Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Int J Biol Macromol ; 280(Pt 3): 135972, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39322139

RESUMO

Lung cancer remains a major driver of global morbidity and mortality, and diagnosing lung tumors early in their development is vital to maximizing treatment efficacy and patient survival. Several biomarkers, including CYFRA 21-1, NSE, ProGRP, CEA, and miRNA, have been identified as reliable indicators for early lung cancer detection and monitoring treatment progress. However, the minute changes in the levels of these biomarkers during the early stages of disease necessitate advanced detection platforms. In this space, electrochemical biosensors have currently emerged as robust tools for early lung cancer screening and diagnosis owing to their low costs, rapid responses, and superior sensitivity and selectivity. This review provides an up-to-date overview of the application of electrochemiluminescence, photoelectrochemical, and other electrochemical analytical strategies for detecting lung cancer-associated protein biomarkers, and miRNA. This review compares these techniques to provide a concise overview of the principles underlying these electrochemical analytical methods, the preparation of their components, and the performance of the resulting biosensors. Lastly, a discussion of the challenges and opportunities associated with electrochemical biosensors detection of lung cancer-associated biomarkers are provided.

2.
Adv Cancer Res ; 161: 31-69, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39032952

RESUMO

Prostate cancer (PCa) is the most common non-skin cancer among men in the United States. However, the widely used protein biomarker in PCa, prostate-specific antigen (PSA), while useful for initial detection, its use alone cannot detect aggressive PCa and can lead to overtreatment. This chapter provides an overview of PCa protein biomarker development. It reviews the state-of-the-art liquid chromatography-mass spectrometry-based proteomics technologies for PCa biomarker development, such as enhancing the detection sensitivity of low-abundance proteins through antibody-based or antibody-independent protein/peptide enrichment, enriching post-translational modifications such as glycosylation as well as information-rich extracellular vesicles, and increasing accuracy and throughput using advanced data acquisition methodologies. This chapter also summarizes recent PCa biomarker validation studies that applied those techniques in diverse specimen types, including cell lines, tissues, proximal fluids, urine, and blood, developing novel protein biomarkers for various clinical applications, including early detection and diagnosis, prognosis, and therapeutic intervention of PCa.


Assuntos
Biomarcadores Tumorais , Neoplasias da Próstata , Proteômica , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Proteômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos
3.
World J Gastrointest Oncol ; 16(7): 2971-2987, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39072170

RESUMO

BACKGROUND: The majority of colorectal cancer (CRC) cases develop from precursor advanced adenoma (AA). With the development of proteomics technologies, blood protein biomarkers have potential applications in the early screening of AA and CRC in the general population. AIM: To identify serum protein biomarkers for the early screening of AA and CRC. METHODS: We collected 43 serum samples from 8 normal controls (NCs), 19 AA patients and 16 CRC patients at China-Japan Friendship Hospital. Quantitative proteomic analysis was performed using liquid chromatography-mass spectrometry/mass spectrometry and data independent acquisition, and differentially expressed proteins (DEPs) with P-values < 0.05 and absolute fold changes > 1.5 were screened out, followed by bioinformatics analysis. Prognosis was further analyzed based on public databases, and proteins expression in tissues were validated by immunohistochemistry. RESULTS: A total of 2132 proteins and 17365 peptides were identified in the serum samples. There were 459 upregulated proteins and 118 downregulated proteins in the NC vs AA group, 289 and 180 in the NC vs CRC group, and 52 and 248 in the AA vs CRC group, respectively. Bioinformatic analysis revealed that these DEPs had different functions and participated in extensive signaling pathways. We also identified DIAPH1, VASP, RAB11B, LBP, SAR1A, TUBGCP5, and DOK3 as important proteins for the progression of AA and CRC. Furthermore, VASP (P < 0.01), LBP (P = 0.01), TUBGCP5 (P < 0.01), and DOK3 (P < 0.01) were associated with a poor prognosis. In addition, we propose that LBP and VASP may be more promising protein biomarkers for the early screening of colorectal tumors. CONCLUSION: Our study elucidated the serum proteomic profiles of AA and CRC patients, and the identified proteins, such as LBP and VASP, may contribute to the early detection of AA and CRC.

4.
Biomed J ; : 100752, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901798

RESUMO

Liver cancer stands as the fifth leading cause of cancer-related deaths globally. Hepatocellular carcinoma (HCC) comprises approximately 85%-90% of all primary liver malignancies. However, only 20-30% of HCC patients qualify for curative therapy, primarily due to the absence of reliable tools for early detection and prognosis of HCC. This underscores the critical need for molecular biomarkers for HCC management. Since proteins reflect disease status directly, proteomics has been utilized in biomarker developments for HCC. In particular, proteomics coupled with liquid chromatography-mass spectrometer (LC-MS) methods facilitate the process of discovering biomarker candidates for diagnosis, prognosis, and therapeutic strategies. In this work, we investigated LC-MS-based proteomics methods through recent reference reviews, with a particular focus on sample preparation and LC-MS methods appropriate for the discovery of HCC biomarkers and their clinical applications. We classified proteomics studies of HCC according to sample types, and we examined the coverage of protein biomarker candidates based on LC-MS methods in relation to study scales and goals. Comprehensively, we proposed protein biomarker candidates categorized by sample types and biomarker types for appropriate clinical use. In this review, we summarized recent LC-MS-based proteomics studies on HCC and proposed potential protein biomarkers. Our findings are expected to expand the understanding of HCC pathogenesis and enhance the efficiency of HCC diagnosis and prognosis, thereby contributing to improved patient outcomes.

5.
ACS Appl Bio Mater ; 7(3): 1878-1887, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38414330

RESUMO

Cancer is one of the most actively researched diseases having a high mortality rate when not detected at an early stage. Thus, rapid, simultaneous, and sensitive quantification of cancer biomarkers plays an important role in early diagnosis, with patient impact to disability adjusted life years. Herein, a diatomite-based SERS flexible platform for the rapid and sensitive detection of circulating cancer-specific protein biomarkers in serum is presented. In this approach, diatomite/AgNPs strips with maximum SERS activity prepared using the layer-by-layer (LbL) technique were modified with specific antibodies, and specific antigens (HER2, CA15-3, PSA, and MUC4) were captured and detected. By using Raman probes specific to the captured antigens in serum, a SERS limit of detection (LOD) of 0.1 ng/mL was measured (calculated LOD < 0.1 ng/mL). This value is lower than the cutoff amount of cancer antigens in the person's blood. The specificity for the antigens of each antibody was calculated to be higher than 95%. As a result, an immunosensor for rapid detection of cancer biomarkers in serum with good specificity, high sensitivity, good reproducibility, and low cost has been demonstrated. Overall, we show that the prepared diatomite-based SERS substrate with a high surface-to-volume ratio is a useable platform for immunoassay tests.


Assuntos
Técnicas Biossensoriais , Terra de Diatomáceas , Neoplasias , Humanos , Biomarcadores Tumorais , Reprodutibilidade dos Testes , Imunoensaio , Anticorpos , Neoplasias/diagnóstico
6.
J Transl Med ; 22(1): 188, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383428

RESUMO

BACKGROUND: Diagnosis of colorectal cancer (CRC) during early stages can greatly improve patient outcome. Although technical advances in the field of genomics and proteomics have identified a number of candidate biomarkers for non-invasive screening and diagnosis, developing more sensitive and specific methods with improved cost-effectiveness and patient compliance has tremendous potential to help combat the disease. METHODS: We enrolled three cohorts of 479 subjects, including 226 CRC cases, 197 healthy controls, and 56 advanced precancerous lesions (APC). In the discovery cohort, we used quantitative mass spectrometry to measure the expression profile of plasma proteins and applied machine-learning to select candidate proteins. We then developed a targeted mass spectrometry assay to measure plasma concentrations of seven proteins and a logistic regression classifier to distinguish CRC from healthy subjects. The classifier was further validated using two independent cohorts. RESULTS: The seven-protein panel consisted of leucine rich alpha-2-glycoprotein 1 (LRG1), complement C9 (C9), insulin-like growth factor binding protein 2 (IGFBP2), carnosine dipeptidase 1 (CNDP1), inter-alpha-trypsin inhibitor heavy chain 3 (ITIH3), serpin family A member 1 (SERPINA1), and alpha-1-acid glycoprotein 1 (ORM1). The panel classified CRC and healthy subjects with high accuracy, since the area under curve (AUC) of the training and testing cohort reached 0.954 and 0.958. The AUC of the two independent validation cohorts was 0.905 and 0.909. In one validation cohort, the panel had an overall sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 89.9%, 81.8%, 89.2%, and 82.9%, respectively. In another blinded validation cohort, the panel classified CRC from healthy subjects with a sensitivity of 81.5%, specificity of 97.9%, and overall accuracy of 92.0%. Finally, the panel was able to detect APC with a sensitivity of 49%. CONCLUSIONS: This seven-protein classifier is a clear improvement compared to previously published blood-based protein biomarkers for detecting early-stage CRC, and is of translational potential to develop into a clinically useful assay.


Assuntos
Neoplasias Colorretais , Proteômica , Humanos , Estudos de Casos e Controles , Proteômica/métodos , Biomarcadores Tumorais , Detecção Precoce de Câncer/métodos , Glicoproteínas , Neoplasias Colorretais/patologia
7.
BMC Cancer ; 24(1): 137, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279090

RESUMO

BACKGROUND: Forkhead-box protein P1 (FOXP1) has been proposed to have both oncogenic and tumor-suppressive properties, depending on tumor heterogeneity. However, the role of FOXP1 in intrahepatic cholangiocarcinoma (ICC) has not been previously reported. METHODS: Immunohistochemistry was performed to detect FOXP1 expression in ICC and normal liver tissues. The relationship between FOXP1 levels and the clinicopathological characteristics of patients with ICC was evaluated. Finally, in vitro and in vivo experiments were conducted to examine the regulatory role of FOXP1 in ICC cells. RESULTS: FOXP1 was significantly downregulated in the ICC compared to their peritumoral tissues (p < 0.01). The positive rates of FOXP1 were significantly lower in patients with poor differentiation, lymph node metastasis, invasion into surrounding organs, and advanced stages (p < 0.05). Notably, patients with FOXP1 positivity had better outcomes (overall survival) than those with FOXP1 negativity (p < 0.05), as revealed by Kaplan-Meier survival analysis. Moreover, Cox multivariate analysis showed that negative FOXP1 expression, advanced TNM stages, invasion, and lymph node metastasis were independent prognostic risk factors in patients with ICC. Lastly, overexpression of FOXP1 inhibited the proliferation, migration, and invasion of ICC cells and promoted apoptosis, whereas knockdown of FOXP1 had the opposite role. CONCLUSION: Our findings suggest that FOXP1 may serve as a novel outcome predictor for ICC as well as a tumor suppressor that may contribute to cancer treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Prognóstico , Metástase Linfática/patologia , Proliferação de Células , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
8.
Angew Chem Int Ed Engl ; 62(51): e202315113, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37937998

RESUMO

The protein phenotypes of extracellular vesicles (EVs) have emerged as promising biomarkers for cancer diagnosis and treatment monitoring. However, the technical challenges in rapid isolation and multiplexed molecular detection of EVs have limited their clinical practice. Herein, we developed a magnetically driven tandem chip to achieve streamlined rapid isolation and multiplexed profiling of surface protein biomarkers of EVs. Driven by magnetic force, the magnetic nanomixers not only act as tiny stir bars to promote mass transfer and enhance reaction efficiency of EVs, but also transport on communicating vessels of the tandem chip continuously and expedite the assay workflow. We designed cyclic surface enhancement of Raman scattering (SERS) tags to bind with target EVs and then release them by exonuclease I, eliminating steric hindrance and amplifying the SERS signal of multiple protein biomarkers on EVs. Due to the excellent assay performance, six breast cancer biomarkers were detected simultaneously on EVs using only 10 µL plasma within 1.5 h. The unweighted SUM signature offers great accuracy in discriminating breast cancer patients from healthy donors. Overall, the dynamic magnetic driving tandem chip offers a new avenue to advance the clinical application of EV-based liquid biopsy.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares/metabolismo , Fenótipo
9.
Int J Biol Macromol ; 253(Pt 4): 126681, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37666403

RESUMO

Breast cancer is the second highest cause of cancer-related mortality in women worldwide and in the United States, accounting for around 571,000 deaths per year. Early detection of breast cancer increases treatment results and the possibility of a cure. While existing diagnostic modalities such as mammography, ultrasound, and biopsy exist, some are prohibitively expensive, uncomfortable, time-consuming, and have limited sensitivity, necessitating the development of a cost-effective, rapid, and highly sensitive approach such as an electrochemical biosensor. Our research focuses on detecting breast cancer patients using the ECM1 biomarker, which has higher expression in synthetic urine. Our study has two primary objectives: (i) Diverse ECM1 protein concentrations are measured using electrochemical impedance spectroscopy and ELISA. Establishing a standard curve for the electrochemical biosensor by calibrating ECM-1 protein levels using electrochemical impedance spectroscopy. (ii) Validation of the effectiveness of the electrochemical biosensor. This aim entails testing the unknown concentration of ECM1 in the synthetic urine to ensure the efficiency of the biosensor to detect the biomarker in the early stages. The results show that the synthetic urine solution's ECM-1 detection range ranges from 1 pg/ml to 500 ng/ml. This shows that by detecting changes in ECM-1 protein levels in patient urine, the electrochemical biosensor can consistently diagnose breast cancer in its early stages or during increasing recurrence. Our findings highlight the electrochemical biosensor's efficacy in detecting early-stage breast cancer biomarkers (ECM-1) in patient urine. Further studies will be conducted with patient samples and develop handheld hardware for patient usage.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Biomarcadores Tumorais/metabolismo , Proteômica , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Proteínas da Matriz Extracelular
10.
Hum Mol Genet ; 32(22): 3181-3193, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37622920

RESUMO

Prostate cancer (PCa) brings huge public health burden in men. A growing number of conventional observational studies report associations of multiple circulating proteins with PCa risk. However, the existing findings may be subject to incoherent biases of conventional epidemiologic studies. To better characterize their associations, herein, we evaluated associations of genetically predicted concentrations of plasma proteins with PCa risk. We developed comprehensive genetic prediction models for protein levels in plasma. After testing 1308 proteins in 79 194 cases and 61 112 controls of European ancestry included in the consortia of BPC3, CAPS, CRUK, PEGASUS, and PRACTICAL, 24 proteins showed significant associations with PCa risk, including 16 previously reported proteins and eight novel proteins. Of them, 14 proteins showed negative associations and 10 showed positive associations with PCa risk. For 18 of the identified proteins, potential functional somatic changes of encoding genes were detected in PCa patients in The Cancer Genome Atlas (TCGA). Genes encoding these proteins were significantly involved in cancer-related pathways. We further identified drugs targeting the identified proteins, which may serve as candidates for drug repurposing for treating PCa. In conclusion, this study identifies novel protein biomarker candidates for PCa risk, which may provide new perspectives on the etiology of PCa and improve its therapeutic strategies.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Proteínas Sanguíneas/genética , Biomarcadores Tumorais/genética
11.
J Proteome Res ; 22(10): 3200-3212, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37624590

RESUMO

The incidence of thyroid cancer (TC) has been increasing over the last 50 years worldwide. A higher rate of overdiagnosis in indolent thyroid lesions has resulted in unnecessary treatment. An accurate detection of TC at an early stage is highly demanded. We aim to develop an enhanced isobaric labeling-based high-throughput plasma quantitative proteomics to identify biomarkers in a discovery cohort. Selected candidates were tested by enzyme-linked immunosorbent assay (ELISA) in the training cohort and validation cohort. In total, 1063 proteins were quantified, and 129 proteins were differentially expressed between patients and healthy subjects. Serum levels of ISG15 and PLXNB2 were significantly elevated in patients with papillary thyroid cancer (PTC) or thyroid adenoma, compared to healthy subjects (p < 0.001) and patients with nodular goiter (p < 0.001). Receiver operating characteristic (ROC) analysis of combined markers (ISG15 and PLXNB2) significantly distinguished PTC from healthy control (HC) subjects. Similar differentiations were also found between thyroid adenoma and HC subjects. Notably, this combined marker could distinguish stage-I PTC from HC subjects (area under the curve (AUC) = 0.872). Our results revealed that ISG15 and PLXNB2 are independent diagnostic biomarkers for PTC and thyroid adenoma, showing a promising value for the early detection of PTC.

12.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445651

RESUMO

Triage methods for cervical cancer detection show moderate accuracy and present considerable false-negative and false-positive result rates. A complementary diagnostic parameter could help improve the accuracy of identifying patients who need treatment. A pilot study was performed using a targeted proteomics approach with opportunistic ThinPrep samples obtained from women collected at the hospital's outpatient clinic to determine the concentration levels of minichromosome maintenance-3 (MCM3) and envoplakin (EVPL) proteins. Forty samples with 'negative for intraepithelial lesion or malignancy' (NILM), 21 samples with 'atypical squamous cells of undetermined significance' (ASC-US), and 33 samples with 'low-grade squamous intraepithelial lesion and worse' (≥LSIL) were analyzed, using cytology and the patients' histology reports. Highly accurate concordance was obtained for gold-standard-confirmed samples, demonstrating that the MCM3/EVPL ratio can discriminate between non-dysplastic and dysplastic samples. On that account, we propose that MCM3 and EVPL are promising candidate protein biomarkers for population-based cervical cancer screening.


Assuntos
Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/patologia , Displasia do Colo do Útero/patologia , Detecção Precoce de Câncer , Projetos Piloto , Proteômica , Infecções por Papillomavirus/patologia , Papillomaviridae/genética , Componente 3 do Complexo de Manutenção de Minicromossomo
13.
J Proteome Res ; 22(6): 2055-2066, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37171072

RESUMO

Liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) has widespread clinical use for detection of inborn errors of metabolism, therapeutic drug monitoring, and numerous other applications. This technique detects proteolytic peptides as surrogates for protein biomarker expression, mutation, and post-translational modification in individual clinical assays and in cancer research with highly multiplexed quantitation across biological pathways. LC-MRM for protein biomarkers must be translated from multiplexed research-grade panels to clinical use. LC-MRM panels provide the capability to quantify clinical biomarkers and emerging protein markers to establish the context of tumor phenotypes that provide highly relevant supporting information. An application to visualize and communicate targeted proteomics data will empower translational researchers to move protein biomarker panels from discovery to clinical use. Therefore, we have developed a web-based tool for targeted proteomics that provides pathway-level evaluations of key biological drivers (e.g., EGFR signaling), signature scores (representing phenotypes) (e.g., EMT), and the ability to quantify specific drug targets across a sample cohort. This tool represents a framework for integrating summary information, decision algorithms, and risk scores to support Physician-Interpretable Phenotypic Evaluation in R (PIPER) that can be reused or repurposed by other labs to communicate and interpret their own biomarker panels.


Assuntos
Proteínas , Pesquisa Translacional Biomédica , Proteínas/análise , Peptídeos/metabolismo , Biomarcadores/análise , Fenótipo
14.
Mol Cell Proteomics ; 22(7): 100585, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37244517

RESUMO

Histidine-rich glycoprotein (HRG) is a liver-produced protein circulating in human serum at high concentrations of around 125 µg/ml. HRG belongs to the family of type-3 cystatins and has been implicated in a plethora of biological processes, albeit that its precise function is still not well understood. Human HRG is a highly polymorphic protein, with at least five variants with minor allele frequencies of more than 10%, variable in populations from different parts of the world. Considering these five mutations we can theoretically expect 35 = 243 possible genetic HRG variants in the population. Here, we purified HRG from serum of 44 individual donors and investigated by proteomics the occurrence of different allotypes, each being either homozygote or heterozygote for each of the five mutation sites. We observed that some mutational combinations in HRG were highly favored, while others were apparently missing, although they ought to be present based on the independent assembly of these five mutation sites. To further explore this behavior, we extracted data from the 1000 genome project (n ∼ 2500 genomes) and assessed the frequency of different HRG mutants in this larger dataset, observing a prevailing agreement with our proteomics data. From all the proteogenomic data we conclude that the five different mutation sites in HRG are not occurring independently, but several mutations at different sites are fully mutually exclusive, whereas others are highly intwined. Specific mutations do also affect HRG glycosylation. As the levels of HRG have been suggested as a protein biomarker in a variety of biological processes (e.g., aging, COVID-19 severity, severity of bacterial infections), we here conclude that the highly polymorphic nature of the protein needs to be considered in such proteomics evaluations, as these mutations may affect HRG's abundance, structure, posttranslational modifications, and function.


Assuntos
COVID-19 , Proteogenômica , Humanos , COVID-19/genética , Proteínas/metabolismo , Processamento de Proteína Pós-Traducional
15.
J Mass Spectrom Adv Clin Lab ; 28: 30-34, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36865788

RESUMO

Mass spectrometry (MS)-based clinical proteomic Laboratory Developed Tests (LDTs) for the measurement of protein biomarkers related to endocrinology, cardiovascular disease, cancer, and Alzheimer's disease are gaining traction in clinical laboratories due to their value in supporting diagnostic and treatment decisions for patients. Under the current regulatory landscape, MS-based clinical proteomic LDTs are regulated by Clinical Laboratory Improvement Amendments (CLIA) under the auspices of the Centers for Medicaid and Medicare Services (CMS). However, should the Verifying Accurate Leading-Edge In Vitro Clinical Test Development (VALID) Act pass, it will grant the FDA greater authority to oversee diagnostic tests, including LDTs. This could impede clinical laboratories' ability to develop new MS-based proteomic LDTs to support existing and emerging patient care needs. Therefore, this review discusses the currently available MS-based proteomic LDTs and their current regulatory landscape in the context of the potential impacts imposed by the passage of the VALID Act.

16.
J Cell Mol Med ; 27(4): 587-590, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36722323

RESUMO

XPO1 (Exportin-1) is the nuclear export protein responsible for the normal shuttling of several proteins and RNA species between the nucleocytoplasmic compartment of eukaryotic cells. XPO1 recognizes the nuclear export signal (NES) of its cargo proteins to facilitate its export. Alterations of nuclear export have been shown to play a role in oncogenesis in several types of solid tumour and haematologic cancers. Over more than a decade, there has been substantial progress in targeting nuclear export in cancer using selective XPO1 inhibitors. This has resulted in recent approval for the first-in-class drug selinexor for use in relapsed, refractory multiple myeloma and diffuse large B-cell lymphoma (DLBCL). Despite these successes, not all patients respond effectively to XPO1 inhibition and there has been lack of biomarkers for response to XPO1 inhibitors in the clinic. Using haematologic malignancy cell lines and samples from patients with myelodysplastic neoplasms treated with selinexor, we have identified XPO1, NF-κB(p65), MCL-1 and p53 protein levels as protein markers of response to XPO1 inhibitor therapy. These markers could lead to the identification of response upon XPO1 inhibition for more accurate decision-making in the personalized treatment of cancer patients undergoing treatment with selinexor.


Assuntos
Neoplasias Hematológicas , Mieloma Múltiplo , Humanos , Carioferinas/genética , Transporte Ativo do Núcleo Celular , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética
17.
Anal Bioanal Chem ; 415(18): 3655-3669, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36609860

RESUMO

Proteins have been considered key building blocks of life. In particular, the protein content of an organism and a cell offers significant information for the in-depth understanding of the disease and biological processes. Single-molecule protein detection/sequencing tools will revolutionize clinical (proteomics) research, offering ultrasensitivity for low-abundance biomarker (protein) detection, which is important for the realization of early-stage disease diagnosis and single-cell proteomics. This improved detection/measurement capability delivers new sets of techniques to explore new frontiers and address important challenges in various interdisciplinary areas including nanostructured materials, molecular medicine, molecular biology, and chemistry. Importantly, fluorescence-based methods have emerged as indispensable tools for single protein detection/sequencing studies, providing a higher signal-to-noise ratio (SNR). Improvements in fluorescent dyes/probes and detector capabilities coupled with advanced (image) analysis strategies have fueled current developments for single protein biomarker detections. For example, in comparison to conventional ELISA (i.e., based on ensembled measurements), single-molecule fluorescence detection is more sensitive, faster, and more accurate with reduced background, high-throughput, and so on. In comparison to MS sequencing, fluorescence-based single-molecule protein sequencing can achieve the sequencing of peptides themselves with higher sensitivity. This review summarizes various typical single-molecule detection technologies including their methodology (modes of operation), detection limits, advantages and drawbacks, and current challenges with recent examples. We describe the fluorescence-based single-molecule protein sequencing/detection based on five kinds of technologies such as fluorosequencing, N-terminal amino acid binder, nanopore light sensing, and DNA nanotechnology. Finally, we present our perspective for developing high-performance fluorescence-based sequencing/detection techniques.


Assuntos
Peptídeos , Proteínas , Proteínas/análise , Nanotecnologia/métodos , DNA/química , Biomarcadores
18.
Micromachines (Basel) ; 13(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36557345

RESUMO

Ovarian tumors/cancers are threatening women's health worldwide, which demands high-performance detection methods and accurate strategies to effectively detect, diagnose and treat them. Here, we report a nanographene oxide particle-functionalized microfluidic fluorescence biosensor to simultaneously detect four biomarkers, CA125, HE4, CEA and APF, for ovarian tumor/cancer diagnosis. The developed biosensor exhibits good selectivity and a large biomarker detection range with a limit of detection of 0.01 U/mL for CA125 and ~1 pg/mL for HE4, CEA and APF. The current results indicate that (1) the proposed biosensor is a promising tool for the simultaneous detection of multiple biomarkers in ovarian tumors/cancer and (2) CA125 and HE4 are strong indicators, AFP may be helpful, and CEA is a weak biomarker for ovarian tumor/cancer diagnosis. The proposed biosensor would be a potential tool, and an analytical approach for the simultaneous detection of multiple biomarkers will provide a new strategy for the early screening, diagnosis and treatment of ovarian tumors/cancers, as well as other cancers.

19.
Biomark Res ; 10(1): 88, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461062

RESUMO

BACKGROUND: Rates of endometrial cancer (EC) are increasing. For a definitive diagnosis, women undergo various time-consuming and painful medical procedures, such as endometrial biopsy with or without hysteroscopy, and dilation and curettage, which may create a barrier to early detection and treatment, particularly for women with inadequate healthcare access. Thus, there is a need to develop robust EC diagnostics based on non- or minimally-invasive sampling. The objective of this study was to quantify a broad range of immuno-oncology proteins in cervicovaginal lavage (CVL) samples and investigate these proteins as predictive diagnostic biomarkers for EC. METHODS: One hundred ninety-two women undergoing hysterectomy for benign or malignant indications were enrolled in this cross-sectional study. Classification of women to four disease groups: benign conditions (n = 108), endometrial hyperplasia (n = 18), low-grade endometrioid carcinoma (n = 53) and other EC subtypes (n = 13) was based on histopathology of biopsy samples collected after the surgery. CVL samples were collected in the operating room during the standard-of-care hysterectomy procedure. Concentrations of 72 proteins in CVL samples were evaluated using multiplex immunoassays. Global protein profiles were assessed using principal component and hierarchical clustering analyses. The relationships between protein levels and disease groups and disease severity were determined using Spearman correlation, univariate and multivariate receiver operating characteristics, and logistic regression analyses. RESULTS: Women with EC and benign conditions exhibited distinctive cervicovaginal protein profiles. Several proteins in CVL samples (e.g., an immune checkpoint protein, TIM-3, growth factors, VEGF, TGF-α, and an anti-inflammatory cytokine, IL-10) discriminated EC from benign conditions, particularly, when tested in combinations with CA19-9, CA125, eotaxin, G-CSF, IL-6, MCP-1, MDC, MCP-3 and TRAIL (sensitivity of 86.1% and specificity of 87.9%). Furthermore, specific biomarkers (e.g., TIM-3, VEGF, TGF-α, TRAIL, MCP-3, IL-15, PD-L2, SCF) associated with histopathological tumor characteristics, including histological type and grade, tumor size, presence and depth of myometrial invasion or mismatch repair protein status, implying their potential utility for disease prognosis or monitoring therapies. CONCLUSIONS: This proof-of-principle study demonstrated that cervicovaginal sampling coupled with multiplex immunoassay technology can offer a minimally to non-invasive method for EC detection.

20.
Pharmaceutics ; 14(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297654

RESUMO

Bladder cancer (BC) recurrence is one of the primary clinical problems encountered by patients following chemotherapy. However, the mechanisms underlying their resistance to chemotherapy remain unclear. Alteration in the pattern of membrane proteins (MPs) is thought to be associated with this recurrence outcome, often leading to cell dysfunction. Since MPs are found throughout the cell membrane, they have become the focus of attention for cancer diagnosis and treatment. Identifying specific and sensitive biomarkers for BC, therefore, requires a major collaborative effort. This review describes studies on membrane proteins as potential biomarkers to facilitate personalised medicine. It aims to introduce and discuss the types and significant functions of membrane proteins as potential biomarkers for future medicine. Other types of biomarkers such as DNA-, RNA- or metabolite-based biomarkers are not included in this review, but the focus is mainly on cell membrane surface protein-based biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA