Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Chem Biol Drug Des ; 104(3): e14623, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39279715

RESUMO

Hepatocellular carcinoma (HCC) is a significant global health concern. However, there are limited effective treatments available for it. The use of natural products in the management and treatment of HCC is gaining more attention. Baicalein is a flavonoid compound that has been reported to have antitumor activities in HCC. However, the direct binding targets of baicalein are still unknown. Therefore, we used the DNA-programmed affinity labeling method to identify the target of baicalein and validated its function in HCC cells. We set blank and competitive DNA probes as negative controls. The results showed that baicalein had 136 binding targets, of which 13 targets were differently expressed in HCC tissues. The enriched cellular process of these targets was apoptosis, which involved MAPK9. We tested the binding affinity of baicalein with MAPK9 as 89.7 nM (Kd) by surface plasmon resonance and analyzed the binding sites by virtual docking. Notably, the binding of baicalein with MAPK9 increased the protein levels of MAPK9 itself and the related downstream apoptosis signaling, triggering the apoptosis of HCC cells. However, the inhibitor of MAPK9, SP600125, blocked the baicalein-induced apoptosis, and the amounts of MAPK9 and downstream molecules were also decreased, indicating that baicalein acted through MAPK9 to induce apoptosis of HCC cells. In conclusion, we used the DNA-programmed affinity labeling method to identify the direct-binding target MAPK9 of baicalein and validated its function in baicalein-induced apoptosis of HCC cells, which would be helpful to understand and use baicalein in HCC therapy.


Assuntos
Apoptose , Carcinoma Hepatocelular , Flavanonas , Neoplasias Hepáticas , Simulação de Acoplamento Molecular , Humanos , Antracenos/farmacologia , Antracenos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Sítios de Ligação , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Flavanonas/farmacologia , Flavanonas/química , Flavanonas/metabolismo , Células Hep G2 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Ligação Proteica
2.
Biomolecules ; 14(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39062499

RESUMO

Chemical proteomics using biotin probes of natural products have significantly advanced our understanding of molecular targets and therapeutic potential. This review highlights recent progress in the application of biotin probes of homoisoflavonoids for identifying binding proteins and elucidating mechanisms of action. Notably, homoisoflavonoids exhibit antiangiogenic, anti-inflammatory, and antidiabetic effects. A combination of biotin probes, pull-down assays, mass spectrometry, and molecular modeling has revealed how natural products and their derivatives interact with several proteins such as ferrochelatase (FECH), soluble epoxide hydrolase (sEH), inosine monophosphate dehydrogenase 2 (IMPDH2), phosphodiesterase 4 (PDE4), and deoxyhypusine hydroxylase (DOHH). These target identification approaches pave the way for new therapeutic avenues, especially in the fields of oncology and ophthalmology. Future research aimed at expanding the repertoire of target identification using biotin probes of homoisoflavonoids promises to further elucidate the complex mechanisms and develop new drug candidates.


Assuntos
Inibidores da Angiogênese , Anti-Inflamatórios , Biotina , Humanos , Biotina/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Animais , Isoflavonas/farmacologia , Isoflavonas/química , Sondas Moleculares/química
3.
Bioorg Med Chem ; 110: 117815, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38943807

RESUMO

The adenylation (A) domain of non-ribosomal peptide synthetases (NRPSs) catalyzes the adenylation reaction with substrate amino acids and ATP. Leveraging the distinct substrate specificity of A-domains, we previously developed photoaffinity probes for A-domains based on derivatization with a 5'-O-N-(aminoacyl)sulfamoyl adenosine (aminoacyl-AMS)-appended clickable benzophenone. Although our photoaffinity probes with different amino acid warheads enabled selective detection, visualization, and enrichment of target A-domains in proteomic environments, the effects of photoaffinity linkers have not been investigated. To explore the optimal benzophenone-based linker scaffold, we designed seven photoaffinity probes for the A-domains with different lengths, positions, and molecular shapes. Using probes 2-8 for the phenylalanine-activating A-domain of gramicidin S synthetase A (GrsA), we systematically investigated the binding affinity and labeling efficiency of the endogenous enzyme in a live producer cell. Our results indicated that the labeling efficiencies of probes 2-8 tended to depend on their binding affinities rather than on the linker length, flexibility, or position of the photoaffinity group. We also identified that probe 2 with a 4,4'-diaminobenzophenone linker exhibits the highest labeling efficiency for GrsA with fewer non-target labeling properties in live cells.


Assuntos
Benzofenonas , Peptídeo Sintases , Marcadores de Fotoafinidade , Benzofenonas/química , Benzofenonas/síntese química , Benzofenonas/farmacologia , Benzofenonas/metabolismo , Marcadores de Fotoafinidade/química , Marcadores de Fotoafinidade/síntese química , Peptídeo Sintases/metabolismo , Peptídeo Sintases/química , Estrutura Molecular
4.
Plant Cell Physiol ; 65(1): 128-141, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37924215

RESUMO

Glutathione transferases (GSTs) represent a large and diverse enzyme family involved in the detoxification of small molecules by glutathione conjugation in crops, weeds and model plants. In this study, we introduce an easy and quick assay for photoaffinity labeling of GSTs to study GSTs globally in various plant species. The small-molecule probe contains glutathione, a photoreactive group and a minitag for coupling to reporter tags via click chemistry. Under UV irradiation, this probe quickly and robustly labels GSTs in crude protein extracts of different plant species. Purification and mass spectrometry (MS) analysis of labeled proteins from Arabidopsis identified 10 enriched GSTs from the Phi(F) and Tau(U) classes. Photoaffinity labeling of GSTs demonstrated GST induction in wheat seedlings upon treatment with safeners and in Arabidopsis leaves upon infection with avirulent bacteria. Treatment of Arabidopsis with salicylic acid (SA) analog benzothiadiazole (BTH) induces GST labeling independent of NPR1, the master regulator of SA. Six Phi- and Tau-class GSTs that are induced upon BTH treatment were identified, and their labeling was confirmed upon transient overexpression. These data demonstrate that GST photoaffinity labeling is a useful approach to studying GST induction in crude extracts of different plant species upon different types of stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácido Salicílico/farmacologia , Glutationa/metabolismo
5.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139315

RESUMO

Although the 20S core particle (CP) of the proteasome is an important component of the 26S holoenzyme, the stand-alone 20S CP acts directly on intrinsically disordered and oxidized/damaged proteins to degrade them in a ubiquitin-independent manner. It has been postulated that some structural features of substrate proteins are recognized by the 20S CP to promote substrate uptake, but the mechanism of substrate recognition has not been fully elucidated. In this study, we screened peptides that bind to the 20S CP from a random eight-residue pool of amino acid sequences using complementary DNA display an in vitro molecular evolution technique. The identified 20S CP-binding amino acid sequence was chemically synthesized and its effects on the 20S CP were investigated. The 20S CP-binding peptide stimulated the proteolytic activity of the inactive form of 20S CP. The peptide bound directly to one of the α-subunits, opening a gate for substrate entry on the α-ring. Furthermore, the attachment of this peptide sequence to α-synuclein enhanced its degradation by the 20S CP in vitro. In addition to these results, docking simulations indicated that this peptide binds to the top surface of the α-ring. These peptides could function as a key to control the opening of the α-ring gate.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Peptídeos/metabolismo , Aceleração
6.
Mol Imaging Biol ; 25(6): 1104-1114, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37052759

RESUMO

PURPOSE: Site-specific approaches to bioconjugation produce well-defined and homogeneous immunoconjugates with potential for superior in vivo behavior compared to analogs synthesized using traditional, stochastic methods. The possibility of incorporating photoaffinity chemistry into a site-specific bioconjugation strategy is particularly enticing, as it could simplify and accelerate the preparation of homogeneous immunoconjugates for the clinic. In this investigation, we report the synthesis, in vitro characterization, and in vivo evaluation of a site-specifically modified, 89Zr-labeled radioimmunoconjugate created via the reaction between an mAb and an Fc-binding protein bearing a photoactivatable 4-benzoylphenylalanine residue. PROCEDURES: A variant of the Fc-binding Z domain of protein A containing a photoactivatable, 4-benzoylphenylalanine residue - Z(35BPA) - was modified with desferrioxamine (DFO), combined with the A33 antigen-targeting mAb huA33, and irradiated with UV light. The resulting immunoconjugate - DFOZ(35BPA)-huA33 - was purified and characterized via SDS-PAGE, MALDI-ToF mass spectrometry, surface plasmon resonance, and flow cytometry. The radiolabeling of DFOZ(35BPA)-huA33 was optimized to produce [89Zr]Zr-DFOZ(35BPA)-huA33, and the immunoreactivity of the radioimmunoconjugate was determined with SW1222 human colorectal cancer cells. Finally, the in vivo performance of [89Zr]Zr-DFOZ(35BPA)-huA33 in mice bearing subcutaneous SW1222 xenografts was interrogated via PET imaging and biodistribution experiments and compared to that of a stochastically labeled control radioimmunoconjugate, [89Zr]Zr-DFO-huA33. RESULTS: HuA33 was site-specifically modified with Z(35BPA)-DFO, producing an immunoconjugate with on average 1 DFO/mAb, high in vitro stability, and high affinity for its target. [89Zr]Zr-DFOZ(35BPA)-huA33 was synthesized in 95% radiochemical yield and exhibited a specific activity of 2 mCi/mg and an immunoreactive fraction of ~ 0.85. PET imaging and biodistribution experiments revealed that high concentrations of the radioimmunoconjugate accumulated in tumor tissue (i.e., ~ 40%ID/g at 120 h p.i.) but also that the Z(35BPA)-bearing immunoPET probe produced higher uptake in the liver, spleen, and kidneys than its stochastically modified cousin, [89Zr]Zr-DFO-huA33. CONCLUSIONS: Photoaffinity chemistry and an Fc-binding variant of the Z domain were successfully leveraged to create a novel site-specific strategy for the synthesis of radioimmunoconjugates. The probe synthesized using this method - DFOZ(35BPA)-huA33 - was well-defined and homogeneous, and the resulting radioimmunoconjugate ([89Zr]Zr-DFOZ(35BPA)-huA33) boasted high specific activity, stability, and immunoreactivity. While the site-specifically modified radioimmunoconjugate produced high activity concentrations in tumor tissue, it also yielded higher uptake in healthy organs than a stochastically modified analog, suggesting that optimization of this system is necessary prior to clinical translation.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Animais , Camundongos , Imunoconjugados/química , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Zircônio/química , Linhagem Celular Tumoral , Desferroxamina/química
7.
J Pept Sci ; 29(3): e3458, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36264037

RESUMO

Intracellular dinucleoside polyphosphates (Npn Ns) have been known for decades but the functional role remains enigmatic. Diadenosine triphosphate (Ap3 A) is one of the most prominent examples, and its intercellular concentration was shown to increase upon cellular stress. By employment of previously reported Ap3 A-based photoaffinity-labeling probes (PALPs) in chemical proteomics, we investigated the Ap3 A interactome in the human lung carcinoma cell line H1299. The cell line is deficient of the fragile histidine triade (Fhit) protein, a hydrolase of Ap3 A and tumor suppressor. Overall, the number of identified potential interaction partners was significantly lower than in the previously investigated HEK293T cell line. Gene ontology term analysis revealed that the identified proteins participate in similar pathways as for HEK293T, but the percentage of proteins involved in RNA-related processes is higher for H1299. The obtained results highlight similarities and differences of the Ap3 A interaction network in different cell lines and give further indications regarding the importance of the presence of Fhit.


Assuntos
Fosfatos de Dinucleosídeos , Neoplasias , Humanos , Fosfatos de Dinucleosídeos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Guanosina Pentafosfato , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Células HEK293 , Proteômica
8.
Chembiochem ; 24(5): e202200444, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219527

RESUMO

In the endoplasmic reticulum glycoprotein quality control system, UDP-glucose : glycoprotein glucosyltransferase (UGGT) functions as a folding sensor. Although it is known to form a heterodimer with selenoprotein F (SelenoF), the details of the complex formation remain obscure. A pulldown assay using co-transfected SelenoF and truncated mutants of human UGGT1 (HUGT1) revealed that SelenoF binds to the TRXL2 domain of HUGT1. Additionally, a newly developed photoaffinity crosslinker was selectively introduced into cysteine residues of recombinant SelenoF to determine the spatial orientation of SelenoF to HUGT1. The crosslinking experiments showed that SelenoF formed a covalent bond with amino acids in the TRXL3 region and the interdomain between ßS2 and GT24 of HUGT1 via the synthetic crosslinker. SelenoF might play a role in assessing and refining the disulfide bonds of misfolded glycoproteins in the hydrophobic cavity of HUGT1 as it binds to the highly flexible region of HUGT1 to reach its long hydrophobic cavity. Clarification of the SelenoF-binding domain of UGGT and its relative position will help predict and reveal the function of SelenoF from a structural perspective.


Assuntos
Glucosiltransferases , Glicoproteínas , Humanos , Glucosiltransferases/metabolismo , Glicoproteínas/metabolismo , Difosfato de Uridina , Selenoproteínas , Glucose/metabolismo , Dobramento de Proteína
9.
Molecules ; 26(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477510

RESUMO

The serine biosynthetic pathway is a key element contributing to tumor proliferation. In recent years, targeting of phosphoglycerate dehydrogenase (PHGDH), the first enzyme of this pathway, intensified and revealed to be a promising strategy to develop new anticancer drugs. Among attractive PHGDH inhibitors are the α-ketothioamides. In previous work, we have demonstrated their efficacy in the inhibition of PHGDH in vitro and in cellulo. However, the precise site of action of this series, which would help the rational design of new inhibitors, remained undefined. In the present study, the detailed mechanism-of-action of a representative α-ketothioamide inhibitor is reported using several complementary experimental techniques. Strikingly, our work led to the identification of an allosteric site on PHGDH that can be targeted for drug development. Using mass spectrometry experiments and an original α-ketothioamide diazirine-based photoaffinity probe, we identified the 523Q-533F sequence on the ACT regulatory domain of PHGDH as the binding site of α-ketothioamides. Mutagenesis experiments further documented the specificity of our compound at this allosteric site. Our results thus pave the way for the development of new anticancer drugs using a completely novel mechanism-of-action.


Assuntos
Diazometano/química , Inibidores Enzimáticos/farmacologia , Espectrometria de Massas/métodos , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Fosfoglicerato Desidrogenase/metabolismo , Sítio Alostérico , Aspartato Quinase/química , Aspartato Quinase/metabolismo , Sítios de Ligação , Corismato Mutase/química , Corismato Mutase/metabolismo , Humanos , Estrutura Molecular , Domínios Proteicos , Relação Estrutura-Atividade
10.
Cell Mol Neurobiol ; 41(5): 977-993, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32424771

RESUMO

Mu opioid receptors (MOR-1) mediate the biological actions of clinically used opioids such as morphine, oxycodone, and fentanyl. The mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, generating multiple splice variants. One type of splice variants are truncated variants containing only six transmembrane domains (6TM) that mediate the analgesic action of novel opioid drugs such as 3'-iodobenzoylnaltrexamide (IBNtxA). Previously, we have shown that IBNtxA is a potent analgesic effective in a spectrum of pain models but lacks many side-effects associated with traditional opiates. In order to investigate the targets labeled by IBNtxA, we synthesized two arylazido analogs of IBNtxA that allow photolabeling of mouse mu opioid receptors (mMOR-1) in transfected cell lines and mMOR-1 protein complexes that may comprise the 6TM sites in mouse brain. We demonstrate that both allyl and alkyne arylazido derivatives of IBNtxA efficiently radio-photolabeled mMOR-1 in cell lines and MOR-1 protein complexes expressed either exogenously or endogenously, as well as found in mouse brain. In future, design and application of such radio-photolabeling ligands with a conjugated handle will provide useful tools for further isolating or purifying MOR-1 to investigate site specific ligand-protein contacts and its signaling complexes.


Assuntos
Analgésicos Opioides/metabolismo , Azidas/metabolismo , Encéfalo/metabolismo , Naltrexona/análogos & derivados , Marcadores de Fotoafinidade/metabolismo , Receptores Opioides/metabolismo , Analgésicos Opioides/síntese química , Animais , Azidas/síntese química , Encéfalo/efeitos dos fármacos , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naltrexona/síntese química , Naltrexona/metabolismo , Marcadores de Fotoafinidade/síntese química , Ligação Proteica/fisiologia , Ensaio Radioligante/métodos
11.
Bioorg Chem ; 104: 104232, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911193

RESUMO

Sirtuins are NAD+-dependent protein deacylases that remove acyl modifications from acyl-lysine residues, resulting in essential cellular signaling. Recognized for their role in lifespan extension, humans encode seven sirtuin isoforms (Sirt1-7), and loss of sirtuin deacylase activity is implicated in many aging-related diseases. Despite being intriguing therapeutic targets, cellular studies of sirtuins are hampered by the lack of chemical probes to measure sirtuin activity independent of sirtuin protein levels. Here, we use a modular, peptide-based approach to develop activity-based probes (ABPs) that directly measure Sirt1 activity in vitro and in cell lysates. ABPs were synthesized containing four elements: (1) thioacetyl-lysine for mechanism-based affinity towards only active sirtuins, (2) either histone H3 lysine-14 (H3K14) or p53 sequences for Sirt1 specificity, (3) a diazirine for covalent labeling upon UV irradiation, and (4) an alkyne for bioorthogonal conjugation to a fluorophore for gel-based detection of active Sirt1. Compared to the H3K14 ABP, the p53 ABP showed increased sensitivity and selective labeling of active Sirt1. Acyl-lysine peptide competition, pharmacological inhibition, and inhibitory post-translational modification of Sirt1 resulted in the loss of p53 ABP labeling both in vitro and in HEK293T cell lysates, consistent with the ABP measuring decreased Sirt1 activity. Furthermore, the p53 ABP measured subcellular Sirt1 activity in MCF7 breast cancer cells. The development of a Sirt1-selective ABP that detects Sirt1 activity with an order of magnitude increased sensitivity compared to previous approaches demonstrates the utility of a modular, peptide-based approach for selective-targeting of the sirtuin protein family and provides a framework for further development of sirtuin-selective chemical probes.


Assuntos
Desenvolvimento de Medicamentos , Sondas Moleculares/química , Peptídeos/química , Sirtuína 1/análise , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Sondas Moleculares/síntese química , Sondas Moleculares/farmacologia , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/farmacologia , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/metabolismo , Relação Estrutura-Atividade
12.
Cell Chem Biol ; 27(8): 1073-1083.e12, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32521230

RESUMO

ATP is an important energy metabolite and allosteric signal in health and disease. ATP-interacting proteins, such as P2 receptors, control inflammation, cell death, migration, and wound healing. However, identification of allosteric ATP sites remains challenging, and our current inventory of ATP-controlled pathways is likely incomplete. Here, we develop and verify mipATP as a minimally invasive photoaffinity probe for ATP-interacting proteins. Its N6 functionalization allows target enrichment by UV crosslinking and conjugation to reporter tags by "click" chemistry. The additions are compact, allowing mipATP to completely retain the calcium signaling responses of native ATP in vitro and in vivo. mipATP specifically enriched for known nucleotide binders in A549 cell lysates and membrane fractions. In addition, it retrieved unannotated ATP interactors, such as the FAS receptor, CD44, and various SLC transporters. Thus, mipATP is a promising tool to identify allosteric ATP sites in the proteome.


Assuntos
Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Proteoma/análise , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/síntese química , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Sinalização do Cálcio , Calmodulina/genética , Calmodulina/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Cromatografia Líquida de Alta Pressão , Química Click , Corantes Fluorescentes/química , Humanos , Marcação por Isótopo , Larva/metabolismo , Imagem Óptica , Proteoma/metabolismo , Espectrometria de Massas em Tandem , Raios Ultravioleta , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
13.
J Biol Chem ; 295(21): 7481-7491, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32295842

RESUMO

The small molecule IACS-010759 has been reported to potently inhibit the proliferation of glycolysis-deficient hypoxic tumor cells by interfering with the functions of mitochondrial NADH-ubiquinone oxidoreductase (complex I) without exhibiting cytotoxicity at tolerated doses in normal cells. Considering the significant cytotoxicity of conventional quinone-site inhibitors of complex I, such as piericidin and acetogenin families, we hypothesized that the mechanism of action of IACS-010759 on complex I differs from that of other known quinone-site inhibitors. To test this possibility, here we investigated IACS-010759's mechanism in bovine heart submitochondrial particles. We found that IACS-010759, like known quinone-site inhibitors, suppresses chemical modification by the tosyl reagent AL1 of Asp160 in the 49-kDa subunit, located deep in the interior of a previously proposed quinone-access channel. However, contrary to the other inhibitors, IACS-010759 direction-dependently inhibited forward and reverse electron transfer and did not suppress binding of the quinazoline-type inhibitor [125I]AzQ to the N terminus of the 49-kDa subunit. Photoaffinity labeling experiments revealed that the photoreactive derivative [125I]IACS-010759-PD1 binds to the middle of the membrane subunit ND1 and that inhibitors that bind to the 49-kDa or PSST subunit cannot suppress the binding. We conclude that IACS-010759's binding location in complex I differs from that of any other known inhibitor of the enzyme. Our findings, along with those from previous study, reveal that the mechanisms of action of complex I inhibitors with widely different chemical properties are more diverse than can be accounted for by the quinone-access channel model proposed by structural biology studies.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Glicólise/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/metabolismo , Oxidiazóis/farmacologia , Piperidinas/farmacologia , Animais , Bovinos , Hipóxia Celular/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias Cardíacas/patologia , Proteínas de Neoplasias/metabolismo , Neoplasias/patologia
14.
Angew Chem Int Ed Engl ; 59(6): 2429-2439, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31782597

RESUMO

Benzoxepane derivatives were designed and synthesized, and one hit compound emerged as being effective in vitro with low toxicity. In vivo, this hit compound ameliorated both sickness behavior through anti-inflammation in LPS-induced neuroinflammatory mice model and cerebral ischemic injury through anti-neuroinflammation in rats subjected to transient middle cerebral artery occlusion. Target fishing for the hit compound using photoaffinity probes led to identification of PKM2 as the target protein responsible for anti-inflammatory effect of the hit compound. Furthermore, the hit exhibited an anti-neuroinflammatory effect in vitro and in vivo by inhibiting PKM2-mediated glycolysis and NLRP3 activation, indicating PKM2 as a novel target for neuroinflammation and its related brain disorders. This hit compound has a better safety profile compared to shikonin, a reported PKM2 inhibitor, identifying it as a lead compound in targeting PKM2 for the treatment of inflammation-related diseases.


Assuntos
Anti-Inflamatórios/síntese química , Dibenzoxepinas/química , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dibenzoxepinas/farmacologia , Dibenzoxepinas/uso terapêutico , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/etiologia , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Naftoquinonas/uso terapêutico , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/metabolismo , Células RAW 264.7 , Ratos , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Cell Chem Biol ; 27(3): 306-313.e4, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31732432

RESUMO

Voltage-gated sodium (Nav) channels respond to changes in the membrane potential of excitable cells through the concerted action of four voltage-sensor domains (VSDs). Subtype Nav1.7 plays an important role in the propagation of signals in pain-sensing neurons and is a target for the clinical development of novel analgesics. Certain inhibitory cystine knot (ICK) peptides produced by venomous animals potently modulate Nav1.7; however, the molecular mechanisms underlying their selective binding and activity remain elusive. This study reports on the design of a library of photoprobes based on the potent spider toxin Huwentoxin-IV and the determination of the toxin binding interface on VSD2 of Nav1.7 through a photocrosslinking and tandem mass spectrometry approach. Our Huwentoxin-IV probes selectively crosslink to extracellular loop S1-S2 and helix S3 of VSD2 in a chimeric channel system. Our results provide a strategy that will enable mapping of sites of interaction of other ICK peptides on Nav channels.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Sondas Moleculares/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Venenos de Aranha/farmacologia , Sítios de Ligação/efeitos dos fármacos , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/química , Humanos , Modelos Moleculares , Sondas Moleculares/síntese química , Sondas Moleculares/química , Canal de Sódio Disparado por Voltagem NAV1.7/química , Processos Fotoquímicos , Venenos de Aranha/síntese química , Venenos de Aranha/química
16.
Angew Chem Int Ed Engl ; 58(48): 17322-17327, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31518032

RESUMO

The CDK family plays a crucial role in the control of the cell cycle. Dysregulation and mutation of the CDKs has been implicated in cancer and the CDKs have been investigated extensively as potential therapeutic targets. Selective inhibition of specific isoforms of the CDKs is crucial to achieve therapeutic effect while minimising toxicity. We present a group of photoaffinity probes designed to bind to the family of CDKs. The site of crosslinking of the optimised probe, as well as its ability to enrich members of the CDK family from cell lysates, was investigated. In a proof of concept study, we subsequently developed a photoaffinity probe-based competition assay to profile CDK inhibitors. We anticipate that this approach will be widely applicable to the study of small molecule binding to protein families of interest.


Assuntos
Marcadores de Afinidade/química , Antineoplásicos/química , Reagentes de Ligações Cruzadas/química , Quinases Ciclina-Dependentes/antagonistas & inibidores , Isoformas de Proteínas/química , Inibidores de Proteínas Quinases/química , Ligação Competitiva , Ensaios de Seleção de Medicamentos Antitumorais , Espectrometria de Massas , Estrutura Molecular , Processos Fotoquímicos , Roscovitina , Relação Estrutura-Atividade
17.
Cell Calcium ; 83: 102060, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31442840

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing second messenger which triggers Ca2+ release in both sea urchin egg homogenates and in mammalian cells. The NAADP binding protein has not been identified and the regulation of NAADP mediated Ca2+ release remains controversial. To address this issue, we have synthesized an NAADP analog in which 3-azido-5-azidomethylbenzoic acid is attached to the amino group of 5-(3-aminopropyl)-NAADP to produce an NAADP analog which is both a photoaffinity label and clickable. This 'all-in-one-clickable' NAADP (AIOC-NAADP) elicited Ca2+ release when microinjected into cultured human SKBR3 cells at low concentrations. In contrast, it displayed little activity in sea urchin egg homogenates where very high concentrations were required to elicit Ca2+ release. In mammalian cell homogenates, incubation with low concentrations of [32P]AIOC-NAADP followed by irradiation with UV light resulted in labeling 23 kDa protein(s). Competition between [32P]AIOC-NAADP and increasing concentrations of NAADP demonstrated that the labeling was selective. We show that this label recognizes and selectively photodervatizes the 23 kDa NAADP binding protein(s) in cultured human cells identified in previous studies using [32P]5-N3-NAADP.


Assuntos
Ácido Benzoico/síntese química , Cálcio/metabolismo , Química Click/métodos , NADP/análogos & derivados , Marcadores de Fotoafinidade/síntese química , Animais , Sítios de Ligação , Sinalização do Cálcio , Linhagem Celular Tumoral , Humanos , NADP/síntese química , NADP/isolamento & purificação , Marcadores de Fotoafinidade/isolamento & purificação , Ligação Proteica , Ouriços-do-Mar
18.
Molecules ; 24(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261804

RESUMO

To explore the molecular mechanisms of BAY R3401, four types of novel photoaffinity probes bearing different secondary tags were synthesized. Their potency for glycogenolysis was evaluated in primary human liver HL-7702 cells and HepG2 cells. Probe 2d showed the best activity in primary human liver HL-7702 cells and HepG2 cells, with IC50 values of 4.45 µM and 28.49 µM, respectively. Likewise, probe 5d showed IC50 values of 6.46 µM in primary human liver HL-7702 cells and 15.29 µM in HepG2 cells, respectively. Photoaffinity labeling experiments were also performed and protein bands larger than 170 kDa were specifically tagged by probe 2d. The results suggest that the synthesized probe 2d might be a very promising tool for the isolation of the target proteins of BAY R3401.


Assuntos
Di-Hidropiridinas/síntese química , Glicogênio/metabolismo , Marcadores de Fotoafinidade/química , Linhagem Celular , Química Click , Di-Hidropiridinas/química , Di-Hidropiridinas/farmacologia , Furanos , Glicogenólise , Células Hep G2 , Humanos , Concentração Inibidora 50 , Fígado/metabolismo
19.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1180-1188, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30521871

RESUMO

Nicotinic acid adenine dinucleotide phosphate is an evolutionarily conserved second messenger, which mobilizes Ca2+ from acidic stores. The molecular identity of the NAADP receptor has yet to be defined. In pursuit of isolating and identifying NAADP-binding proteins, we synthesized and characterized a bifunctional probe that incorporates both a photoactivatable crosslinking azido moiety at the 5-position of the nicotinic ring and a 'clickable' ethynyl moiety to the 8-adenosyl position in NAADP. Microinjection of this 5N3-8-ethynyl-NAADP into cultured U2OS cells induced robust Ca2+ responses. Higher concentrations of 5N3-8-ethynyl were required to elicit Ca2+ release or displace 32P-NAADP in radioligand binding experiments in sea urchin egg homogenates. In human cell extracts, incubation of 32P-5N3-8-ethynyl-NAADP followed by UV irradiation resulted in selective labeling of 23 kDa and 35 kDa proteins and photolabeling of these proteins was prevented when incubated in the presence of unlabeled NAADP. Compared to the monofunctional 32P-5N3-NAADP, the clickable 32P-5N3-8-ethynyl-NAADP demonstrated less labeling of the 23 kDa and 35 kDa proteins (~3-fold) but provided an opportunity for further enrichment through the 'clickable' ethynyl moiety. No proteins were specifically labeled by 32P-5N3-8-ethynyl-NAADP in sea urchin egg homogenate. These experiments demonstrate that 5N3-8-ethynyl-NAADP is biologically active and selectively labels putative NAADP-binding proteins in mammalian systems, evidencing a 'bifunctional' probe with utility for isolating NAADP-binding proteins.


Assuntos
Sinalização do Cálcio , Corantes Fluorescentes , NADP/análogos & derivados , Coloração e Rotulagem , Raios Ultravioleta , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , NADP/química , NADP/farmacologia , Ouriços-do-Mar
20.
Neurochem Int ; 123: 34-45, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30125594

RESUMO

The dopamine transporter (DAT) is a neuronal membrane protein that is responsible for reuptake of dopamine (DA) from the synapse and functions as a major determinant in control of DA neurotransmission. Cocaine and many psychostimulant drugs bind to DAT and block reuptake, inducing DA overflow that forms the neurochemical basis for euphoria and addiction. Paradoxically, however, some ligands such as benztropine (BZT) bind to DAT and inhibit reuptake but do not produce these effects, and it has been hypothesized that differential mechanisms of binding may stabilize specific transporter conformations that affect downstream neurochemical or behavioral outcomes. To investigate the binding mechanisms of BZT on DAT we used the photoaffinity BZT analog [125I]N-[n-butyl-4-(4‴-azido-3‴-iodophenyl)]-4',4″-difluoro-3α-(diphenylmethoxy)tropane ([125I]GA II 34) to identify the site of cross-linking and predict the binding pose relative to that of previously-examined cocaine photoaffinity analogs. Biochemical findings show that adduction of [125I]GA II 34 occurs at residues Asp79 or Leu80 in TM1, with molecular modeling supporting adduction to Leu80 and a pharmacophore pose in the central S1 site similar to that of cocaine and cocaine analogs. Substituted cysteine accessibility method protection analyses verified these findings, but identified some differences in structural stabilization relative to cocaine that may relate to BZT neurochemical outcomes.


Assuntos
Benzotropina/farmacologia , Sítios de Ligação/efeitos dos fármacos , Cocaína/farmacologia , Dopamina/metabolismo , Relação Estrutura-Atividade , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Humanos , Radioisótopos do Iodo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA