice. In conclusion, macrophage NCF1 impairs iron homeostasis in KCs by oxidizing phospholipids, triggering hepatocyte hepcidin release and KC ferroptosis in MASH, highlighting NCF1 as a therapeutic target for improving KC fate and limiting MASH progression.


Assuntos
Ferroptose , Células de Kupffer , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio , Ferroptose/genética , Células de Kupffer/metabolismo , Animais , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Ferro/metabolismo , NADPH Oxidases/metabolismo , Macrófagos/metabolismo , Hepcidinas/metabolismo , Hepcidinas/genética
12.
Clin Exp Metastasis ; 41(3): 199-217, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879842

RESUMO

Cancer-related fatigue, pain, gastrointestinal and other symptoms are among the most familiar complaints in practically every type and stage of cancer, especially metastatic cancers. Such symptoms are also related to cancer oxidative stress and the damage instigated by cancer cytotoxic therapies to cellular membranes, especially mitochondrial membranes. Cancer cytotoxic therapies (chemotherapy and radiotherapy) often cause adverse symptoms and induce patients to terminate their anti-neoplastic regimens. Cancer-related fatigue, pain and other symptoms and the adverse effects of cancer cytotoxic therapies can be safely moderated with oral Membrane Lipid Replacement (MLR) glycerolphospholipids and mitochondrial cofactors, such as coenzyme Q10. MLR provides essential membrane lipids and precursors to maintain mitochondrial and other cellular membrane functions and reduces fatigue, pain, gastrointestinal, inflammation and other symptoms. In addition, patients with a variety of chronic symptoms benefit from MLR supplements, and MLR also has the ability to enhance the bioavailability of nutrients and slowly remove toxic, hydrophobic molecules from cells and tissues.


Assuntos
Fadiga , Lipídeos de Membrana , Mitocôndrias , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/complicações , Mitocôndrias/efeitos dos fármacos , Fadiga/etiologia , Fadiga/induzido quimicamente , Lipídeos de Membrana/metabolismo , Antineoplásicos/efeitos adversos , Ubiquinona/análogos & derivados , Ubiquinona/uso terapêutico , Dor do Câncer/tratamento farmacológico , Dor do Câncer/etiologia
13.
ACS Appl Mater Interfaces ; 16(24): 30755-30765, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38847111

RESUMO

In recent years, enveloped micro-nanobubbles have garnered significant attention in research due to their commendable stability, biocompatibility, and other notable properties. Currently, the preparation methods of enveloped micro-nanobubbles have limitations such as complicated preparation process, large bubble size, wide distribution range, low yield, etc. There exists an urgent demand to devise a simple and efficient method for the preparation of enveloped micro-nanobubbles, ensuring both high concentration and a uniform particle size distribution. Magnetic lipid bubbles (MLBs) are a multifunctional type of enveloped micro-nanobubble combining magnetic nanoparticles with lipid-coated bubbles. In this study, MLBs are prepared simply and efficiently by a magneto internal heat bubble generation process based on the interfacial self-assembly of iron oxide nanoparticles induced by the thermogenic effect in an alternating magnetic field. The mean hydrodynamic diameter of the MLBs obtained was 384.9 ± 8.5 nm, with a polydispersity index (PDI) of 0.248 ± 0.021, a zeta potential of -30.5 ± 1.0 mV, and a concentration of (7.92 ± 0.46) × 109 bubbles/mL. Electron microscopy results show that the MLBs have a regular spherical stable core-shell structure. The superparamagnetic iron oxide nanoparticles (SPIONs) and phospholipid layers adsorbed around the spherical gas nuclei of the MLBs, leading the particles to demonstrate commendable superparamagnetic and magnetic properties. In addition, the effects of process parameters on the morphology of MLBs, including phospholipid concentration, phospholipid proportiona, current intensity, magnetothermal time, and SPION concentration, were investigated and discussed to achieve controlled preparation of MLBs. In vitro imaging results reveal that the higher the concentration of MLBs loaded with iron oxide nanoparticles, the better the in vitro ultrasound (US) imaging and magnetic resonance imaging (MRI) results. This study proves that the magneto internal heat bubble generation process is a simple and efficient technique for preparing MLBs with high concentration, regular structure, and commendable properties. These findings lay a robust foundation for the mass production and application of enveloped micro-nanobubbles, particularly in biomedical fields and other related domains.


Assuntos
Fosfolipídeos , Fosfolipídeos/química , Tamanho da Partícula , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas de Magnetita/química , Gases/química , Microbolhas , Campos Magnéticos
14.
Cancers (Basel) ; 16(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893234

RESUMO

This review delves into the enzymatic processes governing the initial stages of glycerophospholipid (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) and triacylglycerol synthesis. The key enzymes under scrutiny include GPAT and AGPAT. Additionally, as most AGPATs exhibit LPLAT activity, enzymes participating in the Lands cycle with similar functions are also covered. The review begins by discussing the properties of these enzymes, emphasizing their specificity in enzymatic reactions, notably the incorporation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid and docosahexaenoic acid (DHA) into phospholipids. The paper sheds light on the intricate involvement of these enzymes in various diseases, including obesity, insulin resistance, and cancer. To underscore the relevance of these enzymes in cancer processes, a bioinformatics analysis was conducted. The expression levels of the described enzymes were correlated with the overall survival of patients across 33 different types of cancer using the GEPIA portal. This review further explores the potential therapeutic implications of inhibiting these enzymes in the treatment of metabolic diseases and cancer. By elucidating the intricate enzymatic pathways involved in lipid synthesis and their impact on various pathological conditions, this paper contributes to a comprehensive understanding of these processes and their potential as therapeutic targets.

15.
BMC Microbiol ; 24(1): 224, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926818

RESUMO

Multi-drug-resistant Staphylococcus aureus infections necessitate novel antibiotic development. D-3263, a transient receptor potential melastatin member 8 (TRPM8) agonist, has potential antineoplastic properties. Here, we reported the antibacterial and antibiofilm activities of D-3263. Minimum inhibitory concentrations (MICs) against S. aureus, Enterococcus faecalis and E. faecium were ≤ 50 µM. D-3263 exhibited bactericidal effects against clinical methicillin-resistant S. aureus (MRSA) and E. faecalis strains at 4× MIC. Subinhibitory D-3263 concentrations effectively inhibited S. aureus and E. faecalis biofilms, with higher concentrations also clearing mature biofilms. Proteomic analysis revealed differential expression of 29 proteins under 1/2 × MIC D-3263, influencing amino acid biosynthesis and carbohydrate metabolism. Additionally, D-3263 enhanced membrane permeability of S. aureus and E. faecalis. Bacterial membrane phospholipids phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) dose-dependently increased D-3263 MICs. Overall, our data suggested that D-3263 exhibited potent antibacterial and antibiofilm activities against S. aureus by targeting the cell membrane.


Assuntos
Antibacterianos , Biofilmes , Enterococcus faecalis , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteômica , Humanos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos
16.
Front Microbiol ; 15: 1404328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841066

RESUMO

The composition of membrane lipids varies in a number of ways as adjustment to growth conditions. Variations in head group composition and carbon skeleton and degree of unsaturation of glycerol-bound acyl or alkyl chains results in a high structural complexity of the lipidome of bacterial cells. We studied the lipidome of the mesophilic, sulfate-reducing bacterium, Desulfatibacillum alkenivorans strain PF2803T by ultra-high-pressure liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-HRMSn). This anaerobic bacterium has been previously shown to produce high amounts of mono-and di-alkyl glycerol ethers as core membrane lipids. Our analyses revealed that these core lipids occur with phosphatidylethanomamine (PE) and phosphatidylglycerol (PG) head groups, representing each approximately one third of the phospholipids. The third class was a novel group of phospholipids, i.e., cardiolipins (CDLs) containing one (monoether/triester) to four (tetraether) ether-linked saturated straight-chain or methyl-branched alkyl chains. Tetraether CDLs have been shown to occur in archaea (with isoprenoid alkyl chains) but have not been previously reported in the bacterial Domain. Structurally related CDLs with one or two alkyl/acyl chains missing, so-called monolyso-and dilyso-CDLs, were also observed. The potential biosynthetic pathway of these novel CDLs was investigated by examining the genome of D. alkenivorans. Three CDL synthases were identified; one catalyzes the condensation of two PGs, the other two are probably involved in the condensation of a PE with a PG. A heterologous gene expression experiment showed the in vivo production of dialkylglycerols upon anaerobic expression of the glycerol ester reductase enzyme of D. alkenivorans in E. coli. Reduction of the ester bonds probably occurs first at the sn-1 and subsequently at the sn-2 position after the formation of PEs and PGs.

17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(6): 159514, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795827

RESUMO

Activating mutations in the CTNNB1 gene encoding ß-catenin are among the most frequently observed oncogenic alterations in hepatocellular carcinoma (HCC). Profound alterations in lipid metabolism, including increases in fatty acid oxidation and transformation of the phospholipidome, occur in HCC with CTNNB1 mutations, but it is unclear what mechanisms give rise to these changes. We employed untargeted lipidomics and targeted isotope tracing to measure phospholipid synthesis activity in an inducible human liver cell line expressing mutant ß-catenin, as well as in transgenic zebrafish with activated ß-catenin-driven HCC. In both models, activated ß-catenin expression was associated with large changes in the lipidome including conserved increases in acylcarnitines and ceramides and decreases in triglycerides. Lipid isotope tracing analysis in human cells revealed a reduction in phosphatidylcholine (PC) production rates as assayed by choline incorporation. We developed lipid isotope tracing analysis for zebrafish tumors and observed reductions in phosphatidylcholine synthesis by both the CDP-choline and PEMT pathways. The observed changes in the ß-catenin-driven HCC phospholipidome suggest that zebrafish can recapitulate conserved features of HCC lipid metabolism and may serve as a model for identifying future HCC-specific lipid metabolic targets.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfatidilcolinas , Peixe-Zebra , beta Catenina , beta Catenina/metabolismo , beta Catenina/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Humanos , Animais , Fosfatidilcolinas/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metabolismo dos Lipídeos/genética , Animais Geneticamente Modificados , Fosfolipídeos/metabolismo , Linhagem Celular Tumoral , Lipidômica/métodos
18.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791101

RESUMO

Many studies have shown that melatonin (an indoleamine) is an important molecule in plant physiology. It is known that this indoleamine is crucial during plant stress responses, especially by counteracting secondary oxidative stress (efficient direct and indirect antioxidant) and switching on different defense plant strategies. In this report, we present exogenous melatonin's potential to protect lipid profile modification and membrane integrity in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) cell culture exposed to lead. There are some reports of the positive effect of melatonin on animal cell membranes; ours is the first to report changes in the lipid profile in plant cells. The experiments were performed in the following variants: LS: cells cultured on unmodified LS medium-control; (ii) MEL: BY-2 cells cultured on LS medium with melatonin added from the beginning of culture; (iii) Pb: BY-2 cells cultured on LS medium with Pb2+ added on the 4th day of culture; (iv) MEL+Pb: BY-2 cells cultured on LS medium with melatonin added from the start of culture and stressed with Pb2+ added on the 4th day of culture. Lipidomic analysis of BY-2 cells revealed the presence of 40 different phospholipids. Exposing cells to lead led to the overproduction of ROS, altered fatty acid composition and increased PLD activity and subsequently elevated the level of phosphatidic acid at the cost of dropping the phosphatidylcholine. In the presence of lead, double-bond index elevation, mainly by higher quantities of linoleic (C18:2) and linolenic (C18:3) acids in the log phase of growth, was observed. In contrast, cells exposed to heavy metal but primed with melatonin showed more similarities with the control. Surprisingly, the overproduction of ROS caused of lipid peroxidation only in the stationary phase of growth, although considerable changes in lipid profiles were observed in the log phase of growth-just 4 h after lead administration. Our results indicate that the pretreatment of BY-2 with exogenous melatonin protected tobacco cells against membrane dysfunctions caused by oxidative stress (lipid oxidation), but also findings on a molecular level suggest the possible role of this indoleamine in the safeguarding of the membrane lipid composition that limited lead-provoked cell death. The presented research indicates a new mechanism of the defense strategy of plant cells generated by melatonin.


Assuntos
Chumbo , Melatonina , Nicotiana , Estresse Oxidativo , Fosfolipídeos , Melatonina/farmacologia , Nicotiana/metabolismo , Nicotiana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeos/metabolismo , Chumbo/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipidômica/métodos , Linhagem Celular , Células Vegetais/metabolismo , Células Vegetais/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos
19.
Biochem Biophys Res Commun ; 709: 149806, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38579619

RESUMO

Differential Scanning Calorimetry (DSC) is a central technique in investigating drug - membrane interactions, a critical component of pharmaceutical research. DSC measures the heat difference between a sample of interest and a reference as a function of temperature or time, contributing essential knowledge on the thermally induced phase changes in lipid membranes and how these changes are affected by incorporating pharmacological substances. The manuscript discusses the use of phospholipid bilayers, which can form structures like unilamellar and multilamellar vesicles, providing a simplified yet representative membrane model to investigate the complex dynamics of how drugs interact with and penetrate cellular barriers. The manuscript consolidates data from various studies, providing a comprehensive understanding of the mechanisms underlying drug - membrane interactions, the determinants that influence these interactions, and the crucial role of DSC in elucidating these components. It further explores the interactions of specific classes of drugs with phospholipid membranes, including non-steroidal anti-inflammatory drugs, anticancer agents, natural products with antioxidant properties, and Alzheimer's disease therapeutics. The manuscript underscores the critical importance of DSC in this field and the need for continued research to improve our understanding of these interactions, acting as a valuable resource for researchers.


Assuntos
Antineoplásicos , Bicamadas Lipídicas , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas/química , Fosfolipídeos/química , Membranas Artificiais , Lipossomos/química
20.
AAPS PharmSciTech ; 25(5): 91, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664316

RESUMO

Addressing poor solubility and permeability issues associated with synthetic drugs and naturally occurring active compounds is crucial for improving bioavailability. This review explores the potential of phospholipid complex formulation technology to overcome these challenges. Phospholipids, as endogenous molecules, offer a viable solution, with drugs complexed with phospholipids demonstrating a similar absorption mechanism. The non-toxic and biodegradable nature of the phospholipid complex positions it as an ideal candidate for drug delivery. This article provides a comprehensive exploration of the mechanisms underlying phospholipid complexes. Special emphasis is placed on the solvent evaporation method, with meticulous scrutiny of formulation aspects such as the phospholipid ratio to the drug and solvent. Characterization techniques are employed to understand structural and functional attributes. Highlighting the adaptability of the phospholipid complex, the review discusses the loading of various nanoformulations and emulsion systems. These strategies aim to enhance drug delivery and efficacy in various malignancies, including breast, liver, lung, cervical, and pancreatic cancers. The broader application of the drug phospholipid complex is showcased, emphasizing its adaptability in diverse oncological settings. The review not only explores the mechanisms and formulation aspects of phospholipid complexes but also provides an overview of key clinical studies and patents. These insights contribute to the intellectual and translational advancements in drug phospholipid complexes.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Neoplasias , Fosfolipídeos , Fosfolipídeos/química , Humanos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Solubilidade , Animais , Química Farmacêutica/métodos , Disponibilidade Biológica , Emulsões/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA