Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 111(1): 63-75, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38702845

RESUMO

Betaine has important roles in preimplantation mouse embryos, including as an organic osmolyte that functions in cell volume regulation in the early preimplantation stages and as a donor to the methyl pool in blastocysts. The origin of betaine in oocytes and embryos was largely unknown. Here, we found that betaine was present from the earliest stage of growing oocytes. Neither growing oocytes nor early preantral follicles could take up betaine, but antral follicles were able to transport betaine and supply the enclosed oocyte. Betaine is synthesized by choline dehydrogenase, and female mice lacking Chdh did not have detectable betaine in their oocytes or early embryos. Supplementing betaine in their drinking water restored betaine in the oocyte only when supplied during the final stages of antral follicle development but not earlier in folliculogenesis. Together with the transport results, this implies that betaine can only be exogenously supplied during the final stages of oocyte growth. Previous work showed that the amount of betaine in the oocyte increases sharply during meiotic maturation due to upregulated activity of choline dehydrogenase within the oocyte. This betaine present in mature eggs was retained after fertilization until the morula stage. There was no apparent role for betaine uptake via the SIT1 (SLC6A20) betaine transporter that is active at the 1- and 2-cell stages. Instead, betaine was apparently retained because its major route of efflux, the volume-sensitive organic osmolyte - anion channel, remained inactive, even though it is expressed and capable of being activated by a cell volume increase.


Assuntos
Betaína , Blastocisto , Oócitos , Animais , Betaína/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Feminino , Camundongos , Blastocisto/metabolismo , Blastocisto/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Folículo Ovariano/metabolismo , Folículo Ovariano/efeitos dos fármacos , Colina Desidrogenase/metabolismo
2.
Theriogenology ; 222: 10-21, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38603966

RESUMO

Producing chimaeras constitutes the most reliable method of verifying the pluripotency of newly established cells. Moreover, forming chimaeras by injecting genetically modified embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) into the embryo is part of the procedure for generating transgenic mice, which are used for understanding gene function. Conventional methods for generating transgenic mice, including the breeding of chimaeras and tetraploid complementation, are time-consuming and cost-inefficient, with significant limitations that hinder their effectiveness and widespread applications. In the present study, we modified the traditional method of chimaera generation to significantly speed up this process by generating mice exclusively derived from ESCs. This study aimed to assess whether fully ESC-derived mice could be obtained by modulating fibroblast growth factor 4 (FGF4) levels in the culture medium and changing the direction of cell differentiation in the chimaeric embryo. We found that exogenous FGF4 directs all host blastomeres to the primitive endoderm fate, but does not affect the localisation of ESCs in the epiblast of the chimaeric embryos. Consequently, all FGF4-treated chimaeric embryos contained an epiblast composed exclusively of ESCs, and following transfer into recipient mice, these embryos developed into fully ESC-derived newborns. Collectively, this simple approach could accelerate the generation of ESC-derived animals and thus optimise ESC-mediated transgenesis and the verification of cell pluripotency. Compared to traditional methods, it could speed up functional studies by several weeks and significantly reduce costs related to maintaining and breeding chimaeras. Moreover, since the effect of stimulating the FGF signalling pathway is universal across different animal species, our approach can be applied not only to rodents but also to other animals, offering its utility beyond laboratory settings.


Assuntos
Quimera , Fator 4 de Crescimento de Fibroblastos , Animais , Fator 4 de Crescimento de Fibroblastos/genética , Camundongos , Células-Tronco Embrionárias , Camundongos Transgênicos , Embrião de Mamíferos , Diferenciação Celular
3.
Front Cell Dev Biol ; 12: 1344092, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38374891

RESUMO

Mammalian preimplantation embryos often contend with aneuploidy that arose either by the inheritance of meiotic errors from the gametes, or from mitotic mis-segregation events that occurred following fertilization. Regardless of the origin, mis-segregated chromosomes become encapsulated in micronuclei (MN) that are spatially isolated from the main nucleus. Much of our knowledge of MN formation comes from dividing somatic cells during tumorigenesis, but the error-prone cleavage-stage of early embryogenesis is fundamentally different. One unique aspect is that cellular fragmentation (CF), whereby small subcellular bodies pinch off embryonic blastomeres, is frequently observed. CF has been detected in both in vitro and in vivo-derived embryos and likely represents a response to chromosome mis-segregation since it only appears after MN formation. There are multiple fates for MN, including sequestration into CFs, but the molecular mechanism(s) by which this occurs remains unclear. Due to nuclear envelope rupture, the chromosomal material contained within MN and CFs becomes susceptible to double stranded-DNA breaks. Despite this damage, embryos may still progress to the blastocyst stage and exclude chromosome-containing CFs, as well as non-dividing aneuploid blastomeres, from participating in further development. Whether these are attempts to rectify MN formation or eliminate embryos with poor implantation potential is unknown and this review will discuss the potential implications of DNA removal by CF/blastomere exclusion. We will also extrapolate what is known about the intracellular pathways mediating MN formation and rupture in somatic cells to preimplantation embryogenesis and how nuclear budding and DNA release into the cytoplasm may impact overall development.

4.
Reprod Biol Endocrinol ; 22(1): 8, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172815

RESUMO

BACKGROUND: The process of gamete formation and early embryonic development involves rapid DNA replication, chromosome segregation and cell division. These processes may be affected by mutations in the BRCA1/2 genes. The aim of this study was to evaluate BRCA mutation inheritance and its effect on early embryonic development according to the parental origin of the mutation. The study question was approached by analyzing in vitro fertilization cycles (IVF) that included pre-implantation testing (PGT-M) for a BRCA gene mutation. METHODS: This retrospective cohort study compared cycles of pre-implantation genetic testing for mutations (PGT-M) between male and female patients diagnosed with BRCA 1/2 mutations (cases), to a control group of two other mutations with dominant inheritance (myotonic dystrophy (MD) and polycystic kidney disease (PKD)). Results were compared according to mutation type and through a generalized linear model analysis. RESULTS: The cohort included 88 PGT-M cycles (47 BRCA and 41 non-BRCA) among 50 patients. Maternal and paternal ages at oocyte retrieval were comparable between groups. When tested per cycle, FSH dose, maximum estradiol level, oocytes retrieved, number of zygotes, and number of embryos available for biopsy and affected embryos, were not significantly different among mutation types. All together 444 embryos were biopsied: the rate of affected embryos was comparable between groups. Among BRCA patients, the proportion of affected embryos was similar between maternal and paternal mutation origin (p = 0.24). In a generalized linear model analysis, the relative oocyte yield in maternal BRCA patients was significantly lower (0.7, as related to the non BRCA group)(p < 0.001). Zygote formation and blastulation were not affected by the BRCA gene among paternal cases (P = 0.176 and P = 0.293 respectively), nor by paternal versus maternal BRCA carriage (P = 0.904 and P = 0.149, respectively). CONCLUSIONS: BRCA PGT-M cycles performed similarly compared to non-BRCA cycles. Inheritance rate and cycle parameters were not affected by the parental origin of the mutation.


Assuntos
Proteína BRCA1 , Diagnóstico Pré-Implantação , Gravidez , Humanos , Masculino , Feminino , Estudos de Coortes , Proteína BRCA1/genética , Estudos Retrospectivos , Diagnóstico Pré-Implantação/métodos , Proteína BRCA2/genética , Testes Genéticos/métodos , Fertilização in vitro/métodos , Mutação , Aneuploidia , Pais
5.
Reprod Sci ; 31(4): 1139-1145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38040897

RESUMO

IL-6 plays an important role in oogenesis in humans. However, at the preimplantation stage, IL-6 production and the role in embryo development remain unclear. In this study, IL-6 concentrations in single-embryo media were analyzed. In addition, the association between IL-6 production and blastocyst formation was investigated. Single-embryo culture media from 194 embryos were collected on day 6 after fertilization and divided into four groups according to the developmental stage of the corresponding embryo, as follows: cleavage stage group, morula-early blastocyst group, unavailable full blastocyst group, and available full blastocyst group. IL-6 concentrations were significantly lower in the cleavage stage group than in the morula-early blastocyst group (p = 0.009), in the unavailable full blastocyst group (p = 0.003), and in the available full blastocyst group (p < 0.001). Logistic regression analysis showed that IL-6 concentration in single-embryo medium was significantly associated with blastocyst formation (odds ratios ß1 = 1.876, 95% CI 1.433 to 2.644, p < 0.0001). Therefore, IL-6 was produced by human preimplantation embryos throughout the preimplantation stage and may play a role in embryo development.


Assuntos
Técnicas de Cultura Embrionária , Interleucina-6 , Humanos , Blastocisto , Embrião de Mamíferos , Desenvolvimento Embrionário , Fertilização in vitro
6.
Genes (Basel) ; 14(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36980841

RESUMO

Recent advances in preimplantation embryo diagnostics enable a wide range of applications using single cell biopsy and molecular-based selection techniques without compromising embryo production. This study was conducted to develop a single cell embryo biopsy technique and gene expression analysis method with a very low input volume to ensure normal embryo development and to see if there are differences in gene expression profiles between day-5 biopsied bovine embryos that developed into blastocysts and embryos arrested at morula stage. Out of the 65 biopsied morulae, 32 developed to blastocysts (49.2%). Out of the 13,580 successfully annotated genes, 1204 showed a difference in mRNA expression level. Out of these, 155 genes were expressed in embryos developing to blastocysts. The pathway enrichment analysis revealed significant enrichment in "organelle biogenesis and maintenance", "mRNA splicing" and "mitochondrial translation" pathways. These findings suggest principal differences in gene expression patterns and functional networks of embryos able to reach the blastocyst stage compared to embryos arrested in development. Our preliminary data suggest that single blastomere biopsy and selected gene expression profiles at morula stage could offer additional possibilities for early preimplantation embryo selection before transfer.


Assuntos
Blastômeros , Diagnóstico Pré-Implantação , Gravidez , Feminino , Animais , Bovinos , RNA-Seq , Diagnóstico Pré-Implantação/métodos , Fertilização in vitro/métodos , Desenvolvimento Embrionário/genética , RNA Mensageiro
7.
Hum Reprod ; 38(1): 180-188, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36350568

RESUMO

STUDY QUESTION: Are chromosome abnormalities detected at Day 3 post-fertilization predominantly retained in structures of the blastocyst other than the inner cell mass (ICM), where chromosomally normal cells are preferentially retained? SUMMARY ANSWER: In human embryos, aneuploid cells are sequestered away from the ICM, partly to the trophectoderm (TE) but more significantly to the blastocoel fluid within the blastocoel cavity (Bc) and to peripheral cells (PCs) surrounding the blastocyst during Day 3 to Day 5 progression. WHAT IS KNOWN ALREADY: A commonly held dogma in all diploid eukaryotes is that two gametes, each with 'n' chromosomes (23 in humans), fuse to form a '2n' zygote (46 in humans); a state that remains in perpetuity for all somatic cell divisions. Human embryos, however, display high levels of chromosomal aneuploidy in early stages that reportedly declines from Day 3 (cleavage stage) to Day 5 (blastocyst) post-fertilization. While this observation may be partly because of aneuploid embryonic arrest before blastulation, it could also be due to embryo 'normalization' to a euploid state during blastulation. If and how this normalization occurs requires further investigation. STUDY DESIGN, SIZE, DURATION: A total of 964 cleavage-stage (Day 3) embryos underwent single-cell biopsy and diagnosis for chromosome constitution. All were maintained in culture, assessing blastulation rate, both for those assessed euploid and aneuploid. Pregnancy rate was assessed for those determined euploid, blastulated and subsequently transferred. For those determined aneuploid and blastulated (174 embryos), ICM (all 174 embryos), TE (all 174), Bc (47 embryos) and PC (38 embryos) were analyzed for chromosome constitution. Specifically, concordance with the original Day 3 diagnosis and determination if any 'normalized' to euploid karyotypes within all four structures was assessed. PARTICIPANTS/MATERIALS, SETTING, METHODS: All patients (144 couples) were undergoing routine preimplantation genetic testing for aneuploidy in three IVF clinical settings. Cleavage-stage biopsy preceded chromosome analysis by next-generation sequencing. All patients provided informed consent. Additional molecular testing was carried out on blastocyst embryos and was analyzed for up to four embryonic structures (ICM, TE, Bc and PC). MAIN RESULTS AND THE ROLE OF CHANCE: Of 463/964 embryos (48%) diagnosed as euploid at Day 3, 70% blastulated (leading to a 59% pregnancy rate) and 30% degenerated. Conversely, of the 501 (52%) diagnosed as aneuploid, 65% degenerated and 35% (174) blastulated, a highly significant difference (P < 0.0001). Of the 174 that blastulated, the ratio of '(semi)concordant-aneuploid' versus 'normalized-euploid' versus 'other-aneuploid' embryos was, respectively, 39%/57%/3% in the ICM; 49%/48%/3% in the TE; 78%/21%/0% in the PC; and 83%/10%/5% in the Bc. The TE karyotype therefore has a positive predictive value of 86.7% in determining that of the ICM, albeit with marginally higher aneuploid rates of abnormalities (P = .071). Levels of abnormality in Bc/PC were significantly higher (P < 0.0001) versus the ploidy of the ICM and TE and nearly all chromosome abnormalities were (at least partially) concordant with Day 3 diagnoses. LIMITATIONS, REASONS FOR CAUTION: The results only pertain to human IVF embryos so extrapolation to the in vivo situation and to other species is not certain. We acknowledge (rather than lineage-specific survival, as we suggest here) the possibility of other mechanisms, such as lineage-specific movement of cells, during blastulation. Ethical considerations, however, make investigating this mechanism difficult on human embryos. WIDER IMPLICATIONS OF THE FINDINGS: Mosaic human cleavage-stage embryos can differentiate into a euploid ICM where euploid cell populations predominate. Sequestering of aneuploid cells/nuclei to structures no longer involved in fetal development has important implications for preimplantation and prenatal genetic testing. These results also challenge previous fundamental understandings of mitotic fidelity in early human development and indicate a complex and fluid nature of the human embryonic genome. STUDY FUNDING/COMPETING INTEREST(S): This research was funded by Organon Pharmaceuticals and Merck Serono by grants to W.G.K. W.G.K. is also an employee of AdvaGenix, who could, potentially, indirectly benefit financially from publication of this manuscript. R.C.M. is supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM133747. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. D.K.G. provides paid consultancy services for Care Fertility. TRIAL REGISTRATION NUMBER: : N/A.


Assuntos
Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Diagnóstico Pré-Implantação/métodos , Blastocisto , Aberrações Cromossômicas , Aneuploidia , Cariótipo , Feto
8.
Zygote ; 31(1): 51-54, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36278319

RESUMO

Heat stress can have severe deleterious effects on embryo development and survival. The present study evaluated whether CSF2 can protect the developmental competence of the bovine embryo following exposure to a heat shock of 41°C at the zygote and morula stages. In the first experiment, putative zygotes and 2-cell embryos were assigned to receive either 10 ng/ml CSF2 or vehicle, and then cultured for 15 h at either 38.5°C or 41°C and then at 38.5°C until day 7.5. Heat shock reduced blastocyst development for embryos treated with vehicle but not for embryos cultured with CSF2. In the second experiment, day 5 embryos (morula) were treated with CSF2 or vehicle and then cultured for 15 h at either 38.5°C or 41°C and then at 38.5°C until day 7.5. Temperature treatment did not affect development to the blastocyst stage and there was no effect of CSF2 treatment or the interaction. Results indicate that CSF2 can reduce the deleterious effects of heat shock at the zygote or two-cell stage when the embryo is transcriptionally inactive.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Animais , Bovinos , Embrião de Mamíferos , Resposta ao Choque Térmico , Zigoto , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia
9.
Biomolecules ; 12(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36358959

RESUMO

After fertilization, the zygote genome undergoes dramatic structural reorganization to ensure the establishment of totipotency, and then the totipotent potential of the zygote or 2-cell-stage embryo progressively declines. However, cellular potency is not always a one-way street. Specifically, a small number of embryonic stem cells (ESCs) occasionally overcome epigenetic barriers and transiently convert to a totipotent status. Despite the significant potential of the somatic cell nuclear transfer (SCNT) technique, the establishment of totipotency is often deficient in cloned embryos. Because of this phenomenon, the question arises as to whether strategies attempting to induce 2-cell-like cells (2CLCs) can provide practical applications, such as reprogramming of somatic cell nuclei. Inspired by strategies that convert ESCs into 2CLCs, we hypothesized that there will be a similar pathway by which cloned embryos can establish totipotent status after SCNT. In this review, we provide a snapshot of the practical strategies utilized to induce 2CLCs during investigations of the development of cloned embryos. The 2CLCs have similar transcriptome and chromatin features to that of 2-cell-stage embryos, and we propose that 2CLCs, already a valuable in vitro model for dissecting totipotency, will provide new opportunities to improve SCNT efficiency.


Assuntos
Embrião de Mamíferos , Técnicas de Transferência Nuclear , Embrião de Mamíferos/metabolismo , Zigoto/metabolismo , Células-Tronco Embrionárias/metabolismo , Cromatina/genética , Cromatina/metabolismo
10.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563284

RESUMO

Adeno-associated virus (AAV) vector is an efficient viral-based gene delivery tool used with many types of cells and tissues, including neuronal cells and muscles. AAV serotype 6 (AAV-6), one of numerous AAV serotypes, was recently found to efficiently transduce mouse preimplantation embryos. Furthermore, through coupling with a clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system-a modern genome editing technology-AAV-6 has been shown to effectively create a mutation at a target locus, which relies on isolation of zygotes, in vitro viral infection, and transplantation of the infected embryos to recipient females. Unfortunately, this procedure, termed "ex vivo handling of embryos", requires considerable investment of capital, time, and effort. Direct transduction of preimplantation embryos through the introduction of AAV-6 into the oviductal lumen of pregnant females would be an ideal approach. In this study, we injected various types of recombinant AAV vectors (namely, rAAV-CAG-EGFP-1, -2, -5, and -6, each carrying an enhanced green fluorescent protein [EGFP] cDNA whose expression is under the influence of a cytomegalovirus enhancer + chicken ß-actin promoter) into the ampulla region of oviducts in pregnant female mice at Day 0.7 of pregnancy (corresponding to the late 1-cell stage), and EGFP-derived green fluorescence was assessed in the respective morulae. The highest levels of fluorescence were observed in rAAV-CAG-EGFP-6. The oviductal epithelium was distinctly fluorescent. The fluorescence in embryos peaked at the morula stage. Our results indicate that intra-oviductal injection of AAV-6 vectors is the most effective method for transducing zona pellucida-enclosed preimplantation embryos in situ. AAV-6 vectors could be a useful tool in the genetic manipulation of early embryos, as well as oviductal epithelial cells.


Assuntos
Blastocisto , Edição de Genes , Animais , Dependovirus/genética , Epitélio , Tubas Uterinas , Feminino , Edição de Genes/métodos , Vetores Genéticos/genética , Humanos , Camundongos , Oviductos/metabolismo , Gravidez
11.
Zygote ; 30(2): 149-158, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34313209

RESUMO

Assisted reproductive technology is today considered a safe and reliable medical intervention, with healthy live births a reality for many IVF and ICSI treatment cycles. However, there are increasing numbers of published reports describing epigenetic/imprinting anomalies in children born as a result of these procedures. These anomalies have been attributed to methylation errors in embryo chromatin remodelling during in vitro culture. Here we re-visit three concepts: (1) the so-called 'in vitro toxicity' of 'essential amino acids' before the maternal to zygotic transition period; (2) the effect of hyperstimulation (controlled ovarian hyperstimulation) on homocysteine in the oocyte environment and the effect on methylation in the absence of essential amino acids; and (3) the fact/postulate that during the early stages of development the embryo undergoes a 'global' demethylation. Methylation processes require efficient protection against oxidative stress, which jeopardizes the correct acquisition of methylation marks as well as subsequent methylation maintenance. The universal precursor of methylation [by S-adenosyl methionine (SAM)], methionine, 'an essential amino acid', should be present in the culture. Polyamines, regulators of methylation, require SAM and arginine for their syntheses. Cystine, another 'semi-essential amino acid', is the precursor of the universal protective antioxidant molecule: glutathione. It protects methylation marks against some undue DNA demethylation processes through ten-eleven translocation (TET), after formation of hydroxymethyl cytosine. Early embryos are unable to convert homocysteine to cysteine as the cystathionine ß-synthase pathway is not active. In this way, cysteine is a 'real essential amino acid'. Most IVF culture medium do not maintain methylation/epigenetic processes, even in mouse assays. Essential amino acids should be present in human IVF medium to maintain adequate epigenetic marking in preimplantation embryos. Furthermore, morphological and morphometric data need to be re-evaluated, taking into account the basic biochemical processes involved in early life.


Assuntos
Metilação de DNA , Fertilização in vitro , Animais , Blastocisto , Epigênese Genética , Fertilização in vitro/métodos , Homeostase , Camundongos , Estresse Oxidativo , Técnicas de Reprodução Assistida
12.
Artigo em Inglês | MEDLINE | ID: mdl-34574797

RESUMO

Amino acids are now recognised as having multiple cellular functions in addition to their traditional role as constituents of proteins. This is well-illustrated in the early mammalian embryo where amino acids are now known to be involved in intermediary metabolism, as energy substrates, in signal transduction, osmoregulation and as intermediaries in numerous pathways which involve nitrogen metabolism, e.g., the biosynthesis of purines, pyrimidines, creatine and glutathione. The amino acid derivative S-adenosylmethionine has emerged as a universal methylating agent with a fundamental role in epigenetic regulation. Amino acids are now added routinely to preimplantation embryo culture media. This review examines the routes by which amino acids are supplied to the early embryo, focusing on the role of the oviduct epithelium, followed by an outline of their general fate and function within the embryo. Functions specific to individual amino acids are then considered. The importance of amino acids during the preimplantation period for maternal health and that of the conceptus long term, which has come from the developmental origins of health and disease concept of David Barker, is discussed and the review concludes by considering the potential utility of amino acid profiles as diagnostic of embryo health.


Assuntos
Aminoácidos , Epigênese Genética , Aminoácidos/metabolismo , Animais , Blastocisto/metabolismo , Meios de Cultura , Embrião de Mamíferos , Desenvolvimento Embrionário
13.
Mol Reprod Dev ; 88(7): 490-499, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34075648

RESUMO

Glutamine supplementation to porcine embryo culture medium improves development, increases leucine consumption, and enhances mitochondrial activity. In cancer cells, glutamine has been implicated in the activation of mechanistic target of rapamycin complex 1 (mTORC1) to support rapid proliferation. The objective of this study was to determine if glutamine metabolism, known as glutaminolysis, was involved in mTORC1 activation in porcine embryos. Culture with 3.75 mM GlutaMAX improved development to the blastocyst stage compared to culture with 1 mM GlutaMAX, and culture with 0 mM GlutaMAX decreased development compared to all groups with GlutaMAX. Ratios of phosphorylated to total MTOR were increased when embryos were cultured with 3.75 or 10 mM GlutaMAX, which was enhanced by the absence of leucine, but ratios for RPS6K were unchanged. As another indicator of mTORC1 activation, colocalization of MTOR and a lysosomal marker was increased in embryos cultured with 3.75 or 10 mM GlutaMAX in the absence of leucine. Culturing embryos with glutaminase inhibitors decreased development and the ratio of phosphorylated to total MTOR, indicating reduced activation of the complex. Therefore, glutaminolysis is involved in the activation of mTORC1 in porcine embryos, but further studies are needed to characterize downstream effects on development.


Assuntos
Blastocisto/metabolismo , Glutamina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/farmacologia , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Feminino , Fertilização in vitro/métodos , Fertilização in vitro/veterinária , Glutamina/farmacologia , Masculino , Transdução de Sinais/efeitos dos fármacos , Suínos
14.
Hum Reprod ; 36(6): 1682-1690, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33846747

RESUMO

STUDY QUESTION: Do embryos with different developmental competence exhibit different DNA methylation profiles at the blastocyst stage? SUMMARY ANSWER: We established genome-wide DNA methylome analysis for embryo trophectoderm (TE) biopsy samples and our findings demonstrated correlation of methylation profile of trophectoderm with euploidy status and with maternal age, indicating that genome-wide methylation level might be negatively correlated with embryo quality. WHAT IS KNOWN ALREADY: DNA methylation is a fundamental epigenetic regulatory mechanism that affects differentiation of cells into their future lineages during pre-implantation embryo development. Currently there is no established approach available to assess the epigenetic status of the human preimplantation embryo during routine IVF treatment. STUDY DESIGN, SIZE, DURATION: In total, we collected trophectoderm biopsy samples from 30 randomly selected human blastocysts and conducted whole-genome bisulfite sequencing (WGBS) to evaluate their DNA methylation profile. Nested linear models were used to assess association between DNA methylation level and ploidy status (aneuploidy [n = 20] vs. euploidy [n = 10]), maternal age (29.4-42.5 years old), and time of blastulation (day 5 [n = 16] vs. day 6 [n = 14]), using embryo identity as a covariate. PARTICIPANTS/MATERIALS, SETTING, METHODS: TE biopsy samples were obtained and submitted to bisulfite conversion. For WGBS, whole-genome sequencing libraries were then generated from the converted genome. An average of 75 million reads were obtained for each sample, and about 63% of the reads aligned to human reference. An average of 40 million reads used for the final analysis after the unconverted reads were filtered out. MAIN RESULTS AND THE ROLE OF CHANCE: We revealed an increase of genome-wide DNA methylation level in aneuploid embryo TE biopsies compared to euploid embryos (25.4% ± 3.2% vs. 24.7% ± 3.2%, P < 0.005). We also found genome-wide DNA methylation level to be increased with the maternal age (P < 0.005). On a chromosomal scale, we found monosomic embryos have lower methylation levels on the involved chromosome while no drastic change was observed for the involved chromosome in trisomies. Additionally, we revealed that WGBS data precisely revealed the chromosome copy number variance. LIMITATIONS, REASONS FOR CAUTION: Though our results demonstrated a negative correlation of genome-wide methylation level and embryo quality, further WGBS analysis on a greater number of embryos and specific investigation of its correlation with implantation and live birth are needed before any practical use of this approach for evaluation of embryo competence. WIDER IMPLICATIONS OF THE FINDINGS: This study revealed a change in genome-wide DNA methylation profile among embryos with different developmental potentials, reinforcing the critical role of DNA methylation in early development. STUDY FUNDING/COMPETING INTEREST(S): No external funding was received for this study. Intramural funding was provided by the Foundation for Embryonic Competence (FEC). E.S. is a consultant for and receives research funding from the Foundation for Embryonic Competence; he is also co-founder and a shareholder of ACIS LLC and coholds patent US2019/055906 issued for utilizing electrical resistance measurement for assessing cell viability and cell membrane piercing. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Diagnóstico Pré-Implantação , Adulto , Aneuploidia , Blastocisto , Metilação de DNA , Técnicas de Cultura Embrionária , Implantação do Embrião , Feminino , Humanos , Gravidez
15.
J Cell Physiol ; 236(10): 7001-7013, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33724469

RESUMO

Parathyroid hormone-related protein (PTHrP), the main cause of humoral hypercalcemia in malignancies, promotes cell proliferation and delays terminal cell maturation during embryonic development. Our previous study reported that PTHrP plays important roles in blastocyst formation, pluripotency gene expression, and histone acetylation during mouse preimplantation embryonic development. In this study, we further investigated the mechanism of preimplantation embryonic development regulated by PTHrP. Our results showed that Pthrp depletion decreased both the developmental rate of embryos at the cleavage stage and the cell number of morula-stage embryos. Pthrp-depleted embryos had significantly decreased levels of cyclin D1, phospho (p)-AKT (Thr308) and E2F1. However, Pthrp depletion did not cause significant changes in CDK4, ß-catenin or RUNX2 expression. In addition, our results indicated that Pthrp depletion promoted HDAC4 translocation from the cytoplasm to the nucleus in cleavage-stage embryos by stimulating the activity of protein phosphatase 2A (PP2A), which resulted in dephosphorylation of HDAC4. Taken together, these results suggest that PTHrP regulates cleavage division progression and blastocyst formation through the AKT/cyclin D1 pathway and that PTHrP modulates histone acetylation patterns through nuclear translocation of HDAC4 via PP2A-dependent HDAC4 dephosphorylation during preimplantation embryonic development in mice.


Assuntos
Blastocisto/metabolismo , Ciclina D1/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetilação , Transporte Ativo do Núcleo Celular , Animais , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilases/genética , Camundongos , Proteína Relacionada ao Hormônio Paratireóideo/genética , Fosforilação , Proteína Fosfatase 2/metabolismo , Transdução de Sinais
16.
Adv Exp Med Biol ; 1300: 137-150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33523432

RESUMO

In this chapter, we first gave a brief introduction to the detriments of cigarette smoking, with an emphasis on its adverse effects on female reproductive health. Then, we outlined recent advances about the impacts of cigarette smoke on preimplantation embryo development. Additionally, toxicities of cadmium and benzo(a)pyrene (BaP) at this specific developmental window were also discussed, to illustrate the potential mechanisms involved in cigarette smoke-associated embryotoxicity. Finally, we provide an overview of the issues to be solved in the future research. Further studies about the molecular mechanism of cigarette smoking-associated female infertility may provide vital insights into developing new interventions for the women smokers and thus improving their reproductive outcomes.


Assuntos
Fumar Cigarros , Fumar Cigarros/efeitos adversos , Desenvolvimento Embrionário , Feminino , Humanos , Gravidez , Fumaça , Fumar/efeitos adversos , Nicotiana
17.
Am J Physiol Cell Physiol ; 320(1): C30-C44, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052068

RESUMO

Development of the mammalian preimplantation embryo is influenced by autocrine/paracrine factors and the availability of nutrients. Deficiencies of these during in vitro culture reduce the success of assisted reproductive technologies. The mechanistic target of rapamycin complex 1 (mTORC1) pathway integrates external and internal signals, including those by amino acids (AAs), to promote normal preimplantation development. For this reason, AAs are often included in embryo culture media. In this study, we examined how withdrawal and addition of AAs to culture media modulate mTORC1 pathway activity compared with its activity in mouse embryos developed in vivo. Phosphorylation of signaling components downstream of mTORC1, namely, p70 ribosomal protein S6 kinase (p70S6K), ribosomal protein S6, and 4E binding protein 1 (4E-BP1), and that of protein kinase B (Akt), which lies upstream of mTORC1, changed significantly across stages of embryos developed in vivo. For freshly isolated blastocysts placed in vitro, the absence of AAs in the culture medium, even for a few hours, decreased mTORC1 signaling, which could only be partially restored by their addition. Long-term culture of early embryos to blastocysts in the absence of AAs decreased mTORC1 signaling to a greater extent and again this could only be partially restored by their inclusion. This failure to fully restore is probably due to decreased phosphatidylinositol 3-kinase (PI3K)/Akt/mTORC2 signaling in culture, as indicated by decreased P-AktS473. mTORC2 lies upstream of mTORC1 and is insensitive to AAs, and its reduced activity probably results from loss of maternal/autocrine factors. These data highlight reduced mTORC1/2 signaling activity correlating with compromised development in vitro and show that the addition of AAs can only partially offset these effects.


Assuntos
Aminoácidos/deficiência , Blastocisto/enzimologia , Meios de Cultura/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Técnicas de Cultura Embrionária , Feminino , Masculino , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Fatores de Tempo
18.
Reprod Biomed Online ; 41(5): 757-766, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32972872

RESUMO

RESEARCH QUESTION: Proinflammatory advanced glycation end products (AGE), highly elevated within the uterine cavity of obese women, compromise endometrial function. Do AGE also impact preimplantation embryo development and function? DESIGN: Mouse embryos were cultured in AGE equimolar to uterine fluid concentrations in lean (1-2 µmol/l) or obese (4-8 µmol/l) women. Differential nuclear staining identified cell allocation to inner cell mass (ICM) and trophectoderm (TE) (day 4 and 5 of culture). Cell apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUDP nick-end labelling assay (day 5). Day 4 embryos were placed on bovine serum albumin/fibronectin-coated plates and embryo outgrowth assessed 93 h later as a marker of implantation potential. AGE effects on cell lineage allocation were reassessed following pharmacological interventions: either 12.5 nmol/l AGE receptor (RAGE) antagonist; 0.1 nmol/l metformin; or combination of 10 µmol/l acetyl-l-carnitine, 10 µmol/l N-acetyl-l-cysteine, and 5 µmol/l alpha-lipoic acid. RESULTS: 8 µmol/l AGE reduced: hatching rates (day 5, P < 0.01); total cell number (days 4, 5, P < 0.01); TE cell number (day 5, P < 0.01), and embryo outgrowth (P < 0.01). RAGE antagonism improved day 5 TE cell number. CONCLUSIONS: AGE equimolar with the obese uterine environment detrimentally impact preimplantation embryo development. In natural cycles, prolonged exposure to AGE may developmentally compromise embryos, whereas following assisted reproductive technology cycles, placement of a high-quality embryo into an adverse 'high AGE' environment may impede implantation success. The modest impact of short-term RAGE antagonism on improving embryo outcomes indicates preconception AGE reduction via pharmacological or dietary intervention may improve reproductive outcomes for overweight/obese women.


Assuntos
Desenvolvimento Embrionário/fisiologia , Produtos Finais de Glicação Avançada/metabolismo , Obesidade/metabolismo , Útero/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Benzamidas/farmacologia , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Camundongos , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Útero/efeitos dos fármacos
19.
J Reprod Dev ; 66(5): 411-419, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32378528

RESUMO

Maintaining genomic integrity in mammalian early embryos, which are deficient in DNA damage repair, is critical for normal preimplantation and subsequent development. Abnormalities in DNA damage repair in preimplantation embryos can cause not only developmental arrest, but also diseases such as congenital disorders and cancers. Histone H4 lysine 20 monomethylation (H4K20me1) is involved in DNA damage repair and regulation of gene expression. However, little is known about the role of H4K20me1 during mouse preimplantation development. In this study, we revealed that H4K20me1 mediated by SETD8 is involved in maintaining genomic integrity. H4K20me1 was present throughout preimplantation development. In addition, reduction in the level of H4K20me1 by inhibition of SETD8 activity or a dominant-negative mutant of histone H4 resulted in developmental arrest at the S/G2 phase and excessive accumulation of DNA double-strand breaks. Together, our results suggest that H4K20me1, a type of epigenetic modification, is associated with the maintenance of genomic integrity and is essential for preimplantation development. A better understanding of the mechanisms involved in maintaining genome integrity during preimplantation development could contribute to advances in reproductive medicine and technology.


Assuntos
Blastocisto/citologia , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Epigênese Genética , Histona-Lisina N-Metiltransferase/genética , Mutação , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ciclo Celular/fisiologia , Feminino , Fertilização in vitro , Genoma , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos ICR , Oócitos/citologia , Proteína Supressora de Tumor p53/metabolismo
20.
Dev Cell ; 53(5): 545-560.e7, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32442396

RESUMO

Embryonic genome activation (EGA) is orchestrated by an intrinsic developmental program initiated during oocyte maturation with translation of stored maternal mRNAs. Here, we show that tankyrase, a poly(ADP-ribosyl) polymerase that regulates ß-catenin levels, undergoes programmed translation during oocyte maturation and serves an essential role in mouse EGA. Newly translated TNKS triggers proteasomal degradation of axin, reducing targeted destruction of ß-catenin and promoting ß-catenin-mediated transcription of target genes, including Myc. MYC mediates ribosomal RNA transcription in 2-cell embryos, supporting global protein synthesis. Suppression of tankyrase activity using knockdown or chemical inhibition causes loss of nuclear ß-catenin and global reductions in transcription and histone H3 acetylation. Chromatin and transcriptional profiling indicate that development arrests prior to the mid-2-cell stage, mediated in part by reductions in ß-catenin and MYC. These findings indicate that post-transcriptional regulation of tankyrase serves as a ligand-independent developmental mechanism for post-translational ß-catenin activation and is required to complete EGA.


Assuntos
Blastocisto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Tanquirases/metabolismo , beta Catenina/genética , Animais , Blastocisto/citologia , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Tanquirases/genética , Regulação para Cima , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA