Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Chem Biol Interact ; 395: 111008, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38636791

RESUMO

Oxidative protein damage involving carbonylation of respiratory tract proteins typically accompanies exposure to tobacco smoke. Such damage can arise via multiple mechanisms, including direct amino acid oxidation by reactive oxygen species or protein adduction by electrophilic aldehydes. This study investigated the relative importance of these pathways during exposure of a model protein to fresh cigarette emission extracts. Briefly, protein carbonyl adducts were estimated in bovine serum albumin following incubation in buffered solutions with whole cigarette emissions extracts prepared from either a single 1R6F research cigarette or a single "Heat-not-Burn" e-cigarette. Although both extracts caused concentration-dependent protein carbonylation, conventional cigarette extracts produced higher adduct yields than e-cigarette extracts. Superoxide radical generation by conventional and e-cigarette emissions was assessed by monitoring nitro blue tetrazolium reduction and was considerably lower in extracts made from "Heat-Not-Burn" e-cigarettes. The superoxide dismutase/catalase mimic EUK-134 strongly suppressed radical production by whole smoke extracts from conventional cigarettes, however, it did not diminish protein carbonyl adduction when incubating smoke extracts with the model protein. In contrast, edaravone, a neuroprotective drug with strong carbonyl-trapping properties, strongly suppressed protein damage without inhibiting superoxide formation. Although these findings require extension to appropriate cell-based and in vivo systems, they suggest reactive aldehydes in tobacco smoke make greater contributions to oxidative protein damage than smoke phase radicals.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Carbonilação Proteica , Soroalbumina Bovina , Fumaça , Superóxidos , Produtos do Tabaco , Superóxidos/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Fumaça/efeitos adversos , Soroalbumina Bovina/química , Produtos do Tabaco/efeitos adversos , Bovinos , Animais , Nicotiana/química , Temperatura Alta
2.
Int J Health Sci (Qassim) ; 18(2): 7-16, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455602

RESUMO

Objective: Hyperglycemia, hyperlipidemia, and systemic resistance to insulin are typical manifestations of type 2 diabetes mellitus. One of the main pathophysiological alterations in insulin-sensitive organs is mitochondrial malfunction associated with oxidative stress and diminished fuel utilization. ß-Caryophyllene (BCP) has qualities that are anti-inflammatory, anti-tumor, antioxidant, hypolipidemic, and hypoglycemic. In this work, rats suffering from type 2 diabetes were given a diet high in fat and sugar with the aim of examining the ameliorative effects of BCP on oxidative stress-mediated hepatic mitochondrial dysfunction. Methods: The diabetic condition was experimentally induced by feeding rats a high-calorie diet. The rats were then administered the recommended doses of BCP and metformin (MET) once every day for 30 days at 200 mg and 50 mg concentrations per kg of body weight, respectively, to prove the hypothesis of the study that BCP ameliorates mitochondrial dysfunction induced by oxidative stress in diabetic rats. Mitochondrial dysfunction can be identified by indicators such as oxidative stress, cardiolipin dienes, membrane phospholipid concentration, and mitochondrial enzymes. Results: The mitochondria in the liver of rats with diabetes exhibit elevated redox imbalance-related parameters and malfunctioning mitochondria with peroxided cardiolipin, while their amounts of glutathione and phospholipids are lowered. Oxidative stress indices, ameliorated mitochondrial activities, and peroxided cardiolipin were drastically decreased in rats with diabetes treated with BCP or MET. Conclusions: The present research demonstrated that BCP improved the vital role of mitochondria by reducing free radical dominance in type 2 diabetic experimental rats fed high-fat and high-sugar diets.

3.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903292

RESUMO

The aim of this study was to test the phytotoxicity and mode of action of bisphenol A (BPA) on Allium cepa using a multibiomarker approach. A. cepa roots were exposed to BPA in concentration range 0-50 mg L-1 for 3 days. BPA even in the lowest applied concentration (1 mg L-1) reduced root length, root fresh weight, and mitotic index. Additionally, the lowest BPA concentration (1 mg L-1) decreased the level of gibberellic acid (GA3) in root cells. BPA at concentration 5 mg L-1 increased production of reactive oxygen species (ROS) that was followed by increase in oxidative damage to cells' lipids and proteins and activity of enzyme superoxide dismutase. BPA in higher concentrations (25 and 50 mg L-1) induced genome damage detected as an increase in micronucleus (MNs) and nuclear buds (NBUDs). BPA at >25 mg L-1 induced synthesis of phytochemicals. Results of this study using multibiomarker approach indicate that BPA is phytotoxic to A. cepa roots and has shown genotoxic potential to plants, thus its presence in the environment should be monitored.


Assuntos
Allium , Hormônio do Crescimento Humano , Cebolas , Espécies Reativas de Oxigênio/metabolismo , Hormônio do Crescimento , Raízes de Plantas/metabolismo , Dano ao DNA
4.
Cells ; 11(22)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36429096

RESUMO

Nitisinone (NTBC) was recently approved to treat alkaptonuria (AKU), but there is no information on its impact on oxidative stress and inflammation, which are observed in AKU. Therefore, serum samples collected during the clinical studies SONIA1 (40 AKU patients) and SONIA2 (138 AKU patients) were tested for Serum Amyloid A (SAA), CRP and IL-8 by ELISA; Advanced Oxidation Protein Products (AOPP) by spectrophotometry; and protein carbonyls by Western blot. Our results show that NTBC had no significant effects on the tested markers except for a slight but statistically significant effect for NTBC, but not for the combination of time and NTBC, on SAA levels in SONIA2 patients. Notably, the majority of SONIA2 patients presented with SAA > 10 mg/L, and 30 patients in the control group (43.5%) and 40 patients (58.0%) in the NTBC-treated group showed persistently elevated SAA > 10 mg/L at each visit during SONIA2. Higher serum SAA correlated with lower quality of life and higher morbidity. Despite no quantitative differences in AOPP, the preliminary analysis of protein carbonyls highlighted patterns that deserve further investigation. Overall, our results suggest that NTBC cannot control the sub-clinical inflammation due to increased SAA observed in AKU, which is also a risk factor for developing secondary amyloidosis.


Assuntos
Alcaptonúria , Humanos , Alcaptonúria/tratamento farmacológico , Alcaptonúria/complicações , Alcaptonúria/metabolismo , Produtos da Oxidação Avançada de Proteínas/metabolismo , Produtos da Oxidação Avançada de Proteínas/uso terapêutico , Qualidade de Vida , Biomarcadores/metabolismo , Proteína Amiloide A Sérica/metabolismo , Inflamação/metabolismo , Estresse Oxidativo
5.
Nutrients ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36615834

RESUMO

Oxidative stress is associated with playing soccer. The objective of the present report was to study the influence of different polyphenolic antioxidant-rich beverages in five-a-side/futsal players. The study was performed with a no supplemented control group (CG) and two supplemented groups with an almond-based beverage (AB) and the same beverage fortified with Lippia citriodora extract (AB + LE). At day 22, participants played a friendly futsal game. Blood extractions were performed at the beginning of intervention (day 1), before and after match (day 22) to determine oxidative stress markers and antioxidant enzyme activities in plasma, neutrophils and peripheral blood mononuclear cells (PBMCs). Malondialdehyde increased significantly in controls after the match in neutrophils, PBMCs and plasma compared to pre-match. Protein carbonyls also increased after the match in plasma in CG. In addition, malondialdehyde levels in neutrophils were significantly lower in the supplemented groups compared to controls. Post-match samples showed significant increases in neutrophil antioxidant activities in CG. Supplemented groups displayed variable results regarding neutrophil antioxidant activities, with superoxide dismutase activity significantly lower than in controls. Finally, post-match myeloperoxidase activity increased significantly in controls compared to pre-match and supplemented groups. In conclusion, polyphenolic antioxidant and anti-inflammatory supplements could be instrumental for optimal recovery after high intensity futsal games.


Assuntos
Futebol , Humanos , Antioxidantes/metabolismo , Leucócitos Mononucleares/metabolismo , Malondialdeído , Estresse Oxidativo/fisiologia , Polifenóis/farmacologia , Futebol/fisiologia
6.
J Asthma ; 59(4): 663-672, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33380228

RESUMO

OBJECTIVE: There is evidence that reactive oxygen species, especially free radicals, produced during the immune and inflammatory response may play important roles in the development of asthma.We aimed to evaluate the levels of certain oxidative stress biomarkers and antioxidant capacity in asthma patients with different asthma control levels in comparison to healthy subjects. METHODS: A total of 120 adult allergic asthma patients and 120 healthy individuals were included in this study. Using spectrophotometric methods, we analyzed two oxidative stress markers, levels of malondialdehyde (MDA) and protein carbonyls (PC), as well as reduced glutathione (GSH), total antioxidant capacity (FRAP) and catalase activity as critical antioxidant defense parameters in the blood samples of allergic asthma patients and healthy controls. The patients were divided into 3 subgroups according to asthma control test (ACT) results: totally controlled (TCG), partially controlled (PCG) and uncontrolled (UCG) subgroups. All biomarkers were compared between the three patient subgroups, as well as between total asthma patients and control subjects. RESULTS: There were remarkable differences between the control group and the combined patient group for all parameters. A significant increase in MDA and PC, especially in the UCG (p < 0.01 and p < 0.05, respectively) was detected in comparison to other subgroups. Additionally, increased MDA and PC levels, as well as decreased GSH levels were observed in all subgroups individually in comparison to the control (p < 0.001). CONCLUSIONS: This research demonstrates the presence of severe oxidative stress, considering the increase in lipid peroxidation and protein oxidation, in patients with allergic asthma, even under controlled conditions.


Assuntos
Antioxidantes , Asma , Adulto , Biomarcadores , Glutationa/metabolismo , Humanos , Malondialdeído/metabolismo , Estresse Oxidativo/fisiologia
7.
Toxicol Rep ; 7: 1095-1102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32953462

RESUMO

Electronic cigarettes are constantly gaining ground as they are considered less harmful than conventional cigarettes, and there is also the perception that they may serve as a potential smoking cessation tool. Although the acute effects of electronic cigarette use have been extensively studied, the long-term potential adverse effects on human health remain largely unknown. It has been well-established that oxidative stress is involved in the development of various pathological conditions. So far, most studies on e-cigarettes concern the effects on the respiratory system while fewer have focused on the vascular system. In the present study, we attempted to reveal the effects of electronic cigarette refill liquids on the redox state of human endothelial cells (EA.hy926 cell line). For this purpose, the cytotoxic effect of three e-liquids with different flavors (tobacco, vanilla, apple/mint) and nicotine concentrations (0, 6, 12, 18 mg/ml) were initially examined for their impact on cell viability of EA.hy926 cells. Then, five redox biomarkers [reduced form of glutathione (GSH), reactive oxygen species (ROS), total antioxidant capacity (TAC), thiobarbituric acid reactive substances (TBARS) and protein carbonyls (CARBS)] were measured. The results showed a disturbance in the redox balance in favor of free radicals in tobacco flavored e-liquids while vanilla flavored e-liquids exhibited a more complex profile depending on the nicotine content. The most interesting finding of the present study concerns the apple/mint flavored e-liquids that seemed to activate the cellular antioxidant defense and, thus, to protect the cells from the adverse effects of free radicals. Conclusively, it appears that the flavorings and not the nicotine content play a key role in the oxidative stress-induced toxicity of the e-liquids.

8.
Toxicol Rep ; 7: 421-432, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140426

RESUMO

Olive oil (OO) possesses a predominant role in the diet of Mediterranean countries. According to a health claim approved by the European Food Safety Authority, OO protects against oxidative stress­induced lipid peroxidation in human blood, when it contains at least 5 mg of hydroxytyrosol and its derivatives per 20 g. However, studies regarding the effects of a total OO biophenols on redox status in vivo are scarce and either observational and do not provide a holistic picture of their action in tissues. Following a series of in vitro screening tests an OO containing biophenols at 800 mg/kg of OO was administered for 14 days to male Wistar rats at a dose corresponding to 20 g OO/per day to humans. Our results showed that OO reinforced the antioxidant profile of blood, brain, muscle and small intestine, it induced oxidative stress in spleen, pancreas, liver and heart, whereas no distinct effects were observed in lung, colon and kidney. The seemingly negative effects of OO follow the recently formulated idea in toxicology, namely the real life exposure scenario. This study reports that OO, although considered a nutritional source rich in antioxidants, it exerts a tissues specific action when administered in vivo.

9.
Exp Gerontol ; 127: 110712, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31472257

RESUMO

Dietary methionine restriction (MR) where methionine is the sole source of sulfur amino acid increases lifespan in diverse species. Methionine restricted rodents experience a decrease in glutathione (GSH), a major antioxidant, in several tissues, which is paradoxical to longevity interventions because tissues with low GSH might experience more oxidative damage. Liver plays a key role in GSH synthesis and here we examined how MR influences GSH metabolism in the liver. We also hypothesised that low GSH might be subsidized by compensatory pathway(s) in the liver. To investigate GSH synthesis and antioxidant responses, Fischer-344 rats were given either a MR diet or a control diet for 8 weeks. Based on γ-glutamylcysteine synthetase activity, GSH synthetic capacity did not respond to low dietary methionine availability. Tissue level protein and lipid oxidation markers do not support elevated oxidative damage, despite low GSH availability. Whole tissue and mitochondrial level responses to MR differed. Specifically, the activity of glutathione reductase and thioredoxin reductase increase in whole liver tissue which might offset the effects of declined GSH availability whereas mitochondrial GSH levels were unperturbed by MR. Moreover, enhanced proton leak in liver mitochondria by MR (4 week) presumably diminishes ROS production. Taken together, we suggest that the effect of low GSH in liver tissue is subsidized, at least in part, by increased antioxidant activity and possibly by enhanced mitochondrial proton leak.


Assuntos
Antioxidantes/fisiologia , Glutationa/metabolismo , Metionina/deficiência , Mitocôndrias Hepáticas/metabolismo , Animais , Respiração Celular/fisiologia , Dipeptídeos/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutationa/biossíntese , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/fisiologia , Consumo de Oxigênio/fisiologia , Carbonilação Proteica/fisiologia , Distribuição Aleatória , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
10.
J Cachexia Sarcopenia Muscle ; 10(6): 1339-1346, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436047

RESUMO

BACKGROUND: A poor fat-soluble micronutrient (FMN) and a high oxidative stress status are associated with frailty. Our aim was to determine the cross-sectional association of FMNs and oxidative stress biomarkers [protein carbonyls (PrCarb) and 3-nitrotyrosine] with the frailty status in participants older than 65 years. METHODS: Plasma levels of vitamins A (retinol), D3 , E (α-tocopherol and γ-tocopherol) and carotenoids (α-carotene and ß-carotene, lycopene, lutein/zeaxanthin, and ß-cryptoxanthin), PrCarb, and 3-nitrotyrosine were measured in 1450 individuals of the FRAILOMIC initiative. Participants were classified into robust, pre-frail, and frail using Fried's frailty criteria. Associations between biomarkers and frailty status were assessed by general linear and logistic regression models, both adjusted for cohort, season of blood sampling, gender, age, height, weight, and smoking. RESULTS: Robust participants had significantly higher vitamin D3 and lutein/zeaxanthin concentrations than pre-frail and frail subjects; had significantly higher γ-tocopherol, α-carotene, ß-carotene, lycopene, and ß-cryptoxanthin concentrations than frail subjects, and had significantly lower PrCarb concentrations than frail participants in multivariate linear models. Frail subjects were more likely to be in the lowest than in the highest tertile for vitamin D3 (adjusted odds ratio: 2.15; 95% confidence interval: 1.42-3.26), α-tocopherol (2.12; 1.39-3.24), α-carotene (1.69; 1.00-2.88), ß-carotene (1.84; 1.13-2.99), lycopene (1.94; 1.24-3.05), lutein/zeaxanthin (3.60; 2.34-5.53), and ß-cryptoxanthin (3.02; 1.95-4.69) and were more likely to be in the highest than in the lowest tertile for PrCarb (2.86; 1.82-4.49) than robust subjects in multivariate regression models. CONCLUSIONS: Our study indicates that both low FMN and high PrCarb concentrations are associated with pre-frailty and frailty.


Assuntos
Biomarcadores/sangue , Fragilidade/epidemiologia , Micronutrientes/sangue , Oxirredução , Idoso , Idoso de 80 Anos ou mais , Carotenoides/sangue , Estudos Transversais , Fragilidade/sangue , Humanos , Modelos Lineares , Modelos Logísticos , Tirosina/análogos & derivados , Tirosina/sangue , Vitamina A/sangue , Vitamina E/sangue
11.
Environ Sci Pollut Res Int ; 26(4): 3823-3833, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30539392

RESUMO

The response of antioxidant enzymes to oxidative environmental stress was determined in 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae) collected from sites with different level of pollution with heavy metals, PO43-, and SO42-. The high polluted site induced higher DNA damage to individuals compared to the control site. The highest values of tail length (TL), tail moment (TM), and percent of DNA in tail (TDNA) were found in the gut of 5th instar nymphs from a high polluted site. Also, protein carbonyls and lipid peroxide levels were significantly higher in insects collected from polluted sites compared to those from the control site. A strong positive correlation between both protein carbonyl and lipid peroxide concentration and the pollution level of the sites was found in all tissues of the insects. The activity of superoxide dismutase (SOD) in the brain of insects collected from the high polluted site was significantly higher than that in the thoracic muscles and gut. We observed strong inhibition of catalase (CAT) activity. This effect was apparently caused by pollutants present at the high polluted site. The level of pollution significantly influenced polyphenol oxidase (PPO) activity in A. thalassinus nymphs in all examined tissues. The highest values were observed in the brain. The relationship between pollution and ascorbate peroxidase (APOX) activity in the examined tissues had no clear tendency. However, the lowest APOX activity was observed in individuals from the low polluted site. Level of pollution of sampling sites, oxidative stress biomarkers, and enzymatic response in A. thalanthsis 5th instar were negatively or positively correlated. Oxidative damage parameters, especially the percent of severed cells, lipid peroxides, and the activity of APOX, can be perceived as good markers of environmental multistress.


Assuntos
Antioxidantes/metabolismo , Poluentes Ambientais/toxicidade , Gafanhotos/efeitos dos fármacos , Metais Pesados/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Dano ao DNA , Egito , Poluentes Ambientais/análise , Gafanhotos/enzimologia , Gafanhotos/genética , Metais Pesados/análise , Oxirredução
12.
Biomark Med ; 12(10): 1175-1184, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30191745

RESUMO

AIM: The aim of this meta-analysis was to investigate associations between idiopathic pulmonary fibrosis (IPF) and markers of oxidative stress (OS) measured in different biological samples. METHODS: A systematic search of publications listed in PubMed, Web of Science, Scopus and Google Scholar from inception to December 2017 was conducted. RESULTS: Significant differences between IPF patients and controls were observed for all biomarkers (thiobarbituric acid reactive substances, hydroperoxides and glutathione), barring systemic isoprostanes. CONCLUSION: This meta-analysis showed a consistent increase in the concentrations of OS markers or a reduction in antioxidant markers, in patients with IPF, independent of the type of biological sample. Pending the results of further studies, OS biomarkers might be useful for the diagnosis and monitoring of IPF.


Assuntos
Biomarcadores/metabolismo , Fibrose Pulmonar Idiopática/diagnóstico , Estresse Oxidativo , Antioxidantes/metabolismo , Biomarcadores/sangue , Líquido da Lavagem Broncoalveolar/química , Glutationa/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Isoprostanos/análise , Carbonilação Proteica
13.
Food Res Int ; 105: 563-569, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29433248

RESUMO

PURPOSE: The ability of foods to aid in the prevention of chronic metabolic diseases, has recently become an area of increased interest. In addition, there is growing interest in exploring the benefits of consuming underutilized fruits as alternatives to commercially available fruits. Eugenia uvalha Cambess (uvaia) is a native fruit of Brazil with great market and phytotherapy potential. The present study was conducted to investigate the effects of uvaia juice (UJ) on the levels of protein carbonyls (PCO) and antioxidant enzymes in the livers of rats fed a high-fat diet. METHODS: Thirty-two female rats were randomly assigned to four groups. The rats were fed either a standard diet (group C) or a high-fat diet (group HF). In addition, groups CUJ and HFUJ were treated with UJ (2mL/day) administered via gavage for 8weeks. RESULTS: In our study, UJ displayed high antioxidant activity (135.14±9.74 GAE/100g). Administration of UJ caused a significantly reduced concentration of rat liver PCO (47.4%), which was associated with a 29% increase in catalase activity. A significant increase in the concentration of oxidized glutathione (GSSG) (15.04±5.08nmol/ml) and a reduction in the reduced glutathione/oxidized glutathione ratio (GSH/GSSG) (11.30±2.68) were found in the HF group, whilst these changes were not observed in the HFUJ group (a result similar to that of group C). CONCLUSIONS: Our results demonstrate that UJ decreases oxidative damage by improving antioxidant efficiency and attenuating oxidative damage to proteins.


Assuntos
Antioxidantes/administração & dosagem , Eugenia , Sucos de Frutas e Vegetais , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Catalase/metabolismo , Feminino , Glutationa/metabolismo , Fígado/enzimologia , Oxirredução , Dados Preliminares , Carbonilação Proteica/efeitos dos fármacos , Ratos Endogâmicos F344
14.
Artigo em Inglês | MEDLINE | ID: mdl-29148897

RESUMO

The exact mechanism that could explain the effects of radiofrequency (RF) radiation exposure at non-thermal level is still unknown. Increasing evidence suggests a possible involvement of reactive oxygen species (ROS) and development of oxidative stress. To test the proposed hypothesis, human neuroblastoma cells (SH-SY5Y) were exposed to 1800 MHz short-term RF exposure for 10, 30 and 60 minutes. Electric field strength within Gigahertz Transverse Electromagnetic cell (GTEM) was 30 V m-1 and specific absorption rate (SAR) was calculated to be 1.6 W kg-1. Cellular viability was measured by MTT assay and level of ROS was determined by fluorescent probe 2',7'-dichlorofluorescin diacetate. Concentrations of malondialdehyde and protein carbonyls were used to assess lipid and protein oxidative damage and antioxidant activity was evaluated by measuring concentrations of total glutathione (GSH). After radiation exposure, viability of irradiated cells remained within normal physiological values. Significantly higher ROS level was observed for every radiation exposure time. After 60 min of exposure, the applied radiation caused significant lipid and protein damage. The highest GSH concentration was detected after 10 minute-exposure. The results of our study showed enhanced susceptibility of SH-SY5Y cells for development of oxidative stress even after short-term RF exposure.


Assuntos
Células/metabolismo , Células/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Células/citologia , Fluoresceínas/química , Glutationa/metabolismo , Humanos , Oxirredução , Estresse Oxidativo/efeitos da radiação , Ondas de Rádio , Espécies Reativas de Oxigênio/metabolismo
15.
J Sci Med Sport ; 20(10): 893-898, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28392340

RESUMO

OBJECTIVES: To compare 12 weeks of exercise training at two intensities on oxidative stress, antioxidants and inflammatory biomarkers in patients with type 2 diabetes (T2D). DESIGN: Randomized trial. METHODS: Thirty-six participants with T2D were randomized to complete either 12 weeks of treadmill based high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT), followed by 40 weeks of home-based training at the same intensities. Plasma inflammation, oxidative stress and antioxidant biomarkers (total F2-isoprostanes, protein carbonyls, total antioxidant capacity, glutathione peroxidase activity, interleukin-10, interleukin-6, interleukin-8 and TNF-α) were measured at baseline, 12-weeks and 1-year. RESULTS: There were no significant changes (p>0.05) in oxidative stress and inflammation biomarkers from baseline to 12-weeks in either intervention. A decrease in total antioxidant capacity in the MICT group from baseline to 1-year by 0.05mmol/L (p=0.05) was observed. There was a significant difference (p<0.05) when groups were separated by sex with females in the MICT group having a 22.1% (p<0.05) decrease in protein carbonyls from baseline to 1-year. CONCLUSIONS: HIIT and MICT had no acute effect on oxidative stress and inflammatory biomarkers in patients with T2D.


Assuntos
Antioxidantes/metabolismo , Diabetes Mellitus Tipo 2/terapia , Teste de Esforço/métodos , Treinamento Intervalado de Alta Intensidade/métodos , Estresse Oxidativo/fisiologia , Biomarcadores/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Glutationa Peroxidase/sangue , Homeostase/fisiologia , Humanos , Interleucina-10/sangue , Interleucina-6/sangue , Interleucina-8/sangue , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue
16.
Adv Food Nutr Res ; 82: 45-81, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28427536

RESUMO

The impact of dietary habits on our health is indisputable. Consumer's concern on aging and age-related diseases challenges scientists to underline the potential role of food on the extension and guarantee of lifespan and healthspan. While some dietary components and habits are generally regarded as beneficial for our health, some others are being found to exert potential toxic effects and hence, contribute to the onset of particular health disorders. Among the latter, lipid and protein oxidation products formed during food production, storage, processing, and culinary preparation have been recently identified as potentially harmful to humans. Upon intake, food components are further degraded and oxidized during the subsequent digestion phases and the pool of compounds formed in the lumen is in close contact with the lamina propria of the intestines. Some of these oxidation products have been found to promote inflammatory conditions in the gut (i.e., bowel diseases) and are also reasonably linked to the onset of carcinogenic processes. Upon intestinal uptake, some species are distributed by the bloodstream causing an increase in oxidative stress markers and impairment of certain physiological processes through alteration of specific gene expression pathways. This chapter summarizes the most recent discoveries on this topic with particular stress on challenges that we face in the near future: understanding the molecular basis of disease, the suitability of using living animals vs in vitro model systems and the necessity of using massive genomic techniques and versatile mass spectrometric technology.


Assuntos
Análise de Alimentos , Alimentos/normas , Animais , Contaminação de Alimentos , Armazenamento de Alimentos , Humanos , Peroxidação de Lipídeos , Oxirredução
17.
Nutr Hosp ; 34(1): 59-64, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28244773

RESUMO

INTRODUCTION: Breast milk contains molecules needed for the development of children; the integrity and function of these molecules is affected by the presence of pro-oxidants. Protein carbonyls are mainly produced as a result of the interaction of metals with reactive oxygen species (ROS), which may initiate a chain reaction that promotes molecular oxidation. OBJECTIVE: This study aimed to determine the association between the concentration of protein carbonyls with the concentration of trace elements (lead [Pb], cadmium [Cd] and selenium [Se]), superoxide radical (O2•-) production, and glutathione (GSH) content, as well with the activity of the main antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], glutathione reductase [GR] and glutathione S-transferase [GST]) in breast milk. METHODS: In this study 108 transitional milk samples (7-10 days) were analyzed. Antioxidant enzyme activities, O2•-production, protein carbonyl and GSH concentrations were analyzed by spectrophotometry. Trace element concentration was quantified by atomic absorption spectrophotometry. Generalized linear modelling was used to assess the relationship between protein carbonyls concentration with oxidative stress indicators and trace elements concentration. RESULTS: Cd and Pb were detected in 21.3 and 55.6% of breast milk samples, respectively. The median concentration of Cd was 0.01 µg L-1 (0.01-3.52 µg L-1) and Pb concentration was 2.61 µg L-1 (0.08-195.20 µg L-1). According to the best-fit model, the main factors contributing to protein carbonyl concentrations were the activity of GPx, GR, and concentration of GSH, Se, Pb and Cd. CONCLUSIONS: According to the generalized linear model, the activity of GPx and GR, could help explain protein oxidation induced by Pb and Cd in breast milk.


Assuntos
Antioxidantes/análise , Metais/química , Proteínas do Leite/química , Leite Humano/química , Adulto , Feminino , Glutationa Peroxidase/química , Glutationa Redutase/química , Humanos , Metais/efeitos adversos , Metais Pesados/efeitos adversos , Metais Pesados/química , Oxirredução , Carbonilação Proteica/efeitos dos fármacos
18.
Plant Physiol Biochem ; 113: 177-186, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28222349

RESUMO

Cytotoxic compounds like reactive carbonyl compounds such as methylglyoxal (MG), melandialdehyde (MDA), besides the ROS accumulate significantly at higher levels under salinity stress conditions and affect lipids and proteins that inhibit plant growth and productivity. The detoxification of these cytotoxic compounds by overexpression of NADPH-dependent Aldo-ketoreductase (AKR1) enzyme enhances the salinity stress tolerance in tobacco. The PsAKR1 overexpression plants showed higher survival and chlorophyll content and reduced MDA, H2O2, and MG levels under NaCl stress. The transgenic plants showed reduced levels of Na+ levels in both root and shoot due to reduced reactive carbonyl compounds (RCCs) and showed enhanced membrane stability resulted in higher root growth and biomass. The increased levels of antioxidant glutathione and enhanced activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) suggest AKR1 could protect these enzymes from the RCC induced protein carbonylation by detoxification process. The transgenics also showed higher activity of delta 1-pyrroline-5- carboxylate synthase (P5CS) enzyme resulted in increasedproline levels to maintain osmotic homeostasis. The results demonstrates that the AKR1 protects proteins or enzymes that are involved in scavenging of cytotoxic compounds by detoxifying RCCs generated under salinity stress.


Assuntos
Nicotiana/enzimologia , Oxirredutases/metabolismo , Plantas Tolerantes a Sal/fisiologia , Aldeído Desidrogenase/metabolismo , Aldeído Redutase/metabolismo , Aldo-Ceto Redutases , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Biomassa , Clorofila/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Ornitina-Oxo-Ácido Transaminase/metabolismo , Pressão Osmótica , Oxirredutases/biossíntese , Oxirredutases/genética , Fotossíntese , Plantas Geneticamente Modificadas , Prolina/metabolismo , Aldeído Pirúvico/metabolismo , Salinidade , Estresse Fisiológico/fisiologia , Superóxido Dismutase/metabolismo , Nicotiana/genética , Nicotiana/fisiologia
19.
In Vivo ; 30(6): 807-812, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27815465

RESUMO

BACKGROUND/AIM: The leaves of white mulberry (Morus alba L.) contain various polyphenolic compounds possessing strong antioxidant activity and anticancer potential. This study was designed to investigate the chemopreventive effect of aqueous extract of mulberry leaves against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis. MATERIALS AND METHODS: Wistar rats were divided into four groups: control, mulberry extract-treated, NDEA-treated, and mulberry extract plus NDEA-treated. Mulberry extract was given in the diet (1,000 mg/kg b.w./day); NDEA was given in drinking water. RESULTS: Mulberry extract reduced the incidence of hepatocellular carcinoma, dysplastic nodules, lipid peroxidation, protein carbonyl formation, and DNA degradation. Treatment with mulberry leaf extract along with NDEA challenge did not affect the activity of antioxidant enzymes and glutathione content. CONCLUSION: Treatment with mulberry leaf extract partially protected the livers of rats from NDEA-induced hepatocarcinogenesis and a direct antioxidant mechanism appears to contribute to its anticarcinogenic activity.


Assuntos
Carcinoma Hepatocelular/prevenção & controle , Neoplasias Hepáticas/prevenção & controle , Morus/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Carcinoma Hepatocelular/induzido quimicamente , DNA/metabolismo , Dietilnitrosamina , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Masculino , Substâncias Protetoras/farmacologia , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar
20.
Environ Sci Pollut Res Int ; 23(21): 21989-22000, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27539469

RESUMO

For herbivore insects, digesting can be somewhat challenging, as the defense mechanisms evolved by plants, including the release of phenolics like the non-protein amino acid L-3,4-dihydroxyphenylalanine (L-DOPA), can cause fitness costs. In addition, industrial and agricultural activities have elevated the amounts of iron that can be found in nature and more particularly FeSO4 that is used as fertilizer. Traces of iron can enhance the auto-oxidation of L-DOPA, in turn, generating reactive oxygen species (ROS) and consequently oxidative stress in insects. We examined the effects of the ion Fe2+ (as FeSO4) and L-DOPA on fifth instars of the desert locust Schistocerca gregaria. We measured the level of oxidative damage occurring to macromolecules (proteins and lipids) from midgut and thoracic tissues and assessed the activities of responsive antioxidant enzymes. Injected L-DOPA and redox-active metal iron generated ROS which caused oxidative damages to proteins and lipids to S. gregaria. The protein carbonyls and lipid peroxides present in tissue homogenates were elevated in treated insects. No synergism was observed when L-DOPA was co-injected with Fe2+. K m values of superoxide dismutase (SOD), glutathione reductase (GR), and glutathione peroxidase (GPx) were 4.3, 2.6, and 4.0 mM in thoracic muscles and 5.00, 2.43, and 1.66 mM in whole midgut for SOD, GR, and GPx, respectively, and 8.3 and 3.43 M for catalase (CAT) in the two tissues, respectively. These results suggest higher affinities of GPx and CAT to H2O2 in midgut than in muscles. The time-course changes in activities of antioxidant enzymes and amounts of protein carbonyls and lipid peroxides showed fluctuating patterns, suggesting complex interactions among macromolecules, L-DOPA and FeSO4, and their degradation products. Our results demonstrated the stressful effects of L-DOPA and FeSO4, proving that iron-containing fertilizers are pollutants that can strongly affect S. gregaria.


Assuntos
Compostos Ferrosos/toxicidade , Gafanhotos/metabolismo , Levodopa/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fenóis/metabolismo , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Fertilizantes/toxicidade , Trato Gastrointestinal/enzimologia , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Gafanhotos/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Ferro/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Peróxidos Lipídicos/metabolismo , Músculos/enzimologia , Oxirredução , Carbonilação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA