Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1304671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075885

RESUMO

Methylthiotransferases (MTTases) are radical S-adenosylmethionine (SAM) enzymes that catalyze the addition of a methylthio (-SCH3) group to an unreactive carbon center. These enzymes are responsible for the production of 2-methylthioadenosine (ms2A) derivatives found at position A37 of select tRNAs in all domains of life. Additionally, some bacteria contain the RimO MTTase that catalyzes the methylthiolation of the S12 ribosomal protein. Although the functions of MTTases in bacteria and eukaryotes have been established via detailed genetic and biochemical studies, MTTases from the archaeal domain of life are understudied and the substrate specificity determinants of MTTases remain unclear. Here, we report the in vitro enzymatic activities of an MTTase (C4B56_06395) from a thermophilic Ca. Methanophagales anaerobic methanotroph (ANME) as well as the MTTase from a hyperthermophilic methanogen - MJ0867 from Methanocaldococcus jannaschii. Both enzymes catalyze the methylthiolation of N6-threonylcarbamoyladenosine (t6A) and N6-hydroxynorvalylcarbamoyladenosine (hn6A) residues to produce 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A) and 2-methylthio-N6-hydroxynorvalylcarbamoyladenosine (ms2hn6A), respectively. To further assess the function of archaeal MTTases, we analyzed select tRNA modifications in a model methanogen - Methanosarcina acetivorans - and generated a deletion of the MTTase-encoding gene (MA1153). We found that M. acetivorans produces ms2hn6A in exponential phase of growth, but does not produce ms2t6A in detectable amounts. Upon deletion of MA1153, the ms2A modification was absent, thus confirming the function of MtaB-family MTTases in generating ms2hn6A modified nucleosides in select tRNAs.

2.
Biomolecules ; 13(11)2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002337

RESUMO

In eukaryotes, the Dph1•Dph2 dimer is a non-canonical radical SAM enzyme. Using iron-sulfur (FeS) clusters, it cleaves the cosubstrate S-adenosyl-methionine (SAM) to form a 3-amino-3-carboxy-propyl (ACP) radical for the synthesis of diphthamide. The latter decorates a histidine residue on elongation factor 2 (EF2) conserved from archaea to yeast and humans and is important for accurate mRNA translation and protein synthesis. Guided by evidence from archaeal orthologues, we searched for a putative SAM-binding pocket in Dph1•Dph2 from Saccharomyces cerevisiae. We predict an SAM-binding pocket near the FeS cluster domain that is conserved across eukaryotes in Dph1 but not Dph2. Site-directed DPH1 mutagenesis and functional characterization through assay diagnostics for the loss of diphthamide reveal that the SAM pocket is essential for synthesis of the décor on EF2 in vivo. Further evidence from structural modeling suggests particularly critical residues close to the methionine moiety of SAM. Presumably, they facilitate a geometry specific for SAM cleavage and ACP radical formation that distinguishes Dph1•Dph2 from classical radical SAM enzymes, which generate canonical 5'-deoxyadenosyl (dAdo) radicals.


Assuntos
Histidina , Saccharomyces cerevisiae , Humanos , Histidina/química , Fator 2 de Elongação de Peptídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , S-Adenosilmetionina/metabolismo , Mutação , Antígenos de Histocompatibilidade Menor , Proteínas Supressoras de Tumor/metabolismo
3.
Biomolecules ; 13(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627333

RESUMO

In archaea and sulfate-reducing bacteria, heme is synthesized via the siroheme-dependent pathway. The last step of this route is catalyzed by the Radical SAM enzyme AhbD and consists of the conversion of iron-coproporphyrin III into heme. AhbD belongs to the subfamily of Radical SAM enzymes containing a SPASM/Twitch domain carrying either one or two auxiliary iron-sulfur clusters in addition to the characteristic Radical SAM cluster. In previous studies, AhbD was reported to contain one auxiliary [4Fe-4S] cluster. In this study, the amino acid sequence motifs containing conserved cysteine residues in AhbD proteins from different archaea and sulfate-reducing bacteria were reanalyzed. Amino acid sequence alignments and computational structural models of AhbD suggested that a subset of AhbD proteins possesses the full SPASM motif and might contain two auxiliary iron-sulfur clusters (AuxI and AuxII). Therefore, the cluster content of AhbD from Methanosarcina barkeri was studied using enzyme variants lacking individual clusters. The purified enzymes were analyzed using UV/Visible absorption and EPR spectroscopy as well as iron/sulfide determinations showing that AhbD from M. barkeri contains two auxiliary [4Fe-4S] clusters. Heme synthase activity assays suggested that the AuxI cluster might be involved in binding the reaction intermediate and both clusters potentially participate in electron transfer.


Assuntos
Ferroquelatase , Methanosarcina barkeri , Archaea , Heme , Ferro , Sulfatos
4.
Chembiochem ; 24(9): e202300133, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36942622

RESUMO

S-Adenosylmethionine (SAM) is an enzyme cofactor involved in methylation, aminopropyl transfer, and radical reactions. This versatility renders SAM-dependent enzymes of great interest in biocatalysis. The usage of SAM analogues adds to this diversity. However, high cost and instability of the cofactor impedes the investigation and usage of these enzymes. While SAM regeneration protocols from the methyltransferase (MT) byproduct S-adenosylhomocysteine are available, aminopropyl transferases and radical SAM enzymes are not covered. Here, we report a set of efficient one-pot systems to supply or regenerate SAM and SAM analogues for all three enzyme classes. The systems' flexibility is showcased by the transfer of an ethyl group with a cobalamin-dependent radical SAM MT using S-adenosylethionine as a cofactor. This shows the potential of SAM (analogue) supply and regeneration for the application of diverse chemistry, as well as for mechanistic studies using cofactor analogues.


Assuntos
Biomimética , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Biocatálise , Alquilação , Metilação , Metiltransferases/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(6): e2210528120, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719911

RESUMO

Nature employs weak-field metalloclusters to support a wide range of biological processes. The most ubiquitous metalloclusters are the cuboidal Fe-S clusters, which are comprised of Fe sites with locally high-spin electronic configurations. Such configurations enhance rates of ligand exchange and imbue the clusters with a degree of structural plasticity that is increasingly thought to be functionally relevant. Here, we examine this phenomenon using isotope tracing experiments. Specifically, we demonstrate that synthetic [Fe4S4] and [MoFe3S4] clusters exchange their Fe atoms with Fe2+ ions dissolved in solution, a process that involves the reversible cleavage and reformation of every Fe-S bond in the cluster core. This exchange is facile-in most cases occurring at room temperature on the timescale of minutes-and documented over a range of cluster core oxidation states and terminal ligation patterns. In addition to suggesting a highly dynamic picture of cluster structure, these results provide a method for isotopically labeling pre-formed clusters with spin-active nuclei, such as 57Fe. Such a protocol is demonstrated for the radical S-adenosyl-l-methionine enzyme, RlmN.

6.
Angew Chem Int Ed Engl ; 61(42): e202210362, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36064953

RESUMO

Oxetanocin A and albucidin are two oxetane natural products. While the biosynthesis of oxetanocin A has been described, less is known about albucidin. In this work, the albucidin biosynthetic gene cluster is identified in Streptomyces. Heterologous expression in a nonproducing strain demonstrates that the genes alsA and alsB are necessary and sufficient for albucidin biosynthesis confirming a previous study (Myronovskyi et al. Microorganisms 2020, 8, 237). A two-step construction of albucidin 4'-phosphate from 2'-deoxyadenosine monophosphate (2'-dAMP) is shown to be catalyzed in vitro by the cobalamin dependent radical S-adenosyl-l-methionine (SAM) enzyme AlsB, which catalyzes a ring contraction, and the radical SAM enzyme AlsA, which catalyzes elimination of a one-carbon fragment. Isotope labelling studies show that AlsB catalysis begins with stereospecific H-atom transfer of the C2'-pro-R hydrogen from 2'-dAMP to 5'-deoxyadenosine, and that the eliminated one-carbon fragment originates from C3' of 2'-dAMP.


Assuntos
Produtos Biológicos , S-Adenosilmetionina , Antivirais , Carbono , Éteres Cíclicos , Hidrogênio , Nucleosídeos , Fosfatos , S-Adenosilmetionina/metabolismo , Vitamina B 12/metabolismo
7.
Methods Enzymol ; 669: 71-90, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35644181

RESUMO

The B12-dependent radical SAM enzymes are an emerging subgroup of biological catalysts that bind a cobalamin cofactor in addition to the canonical [Fe4S4] cluster characteristic of radical SAM enzymes. Most of the B12-dependent radical SAM enzymes that have been characterized mediated methyltransfer reactions; however, a small number are known to catalyze more diverse reactions such as ring contractions. Thus, Genk is a methyltransferase from the gentamicin C biosynthetic pathway, whereas OxsB catalyzes the oxidative ring contraction of 2'-deoxyadenosine 5'-phosphates to generate an oxetane aldehyde during the biosynthesis of oxetanocin A. The preparation and in vitro characterization of such enzymes is complicated by the presence of two redox sensitive cofactors in addition to challenges in obtaining soluble protein for study. This chapter describes expression, purification and assay methodologies for GenK and OxsB highlighting the use of denaturation/refolding protocols for solubilizing inclusion bodies as well as the use of cluster assembly and cobalamin uptake machinery during in vivo expression.


Assuntos
Produtos Biológicos , S-Adenosilmetionina , Vias Biossintéticas , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Vitamina B 12/metabolismo
8.
Methods Enzymol ; 666: 451-468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465927

RESUMO

Due to their biological importance and functional diversity, radical S-adenosylmethionine (rSAM) enzymes have become popular targets for electron paramagnetic resonance (EPR) spectroscopic studies. EPR spectroscopy is a powerful tool that allows for the observation of the iron-sulfur clusters as well as paramagnetic reaction intermediates, thus providing insight into their catalytic mechanisms. While the iron-sulfur clusters may be readily observable by EPR spectroscopy in the enzymes' resting states, radical intermediates are often elusive and must be trapped. Here, we describe a protocol for trapping and analyzing the Lys-Trp intermediate of the Lys-Trp-crosslinking rSAM enzyme SuiB, including modified expression and purification steps. This protocol is also intended to serve as a primer for trapping paramagnetic intermediates in other rSAM enzymes for studying by EPR spectroscopy.


Assuntos
Proteínas Ferro-Enxofre , S-Adenosilmetionina , Espectroscopia de Ressonância de Spin Eletrônica , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , S-Adenosilmetionina/metabolismo , Enxofre/metabolismo
9.
Molecules ; 26(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946806

RESUMO

Enzymes are biological catalysts whose dynamics enable their reactivity. Visualizing conformational changes, in particular, is technically challenging, and little is known about these crucial atomic motions. This is especially problematic for understanding the functional diversity associated with the radical S-adenosyl-L-methionine (SAM) superfamily whose members share a common radical mechanism but ultimately catalyze a broad range of challenging reactions. Computational chemistry approaches provide a readily accessible alternative to exploring the time-resolved behavior of these enzymes that is not limited by experimental logistics. Here, we review the application of molecular docking, molecular dynamics, and density functional theory, as well as hybrid quantum mechanics/molecular mechanics methods to the study of these enzymes, with a focus on understanding the mechanistic dynamics associated with turnover.


Assuntos
Modelos Moleculares , S-Adenosilmetionina/química , Acetiltransferases , Teoria da Densidade Funcional , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Teoria Quântica , Vitamina B 12/química
10.
J Biol Chem ; 296: 100621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33811856

RESUMO

5-Deoxyadenosine (5dAdo) is the byproduct of many radical S-adenosyl-l-methionine enzyme reactions in all domains of life. 5dAdo is also an inhibitor of the radical S-adenosyl-l-methionine enzymes themselves, making it necessary for cells to construct pathways to recycle or dispose of this toxic metabolite. However, the specific pathways involved have long remained unexplored. Recent research demonstrated a growth advantage in certain organisms by using 5dAdo or intermediates as a sole carbon source and elucidated the corresponding salvage pathway. We now provide evidence using supernatant analysis by GC-MS for another 5dAdo recycling route. Specifically, in the unicellular cyanobacterium Synechococcus elongatus PCC 7942 (S. elongatus), the activity of promiscuous enzymes leads to the synthesis and excretion first of 5-deoxyribose and subsequently of 7-deoxysedoheptulose. 7-Deoxysedoheptulose is an unusual deoxy-sugar, which acts as an antimetabolite of the shikimate pathway, thereby exhibiting antimicrobial and herbicidal activity. This strategy enables organisms with small genomes and lacking canonical gene clusters for the synthesis of secondary metabolites, like S. elongatus, to produce antimicrobial compounds from primary metabolism and enzymatic promiscuity. Our findings challenge the view of bioactive molecules as sole products of secondary metabolite gene clusters and expand the range of compounds that microorganisms can deploy to compete for their ecological niche.


Assuntos
Proteínas de Bactérias/metabolismo , Desoxiadenosinas/metabolismo , Hidrolases/metabolismo , S-Adenosilmetionina/metabolismo , Metabolismo Secundário , Synechococcus/metabolismo , Proteínas de Bactérias/genética , Hidrolases/genética , Synechococcus/crescimento & desenvolvimento
11.
Angew Chem Int Ed Engl ; 59(23): 8880-8884, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32065719

RESUMO

Sulfur-based homolytic substitution (SH reaction) plays an important role in synthetic chemistry, yet whether such a reaction could occur on the positively charged sulfonium compounds remains unknown. In the study of the anaerobic coproporphyrinogen III oxidase HemN, a radical S-adenosyl-l-methionine (SAM) enzyme involved in heme biosynthesis, we observed the production of di-(5'-deoxyadenosyl)methylsulfonium, which supports a deoxyadenosyl (dAdo) radical-mediated SH reaction on the sulfonium center of SAM. The sulfonium-based SH reactions were then investigated in detail by density functional theory calculations and model reactions, which showed that this type of reactions is thermodynamically favorable and kinetically competent. These findings represent the first report of sulfonium-based SH reactions, which could be useful in synthetic chemistry. Our study also demonstrates the remarkable catalytic promiscuity of the radical SAM superfamily enzymes.


Assuntos
Enzimas/química , Enzimas/metabolismo , S-Adenosilmetionina/metabolismo , Compostos de Sulfônio/química , Biocatálise , Radicais Livres/química , Cinética , Termodinâmica
12.
Angew Chem Int Ed Engl ; 59(1): 237-241, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31657500

RESUMO

Adenosylhopane is a crucial intermediate in the biosynthesis of bacteriohopanepolyols, which are widespread prokaryotic membrane lipids. Herein, it is demonstrated that reconstituted HpnH, a putative radical S-adenosyl-l-methionine (SAM) enzyme, commonly encoded in the hopanoid biosynthetic gene cluster, converts diploptene into adenosylhopane in the presence of SAM, flavodoxin, flavodoxin reductase, and NADPH. NMR spectra of the enzymatic reaction product were identical to those of synthetic (22R)-adenosylhopane, indicating that HpnH catalyzes stereoselective C-C formation between C29 of diploptene and C5' of 5'-deoxyadenosine. Further, the HpnH reaction in D2 O-containing buffer revealed that a D atom was incorporated at the C22 position of adenosylhopane. Based on these results, we propose a radical addition reaction mechanism catalyzed by HpnH for the formation of the C35 bacteriohopane skeleton.


Assuntos
Adenosina/análogos & derivados , Proteínas de Bactérias/metabolismo , S-Adenosilmetionina/química , Triterpenos/química , Adenosina/química , Catálise , Humanos
13.
Angew Chem Int Ed Engl ; 58(52): 18793-18797, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31565827

RESUMO

Sactionine-containing antibiotics (sactibiotics) are a growing class of peptide antibiotics belonging to the ribosomally synthesized and post-translationally modified peptide (RiPP) superfamily. We report the characterization of thuricin Z, a novel sactibiotic from Bacillus thuringiensis. Unusually, the biosynthesis of thuricin Z involves two radical S-adenosylmethionine (SAM) enzymes, ThzC and ThzD. Although ThzC and ThzD are highly divergent from each other, these two enzymes produced the same sactionine ring in the precursor peptide ThzA in vitro. Thuricin Z exhibits narrow-spectrum antibacterial activity against Bacillus cereus. A series of analyses, including confocal laser scanning microscopy, ultrathin-sectioning transmission electron microscopy, scanning electron microscopy, and large-unilamellar-vesicle-based fluorescence analysis, suggested that thuricin Z binds to the bacterial cell membrane and leads to membrane permeabilization.


Assuntos
Antibacterianos/uso terapêutico , Bacteriocinas/uso terapêutico , Membrana Celular/efeitos dos fármacos , Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Humanos
14.
J Biol Chem ; 294(17): 6888-6898, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30872404

RESUMO

Virus-inhibitory protein, endoplasmic reticulum-associated, interferon-inducible (viperin) is a radical SAM enzyme that plays a multifaceted role in the cellular antiviral response. Viperin has recently been shown to catalyze the SAM-dependent formation of 3'-deoxy-3',4'-didehydro-CTP (ddhCTP), which inhibits some viral RNA polymerases. Viperin is also implicated in regulating Lys-63-linked polyubiquitination of interleukin-1 receptor-associated kinase-1 (IRAK1) by the E3 ubiquitin ligase tumor necrosis factor receptor-associated factor 6 (TRAF6) as part of the Toll-like receptor-7 and -9 (TLR7/9) innate immune signaling pathways. In these pathways, the poly-ubiquitination of IRAK1 by TRAF6 is necessary to activate IRAK1, which then phosphorylates downstream targets and ultimately leads to the production of type I interferons. That viperin is a component of these pathways suggested that its enzymatic activity might be regulated by interactions with partner proteins. To test this idea, we have reconstituted the interactions between viperin, IRAK1, and TRAF6 by transiently expressing these enzymes in HEK 293T cells. We show that IRAK1 and TRAF6 increase viperin activity ∼10-fold to efficiently catalyze the radical-mediated dehydration of CTP to ddhCTP. Furthermore, we found that TRAF6-mediated ubiquitination of IRAK1 requires the association of viperin with both IRAK1 and TRAF6. Ubiquitination appears to depend on structural changes in viperin induced by SAM binding, but, significantly, does not require catalytically active viperin. We conclude that the synergistic activation of viperin and IRAK1 provides a mechanism that couples innate immune signaling with the production of the antiviral nucleotide ddhCTP.


Assuntos
Antivirais/metabolismo , Citidina Trifosfato/biossíntese , Imunidade Inata , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Adenosina/administração & dosagem , Adenosina/análogos & derivados , Células HEK293 , Meia-Vida , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Fosforilação , Ligação Proteica , S-Adenosilmetionina/metabolismo , Ubiquitinação
15.
Methods Enzymol ; 606: 1-71, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097089

RESUMO

The radical SAM superfamily contains over 100,000 homologous enzymes that catalyze a remarkably broad range of reactions required for life, including metabolism, nucleic acid modification, and biogenesis of cofactors. While the highly conserved SAM-binding motif responsible for formation of the key 5'-deoxyadenosyl radical intermediate is a key structural feature that simplifies identification of superfamily members, our understanding of their structure-function relationships is complicated by the modular nature of their structures, which exhibit varied and complex domain architectures. To gain new insight about these relationships, we classified the entire set of sequences into similarity-based subgroups that could be visualized using sequence similarity networks. This superfamily-wide analysis reveals important features that had not previously been appreciated from studies focused on one or a few members. Functional information mapped to the networks indicates which members have been experimentally or structurally characterized, their known reaction types, and their phylogenetic distribution. Despite the biological importance of radical SAM chemistry, the vast majority of superfamily members have never been experimentally characterized in any way, suggesting that many new reactions remain to be discovered. In addition to 20 subgroups with at least one known function, we identified additional subgroups made up entirely of sequences of unknown function. Importantly, our results indicate that even general reaction types fail to track well with our sequence similarity-based subgroupings, raising major challenges for function prediction for currently identified and new members that continue to be discovered. Interactive similarity networks and other data from this analysis are available from the Structure-Function Linkage Database.


Assuntos
Enzimas/classificação , Radicais Livres/metabolismo , Domínios Proteicos/genética , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos/genética , Biologia Computacional , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Evolução Molecular , Radicais Livres/química , Filogenia , S-Adenosilmetionina/química , Alinhamento de Sequência , Relação Estrutura-Atividade
16.
Methods Enzymol ; 606: 179-198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097092

RESUMO

Aminofutalosine synthase (MqnE) is a radical SAM enzyme involved in the futalosine-dependent menaquinone biosynthetic pathway. Its ability to add the 5'-deoxyadenosyl radical to the substrate-rather than abstract a hydrogen atom-and to catalyze radical addition to a stable benzene ring gives it a unique place in the radical SAM superfamily and required the development of new strategies for trapping radical intermediates. This chapter describes the methodologies used for enzyme overexpression, purification, and in vitro reconstitution. We also describe the development of fast, radical triggered, carbon-halogen bond fragmentation reactions for the trapping of intermediates. We anticipate that these methods will be of general use in the study of other transient enzymatic radicals.


Assuntos
Alquil e Aril Transferases/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/metabolismo , Ensaios Enzimáticos/métodos , Nucleosídeos/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Biocatálise , Vias Biossintéticas , Clonagem Molecular/métodos , Radicais Livres/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Thermus thermophilus/metabolismo , Vitamina K 2/metabolismo
17.
Methods Enzymol ; 606: 341-361, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097098

RESUMO

Nitrogenase is the only known enzymatic system that converts atmospheric dinitrogen (N2) into bioavailable ammonia (NH3). The active-site cofactor responsible for this reactivity is a [(R-homocitrate)MoFe7S9C] cluster that is designated as the M-cluster. This important cofactor is assembled stepwise from a pair of [Fe4S4] clusters that become fused into a [Fe8S9C] core before additional refinements take place to complete the biosynthesis. NifB, a member of the radical S-adenosyl-l-methionine (SAM) superfamily, facilitates the conversion of the [Fe4S4] clusters (called the K-cluster) to the [Fe8S9C] core (called the L-cluster). This transformation includes a SAM-dependent carbide insertion with concomitant incorporation of an additional sulfur. While difficulties with the purification of NifB have historically prevented detailed biochemical analyses, we have developed a heterologous expression system in Escherichia coli that yields stable NifB proteins from various N2-fixing methanogenic organisms that can be used for studies. This chapter details the procedures necessary to prepare an active NifB protein. The methods used for the biochemical characterization of the SAM-dependent carbide insertion reactions are also described.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Ensaios Enzimáticos/métodos , Nitrogenase/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas Arqueais/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Compostos de Ferro/metabolismo , Methanosarcina , Nitrogenase/isolamento & purificação
18.
Methods Enzymol ; 606: 421-438, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097101

RESUMO

Diphthamide is a unique posttranslational modification on translation elongation factor 2 (EF2) in archaea and eukaryotes. Biosynthesis of diphthamide was proposed to involve four steps. The first step is a CC bond forming reaction catalyzed by unique radical S-adenosylmethionine (SAM) enzymes. Classical radical SAM enzymes use SAM and [4Fe-4S] clusters to generate a 5'-deoxyadenynal radical and catalyze numerous reactions. Radical SAM enzymes in diphthamide biosynthesis cleave a different CS bond in SAM to generate a 3-amino-3-carboxypropyl radical and modify a histidine residue of substrate protein EF2. Here, we describe our investigations on these unique radical SAM enzymes, including the preparation, characterization, and activity assays we have developed.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas Arqueais/metabolismo , Ensaios Enzimáticos/métodos , Histidina/análogos & derivados , S-Adenosilmetionina/metabolismo , Alquil e Aril Transferases/isolamento & purificação , Proteínas Arqueais/isolamento & purificação , Histidina/biossíntese , Fator 2 de Elongação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Pyrococcus horikoshii
19.
Methods Enzymol ; 606: 485-522, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097104

RESUMO

MoaA is one of the founding members of the radical S-adenosyl-L-methionine (SAM) superfamily, and together with the second enzyme, MoaC, catalyzes the construction of the pyranopterin backbone structure of the molybdenum cofactor (Moco). However, the exact functions of both MoaA and MoaC had remained ambiguous for more than 2 decades. Recently, their functions were finally elucidated through successful characterization of the MoaA product as 3',8-cyclo-7,8-dihydro-GTP (3',8-cH2GTP), which was shown to be converted to cyclic pyranopterin monophosphate (cPMP) by MoaC. 3',8-cH2GTP was produced in a small quantity and was highly oxygen sensitive, which explains why this compound had previously eluded characterization. This chapter describes the methodologies for the characterization of MoaA, MoaC, and 3',8-cH2GTP, which together significantly altered the view of the mechanism of the pyranopterin backbone construction during the Moco biosynthesis. Through this chapter, we hope to share not only the protocols to study the first step of Moco biosynthesis but also the lessons we learned from the characterization of the chemically labile biosynthetic intermediate, which would be informative for the study of many other metabolic pathways and enzymes.


Assuntos
Coenzimas/biossíntese , Ensaios Enzimáticos/métodos , Proteínas de Escherichia coli/metabolismo , Hidrolases/metabolismo , Metaloproteínas/biossíntese , Proteínas de Escherichia coli/isolamento & purificação , Hidrolases/isolamento & purificação , Redes e Vias Metabólicas , Cofatores de Molibdênio , Compostos Organofosforados/metabolismo , Pteridinas , Pterinas/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
20.
Angew Chem Int Ed Engl ; 57(22): 6601-6604, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29603551

RESUMO

The radical S-adenosylmethionine (SAM) superfamily enzymes cleave SAM reductively to generate a highly reactive 5'-deoxyadenosyl (dAdo) radical, which initiates remarkably diverse reactions. Unlike most radical SAM enzymes, the class C radical SAM methyltransferase NosN binds two SAMs in the active site, using one SAM to produce a dAdo radical and the second as a methyl donor. Here, we report a mechanistic investigation of NosN in which an allyl analogue of SAM (allyl-SAM) was used. We show that NosN cleaves allyl-SAM efficiently and the resulting dAdo radical can be captured by the olefin moieties of allyl-SAM or 5'-allylthioadenosine (ATA), the latter being a derivative of allyl-SAM. Remarkably, we found that NosN produced two distinct sets of products in the presence and absence of the methyl acceptor substrate, thus suggesting substrate-triggered production of ATA from allyl-SAM. We also show that NosN produces S-adenosylhomocysteine from 5'-thioadenosine and homoserine lactone. These results support the idea that 5'-methylthioadenosine is the direct methyl donor in NosN reactions, and demonstrate great potential to modulate radical SAM enzymes for novel catalytic activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA