Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670411

RESUMO

Pycnodysostosis, a rare autosomal recessive skeletal dysplasia, is caused by a deficiency of cathepsin K. Patients have impaired bone resorption in the presence of normal or increased numbers of multinucleated, but dysfunctional, osteoclasts. Cathepsin K degrades collagen type I and generates N-telopeptide (NTX) and the C-telopeptide (CTX) that can be quantified. Levels of these telopeptides are increased in lactating women and are associated with increased bone resorption. Nothing is known about the consequences of cathepsin K deficiency in lactating women. Here we present for the first time normalized blood and CTX measurements in a patient with pycnodysostosis, exclusively related to the lactation period. In vitro studies using osteoclasts derived from blood monocytes during lactation and after weaning further show consistent bone resorption before and after lactation. Increased expression of cathepsins L and S in osteoclasts derived from the lactating patient suggests that other proteinases could compensate for the lack of cathepsin K during the lactation period of pycnodysostosis patients.


Assuntos
Reabsorção Óssea/enzimologia , Catepsina K/deficiência , Catepsina L/metabolismo , Catepsinas/metabolismo , Lactação/metabolismo , Osteoclastos/enzimologia , Picnodisostose/enzimologia , Adulto , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Catepsina K/metabolismo , Catepsina L/genética , Catepsinas/genética , Feminino , Humanos , Osteoclastos/patologia , Picnodisostose/genética , Picnodisostose/patologia
2.
Endocrine ; 52(3): 414-26, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26892377

RESUMO

During the past 15 years there has been an expansion of our knowledge of the cellular and molecular mechanisms regulating bone remodeling that identified new signaling pathways fundamental for bone renewal as well as previously unknown interactions between bone cells. Central for these developments have been studies of rare bone disorders. These findings, in turn, have led to new treatment paradigms for osteoporosis some of which are at late stages of clinical development. In this article, we review three rare skeletal disorders with case descriptions, pycnodysostosis and the craniotubular hyperostoses sclerosteosis and van Buchem disease that led to the development of cathepsin K and sclerostin inhibitors, respectively, for the treatment of osteoporosis.


Assuntos
Doenças Ósseas/etiologia , Doenças Ósseas/terapia , Descoberta de Drogas , Osteoporose/terapia , Remodelação Óssea/fisiologia , Descoberta de Drogas/métodos , Humanos , Hiperostose/etiologia , Hiperostose/terapia , Osteocondrodisplasias/etiologia , Osteocondrodisplasias/terapia , Osteoporose/etiologia , Doenças Raras , Sindactilia/etiologia , Sindactilia/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA