Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Sci China Life Sci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39172347

RESUMO

Abscisic acid (ABA)-based chemically induced proximity (CIP) is primarily mediated by the interaction of the ABA receptor pyrabactin resistance 1-like 1 (PYL1) and the 2C-type protein phosphatase ABI1, which confers ABA-induced proximity to their fusion proteins, and offers precise temporal control of a wide array of biological processes. However, broad application of ABA-based CIP has been limited by ABA response intensity. In this study, we demonstrated that ABA-induced interaction between another ABA receptor pyrabactin resistance 1 (PYR1) and ABI1 exhibited higher ABA response intensity than that between PYL1 and ABI1 in HEK293T cells. We engineered PYR1-ABI1 and PYL1-ABI1 into ABA-induced transcriptional activation tools in mammalian cells by integration with CRISPR/dCas9 and found that the tool based on PYR1-ABI1 demonstrated better ABA response intensity than that based on PYL1-ABI1 for both exogenous and endogenous genes in mammalian cells. We further achieved ABA-induced RNA m6A modification installation and erasure by combining ABA-induced PYR1-ABI1 interaction with CRISPR/dCas13, successfully inhibiting tumor cell proliferation. We subsequently improved the interaction of PYR1-ABI1 through phage-assisted continuous evolution (PACE), successfully generating a PYR1 mutant (PYR1m) whose interaction with ABI1 exhibited a higher ABA response intensity than that of the wild-type. In addition, we tested the transcriptional activation tool based on PYRm-ABI1 and found that it also showed a higher ABA response intensity than that of the wild type. These results demonstrate that we have developed a novel ABA-based CIP and further improved upon it using PACE, providing a new approach for the modification of other CIP systems.

2.
Cancer Sci ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038813

RESUMO

The molecular mechanisms driving the development of cervical adenocarcinoma (CADC) and optimal patient management strategies remain elusive. In this study, we have identified circMAN1A2_009 as an oncogenic circular RNA (circRNA) in CADC. Clinically, circMAN1A2_009 showed significant upregulation in CADC tissues, with an impressive area under the curve value of 0.8075 for detecting CADC. Functional studies, involving both gain-of-function and loss-of-function experiments, revealed that circMAN1A2_009 suppressed reactive oxygen species accumulation and apoptosis, and boosted cell viability in CADC cells. Conversely, silencing circMAN1A2_009 reversed these effects. Further mechanistic investigations indicated that circMAN1A2_009 interacted with YBX1, facilitating the phosphorylation levels of YBX1 at serine 102 (p-YBX1S102) and facilitating YBX1 nuclear localization through sequence 245-251. This interaction subsequently increased the activity of the glyoxalase 1 (GLO1) promoter, leading to the activation of GLO1 expression. Consistently, inhibition of either YBX1 or GLO1 mirrored the biological effects of circMAN1A2_009 in CADC cells. Additionally, knockdown of YBX1 or GLO1 partially reversed the oncogenic behaviors induced by circMAN1A2_009. In conclusion, our findings propose circMAN1A2_009 as a potential oncogene and a promising indicator for diagnosing and guiding therapy in CADC patients.

3.
Sci China Life Sci ; 67(7): 1468-1478, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703348

RESUMO

Dietary exposure to aflatoxin B1 (AFB1) is harmful to the health and performance of domestic animals. The hepatic cytochrome P450s (CYPs), CYP1A1 and CYP2A6, are the primary enzymes responsible for the bioactivation of AFB1 to the highly toxic exo-AFB1-8,9-epoxide (AFBO) in chicks. However, the transcriptional regulation mechanism of these CYP genes in the liver of chicks in AFB1 metabolism remains unknown. Dual-luciferase reporter assay, bioinformatics and site-directed mutation results indicated that specificity protein 1 (SP1) and activator protein-1 (AP-1) motifs were located in the core region -1,063/-948, -606/-541 of the CYP1A1 promoter as well as -636/-595, -503/-462, -147/-1 of the CYP2A6 promoter. Furthermore, overexpression and decoy oligodeoxynucleotide technologies demonstrated that SP1 and AP-1 were pivotal transcriptional activators regulating the promoter activity of CYP1A1 and CYP2A6. Moreover, bioactivation of AFB1 to AFBO could be increased by upregulation of CYP1A1 and CYP2A6 expression, which was trans-activated owing to the upregulalion of AP-1, rather than SP1, stimulated by AFB1-induced reactive oxygen species. Additionally, nano-selenium could reduce ROS, downregulate AP-1 expression and then decrease the expression of CYP1A1 and CYP2A6, thus alleviating the toxicity of AFB1. In conclusion, AP-1 and SP1 played important roles in the transactivation of CYP1A1 and CYP2A6 expression and further bioactivated AFB1 to AFBO in chicken liver, which could provide novel targets for the remediation of aflatoxicosis in chicks.


Assuntos
Aflatoxina B1 , Galinhas , Citocromo P-450 CYP1A1 , Citocromo P-450 CYP2A6 , Fígado , Regiões Promotoras Genéticas , Fator de Transcrição Sp1 , Fator de Transcrição AP-1 , Animais , Aflatoxina B1/metabolismo , Galinhas/metabolismo , Fígado/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Citocromo P-450 CYP2A6/metabolismo , Citocromo P-450 CYP2A6/genética , Ativação Transcricional
4.
Mol Ther ; 32(4): 910-919, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38351611

RESUMO

The miniature V-F CRISPR-Cas12f system has been repurposed for gene editing and transcription modulation. The small size of Cas12f satisfies the packaging capacity of adeno-associated virus (AAV) for gene therapy. However, the efficiency of Cas12f-mediated transcriptional activation varies among different target sites. Here, we developed a robust miniature Cas-based transcriptional activation or silencing system using Un1Cas12f1. We engineered Un1Cas12f1 and the cognate guide RNA and generated miniCRa, which led to a 1,319-fold increase in the activation of the ASCL1 gene. The activity can be further increased by tethering DNA-binding protein Sso7d to miniCRa and generating SminiCRa, which reached a 5,628-fold activation of the ASCL1 gene and at least hundreds-fold activation at other genes examined. We adopted these mutations of Un1Cas12f1 for transcriptional repression and generated miniCRi or SminiCRi, which led to the repression of ∼80% on average of eight genes. We generated an all-in-one AAV vector AIOminiCRi used to silence the disease-related gene SERPINA1. AIOminiCRi AAVs led to the 70% repression of the SERPINA1 gene in the Huh-7 cells. In summary, miniCRa, SminiCRa, miniCRi, and SminiCRi are robust miniature transcriptional modulators with high specificity that expand the toolbox for biomedical research and therapeutic applications.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes , Ativação Transcricional , Terapia Genética
5.
Toxicol Res ; 40(1): 153-161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223674

RESUMO

Parabens are used as preservatives in various household products, including oral products, cosmetics, and hair/body washes. In recent years, the widespread use of parabens has raised concerns due to the potential health risks associated with their estrogenic effects. In the present study, we evaluated and compared the estrogenic activity of parabens using two cell-based in vitro tests: (1) bioluminescence resonance energy transfer (BRET)-based estrogen receptor alpha (ERα) dimerization using HEK293 cells that were stably transfected with ERα-fused NanoLuc luciferase (Nluc) and HaloTag (HT) expression vector, and (2) stably transfected transcriptional activation (STTA) assays using ERα-HeLa9903 cells. The following parabens were tested using the BRET-based ERα dimerization assay and showed estrogenic activity (PC20 values): methyl paraben (MP, 5.98 × 10-5 M), ethyl paraben (EP, 3.29 × 10-5 M), propylparaben (PP, 3.09 × 10-5 M), butyl paraben (BP, 2.58 × 10-5 M), isopropyl paraben (IsoPP, 1.37 × 10-5 M), and isobutyl paraben (IsoBP, 1.43 × 10-5 M). Except MP, all other parabens tested using the STTA assay also showed estrogenic activity: EP, 7.57 × 10-6 M; PP, 1.18 × 10-6 M; BP, 3.02 × 10-7 M; IsoPP, 3.58 × 10-7 M; and IsoBP, 1.80 × 10-7 M. Overall, EP, PP, BP, IsoPP, and IsoBP tested positive for estrogenic activity using both assays. These findings demonstrate that most parabens, albeit not all, induce ERα dimerization and possess estrogenic activity.

6.
Biochem Biophys Res Commun ; 696: 149515, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38241815

RESUMO

ZNF131 is a Zinc finger protein that acts as a transcription factor with oncogenic effects in multiple cancers. In this study, we aimed to explore the alternative splicing profile of ZNF131 in hepatocellular carcinoma (HCC), its regulatory effects on cell-cycle progression, and the downstream effectors. ZNF131 transcriptional profile and HCC survival analysis were conducted using data from the Cancer Genome Atlas (TCGA)-Liver Hepatocellular Cancer (LIHC) dataset. Chromatin immunoprecipitation (ChIP)-qPCR and dual-luciferase reporter assays were utilized to explore transcriptional regulation. CCK-8, colony formation and xenograft tumor models were used to study HCC tumor growth. Results showed that ZNF131 isoform 2 is upregulated in HCC tissues and its upregulation was associated with unfavorable overall survival (OS) and progression-free interval (PFI). Knockdown of endogenous ZNF131 inhibits HCC cell growth and induces G2/M cell-cycle arrest. ZNF131 binds to the SMC4 promoter by interacting with ZBTB33 and the ZBTB33 recognizing motif. ZNF131 transcriptionally activates SMC4 expression in HCC cells. The tumor-suppressive effects of ZNF131 shRNA could be partially reversed by enforced SMC4 overexpression. In summary, this study highlights the ZNF131/ZBTB33/SMC4 axis as a driver of pathological cell cycling and proliferation in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(47): e2313835120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37971402

RESUMO

The cyclic AMP response element (CRE) binding protein (CREB) is a transcription factor that contains a 280-residue N-terminal transactivation domain and a basic leucine zipper that mediates interaction with DNA. The transactivation domain comprises three subdomains, the glutamine-rich domains Q1 and Q2 and the kinase inducible activation domain (KID). NMR chemical shifts show that the isolated subdomains are intrinsically disordered but have a propensity to populate local elements of secondary structure. The Q1 and Q2 domains exhibit a propensity for formation of short ß-hairpin motifs that function as binding sites for glutamine-rich sequences. These motifs mediate intramolecular interactions between the CREB Q1 and Q2 domains as well as intermolecular interactions with the glutamine-rich Q1 domain of the TATA-box binding protein associated factor 4 (TAF4) subunit of transcription factor IID (TFIID). Using small-angle X-ray scattering, NMR, and single-molecule Förster resonance energy transfer, we show that the Q1, Q2, and KID regions remain dynamically disordered in a full-length CREB transactivation domain (CREBTAD) construct. The CREBTAD polypeptide chain is largely extended although some compaction is evident in the KID and Q2 domains. Paramagnetic relaxation enhancement reveals transient long-range contacts both within and between the Q1 and Q2 domains while the intervening KID domain is largely devoid of intramolecular interactions. Phosphorylation results in expansion of the KID domain, presumably making it more accessible for binding the CBP/p300 transcriptional coactivators. Our study reveals the complex nature of the interactions within the intrinsically disordered transactivation domain of CREB and provides molecular-level insights into dynamic and transient interactions mediated by the glutamine-rich domains.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Glutamina , Glutamina/metabolismo , Ativação Transcricional , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Sítios de Ligação , Ligação Proteica/fisiologia
8.
Int Immunopharmacol ; 125(Pt A): 111080, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37883815

RESUMO

Ginsenoside compound K (GCK) has anti-inflammatory and immunoregulatory effects, and glucocorticoid receptor (GR) has been considered as its potential target. But the mechanism by which GCK exerts its anti-inflammatory effects after GR activation remains unclear. In this study, molecular docking, isothermal titration calorimetry, siRNA of GR and GRA458T mutation were used to confirm the anti-inflammatory mechanism of GCK targeting GR in fibroblast-like synoviocytes (FLS). The results showed that the key binding sites of GR and GCK were identified as ASN564, MET560 and ASN638, with binding levels at the µm level. In addition, the inhibitory effect of GCK on the proliferation of FLS and the secretion of inflammatory cytokines (IL-6, IL-8, and IL-1ß) were mediated by transcriptional activation of GR, but on the migration, invasion, and TNF-α secretion of FLS were mediated by transcriptional inhibition of GR. These actions exert anti-inflammatory effects through indirect and direct inhibition of NF-κB transcriptional activity, respectively. In conclusion, this study elucidates that GCK can directly bind to and activate GR. Furthermore, after activation, GR mediates the anti-inflammatory effects of GCK through two mechanisms: transcriptional activation and transcriptional inhibition.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Células Cultivadas , Fibroblastos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional , Fator de Necrose Tumoral alfa/metabolismo
9.
Genomics ; 115(3): 110638, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196931

RESUMO

OBJECTIVE: Signal transduction and transcriptional activator 5A (STAT5A), which has been reported to be frequently phosphorylated in tumors, plays pivotal roles in tumor progression. However, the role of STAT5A in gastric cancer (GC) progression and the downstream targets of STAT5A remain largely unknown. METHODS: The expression of STAT5A and CD44 were assessed. GC cells were treated with altered STAT5A and CD44 to evaluate their biological functions. Nude mice were given injections of genetically manipulated GC cells and growth of xenograft tumors and metastases was measured. RESULTS: The increased level of p-STAT5A is associated with tumor invasion and poor prognosis in GC. STAT5A promoted GC cell proliferation by upregulating CD44 expression. STAT5A directly binds to the CD44 promoter and promotes its transcription. CONCLUSIONS: The STAT5A/CD44 pathway plays a critical role in GC progression, promising potential clinical applications for improving treatment of GC.


Assuntos
Neoplasias Gástricas , Animais , Camundongos , Humanos , Neoplasias Gástricas/genética , Regulação para Cima , Camundongos Nus , Fatores de Transcrição/metabolismo , Transdução de Sinais , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Proteínas Supressoras de Tumor/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
10.
Plant Biotechnol J ; 21(7): 1440-1453, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37032497

RESUMO

Previous work has demonstrated that plants can be used as production platforms for molecules used in health, medicine, and agriculture. Production has been exemplified in both stable transgenic plants and using transient expression strategies. In particular, species of Nicotiana have been engineered to produce a range of useful molecules, including insect sex pheromones, which are valued for species-specific control of agricultural pests. To date, most studies have relied on strong constitutive expression of all pathway genes. However, work in microbes has demonstrated that yields can be improved by controlling and balancing gene expression. Synthetic regulatory elements that provide control over the timing and levels of gene expression are therefore useful for maximizing yields from heterologous biosynthetic pathways. In this study, we demonstrate the use of pathway engineering and synthetic genetic elements for controlling the timing and levels of production of Lepidopteran sex pheromones in Nicotiana benthamiana. We demonstrate that copper can be used as a low-cost molecule for tightly regulated inducible expression. Further, we show how construct architecture influences relative gene expression and, consequently, product yields in multigene constructs. We compare a number of synthetic orthogonal regulatory elements and demonstrate maximal yields from constructs in which expression is mediated by dCas9-based synthetic transcriptional activators. The approaches demonstrated here provide new insights into the heterologous reconstruction of metabolic pathways in plants.


Assuntos
Nicotiana , Atrativos Sexuais , Animais , Nicotiana/genética , Nicotiana/metabolismo , Atrativos Sexuais/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Insetos
11.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188892, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004960

RESUMO

Vestigial-like 1 (VGLL1) is a recently discovered driver of proliferation and invasion that is expressed in many aggressive human malignancies and is strongly associated with poor prognosis. The VGLL1 gene encodes for a co-transcriptional activator that shows intriguing structural similarity to key activators in the hippo pathway, providing important clues to its functional role. VGLL1 binds to TEAD transcription factors in an analogous fashion to YAP1 but appears to activate a distinct set of downstream gene targets. In mammals, VGLL1 expression is found almost exclusively in placental trophoblasts, cells that share many hallmarks of cancer. Due to its role as a driver of tumor progression, VGLL1 has become a target of interest for potential anticancer therapies. In this review, we discuss VGLL1 from an evolutionary perspective, contrast its role in placental and tumor development, summarize the current knowledge of how signaling pathways can modulate VGLL1 function, and discuss potential approaches for targeting VGLL1 therapeutically.


Assuntos
Proteínas de Ligação a DNA , Neoplasias , Animais , Feminino , Humanos , Gravidez , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Placenta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Domínio TEA , Neoplasias/genética , Mamíferos/metabolismo
12.
BMC Cancer ; 23(1): 368, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085799

RESUMO

BACKGROUND: Damaging alterations in the BRCA1 gene have been extensively described as one of the main causes of hereditary breast and ovarian cancer (HBOC). BRCA1 alterations can lead to impaired homologous recombination repair (HRR) of double-stranded DNA breaks, a process which involves the RING, BRCT and coiled-coil domains of the BRCA1 protein. In addition, the BRCA1 protein is involved in transcriptional activation (TA) of several genes through its C-terminal BRCT domain. METHODS: In this study, we have investigated the effect on HRR and TA of 11 rare BRCA1 missense variants classified as variants of uncertain clinical significance (VUS), located within or in close proximity to the BRCT domain, with the aim of generating additional knowledge to guide the correct classification of these variants. The variants were selected from our previous study "BRCA1 Norway", which is a collection of all BRCA1 variants detected at the four medical genetic departments in Norway. RESULTS: All variants, except one, showed a significantly reduced HRR activity compared to the wild type (WT) protein. Two of the variants (p.Ala1708Val and p.Trp1718Ser) also exhibited low TA activity similar to the pathogenic controls. The variant p.Trp1718Ser could be reclassified to likely pathogenic. However, for ten of the variants, the total strength of pathogenic evidence was not sufficient for reclassification according to the CanVIG-UK BRCA1/BRCA2 gene-specific guidelines for variant interpretation. CONCLUSIONS: When including the newly achieved functional evidence with other available information, one VUS was reclassified to likely pathogenic. Eight of the investigated variants affected only one of the assessed activities of BRCA1, highlighting the importance of comparing results obtained from several functional assays to better understand the consequences of BRCA1 variants on protein function. This is especially important for multifunctional proteins such as BRCA1.


Assuntos
Neoplasias da Mama , Genes BRCA1 , Reparo de DNA por Recombinação , Ativação Transcricional , Feminino , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Predisposição Genética para Doença , Células Germinativas/metabolismo
13.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194939, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116859

RESUMO

Small cell lung cancer (SCLC) is a neuroendocrine tumor noted for the rapid development of both metastases and resistance to chemotherapy. High mutation burden, ubiquitous loss of TP53 and RB1, and a mutually exclusive amplification of MYC gene family members contribute to genomic instability and make the development of new targeted agents a challenge. Previously, we reported a novel OCT4-induced MYC transcriptional activation pathway involving c-MYC, pOCT4S111, and MAPKAPK2 in progressive neuroblastoma, also a neuroendocrine tumor. Using tumor microarray analysis of clinical samples and preclinical models, we now report a correlation in expression between these proteins in SCLC. In correlating c-MYC protein expression with genomic amplification, we determined that some SCLC cell lines exhibited high c-MYC without genomic amplification, implying amplification-independent MYC activation. We then confirmed direct interaction between OCT4 and DNA-PKcs and identified specific OCT4 and DNA-PKcs binding sites. Knock-down of both POU5F1 (encoding OCT4) and PRKDC (encoding DNA-PKcs) resulted in decreased c-MYC expression. Further, we confirmed binding of OCT4 to the promoter/enhancer region of MYC. Together, these data establish the presence of a DNA-PKcs/OCT4/c-MYC pathway in SCLCs. We then disruptively targeted this pathway and demonstrated anticancer activity in SCLC cell lines and xenografts using both DNA-PKcs inhibitors and a protein-protein interaction inhibitor of DNA-PKcs and OCT4. In conclusion, we demonstrate here that DNA-PKcs can mediate high c-MYC expression in SCLCs, and that this pathway may represent a new therapeutic target for SCLCs with high c-MYC expression.


Assuntos
Neoplasias Pulmonares , Tumores Neuroendócrinos , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , DNA
14.
Protein Cell ; 14(12): 874-887, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36905356

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been widely used for genome engineering and transcriptional regulation in many different organisms. Current CRISPR-activation (CRISPRa) platforms often require multiple components because of inefficient transcriptional activation. Here, we fused different phase-separation proteins to dCas9-VPR (dCas9-VP64-P65-RTA) and observed robust increases in transcriptional activation efficiency. Notably, human NUP98 (nucleoporin 98) and FUS (fused in sarcoma) IDR domains were best at enhancing dCas9-VPR activity, with dCas9-VPR-FUS IDR (VPRF) outperforming the other CRISPRa systems tested in this study in both activation efficiency and system simplicity. dCas9-VPRF overcomes the target strand bias and widens gRNA designing windows without affecting the off-target effect of dCas9-VPR. These findings demonstrate the feasibility of using phase-separation proteins to assist in the regulation of gene expression and support the broad appeal of the dCas9-VPRF system in basic and clinical applications.


Assuntos
Regulação da Expressão Gênica , RNA Guia de Sistemas CRISPR-Cas , Humanos , Ativação Transcricional , Sistemas CRISPR-Cas/genética
15.
Gut Liver ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36860162

RESUMO

Background/Aims: Gastric intestinal metaplasia (GIM), a common precancerous lesion of gastric cancer, can be caused by bile acid reflux. GATA binding protein 4 (GATA4) is an intestinal transcription factor involved in the progression of gastric cancer. However, the expression and regulation of GATA4 in GIM has not been clarified. Methods: The expression of GATA4 in bile acid-induced cell models and human specimens was examined. The transcriptional regulation of GATA4 was investigated by chromatin immunoprecipitation and luciferase reporter gene analysis. An animal model of duodenogastric reflux was used to confirm the regulation of GATA4 and its target genes by bile acids. Results: GATA4 expression was elevated in bile acid-induced GIM and human specimens. GATA4 bound to the promoter of mucin 2 (MUC2) and stimulate its transcription. GATA4 and MUC2 expression was positively correlated in GIM tissues. Nuclear transcription factor-κB activation was required for the upregulation of GATA4 and MUC2 in bile acid-induced GIM cell models. GATA4 and caudal-related homeobox 2 (CDX2) reciprocally transactivated each other to drive the transcription of MUC2. In chenodeoxycholic acid-treated mice, MUC2, CDX2, GATA4, p50, and p65 expression levels were increased in the gastric mucosa. Conclusions: GATA4 is upregulated and can form a positive feedback loop with CDX2 to transactivate MUC2 in GIM. NF-κB signaling is involved in the upregulation of GATA4 by chenodeoxycholic acid.

16.
Proc Natl Acad Sci U S A ; 120(8): e2206878120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791099

RESUMO

SET is a multifunctional histone-binding oncoprotein that regulates transcription by an unclear mechanism. Here we show that SET enhances estrogen-dependent transcription. SET knockdown abrogates transcription of estrogen-responsive genes and their enhancer RNAs. In response to 17ß-estradiol (E2), SET binds to the estrogen receptor α (ERα) and is recruited to ERα-bound enhancers and promoters at estrogen response elements (EREs). SET functions as a histone H2 chaperone that dynamically associates with H2A.Z via its acidic C-terminal domain and promotes H2A.Z incorporation, ERα, MLL1, and KDM3A loading and modulates histone methylation at EREs. SET depletion diminishes recruitment of condensin complexes to EREs and impairs E2-dependent enhancer-promoter looping. Thus, SET boosts E2-induced gene expression by establishing an active chromatin structure at ERα-bound enhancers and promoters, which is essential for transcriptional activation.


Assuntos
Cromatina , Histonas , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Linhagem Celular Tumoral , Estrogênios/metabolismo , Estradiol/farmacologia , Proteínas Oncogênicas/metabolismo , Transcrição Gênica
17.
J Gene Med ; 25(4): e3477, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36740760

RESUMO

BACKGROUND: There have been many reports of long non-coding RNAs (lncRNAs) in tumors, and abnormally expressed lncRNA is closely related to hepatocellular carcinoma (HCC). The mechanism of LINC00607 in HCC has not been reported. METHODS: We utilized qPCR to evaluate the RNA expression level. The mechanism of MYC binding to the LINC00607 promoter was revealed through chromatin immunoprecipitation assay and dual luciferase reporter assay. The proliferation and invasive ability were evaluated by CCK-8 and transwell assays. The relation between LINC00607 and miR-584-3p was assessed by RNA immunoprecipitation assay and dual luciferase reporter assay. The level of ROCK1 was evaluated by qPCR and western blot. RESULTS: In this research, we found that the expression of LINC00607 was higher in HCC tissues when compared with that in the adjacent non-tumor tissues. Meanwhile, MYC was observed to interact with the LINC00607 promoter, leading to the upregulation of LINC00607 in HCC. We further revealed that LINC00607 functioned as a sponge for miR-584-3p. Cell proliferation and migration assays showed that miR-584-3p may inhibit the HCC progression. Moreover, we found that the miR-584-3p inhibitor could reverse the effects of LINC00607 downregulation in HCC through rescue experiments. Through verification, miR-584-3p bound to the 3' UTR of ROCK1 to downregulate its expression. CONCLUSION: LINC00607 regulated by MYC can promote the proliferation, migration and invasion of HCC cells through the miR-584-3p/ROCK1 axis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
18.
Neuro Oncol ; 25(4): 635-647, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36215227

RESUMO

BACKGROUND: Alterations in transcriptional regulators of glycolytic metabolism have been implicated in brain tumor growth, but the underlying molecular mechanisms remain poorly understood. METHODS: Knockdown and overexpression cells were used to explore the functional roles of HOXA3 in cell proliferation, tumor formation, and aerobic glycolysis. Chromatin immunoprecipitation, luciferase assays, and western blotting were performed to verify the regulation of HK2 and PKM2 by HOXA3. PLA, Immunoprecipitation, and GST-pull-down assays were used to examine the interaction of HOXA3 and KDM6A. RESULTS: We report that transcription factor homeobox A3 (HOXA3), which is aberrantly highly expressed in glioblastoma (GBM) patients and predicts poor prognosis, transcriptionally activates aerobic glycolysis, leading to a significant acceleration in cell proliferation and tumor growth. Mechanically, we identified KDM6A, a lysine-specific demethylase, as an important cooperator of HOXA3 in regulating aerobic glycolysis. HOXA3 activates KDM6A transcription and recruits KDM6A to genomic binding sites of glycolytic genes, targeting glycolytic genes for transcriptional activation by removing the suppressive histone modification H3K27 trimethylation. Further evidence demonstrates that HOXA3 requires KDM6A for transcriptional activation of aerobic glycolysis and brain tumor growth. CONCLUSIONS: Our findings provide a novel molecular mechanism linking HOXA3-mediated transactivation and KDM6A-coupled H3K27 demethylation in regulating glucose metabolism and GBM progression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Genes Homeobox , Glioblastoma/genética , Fatores de Transcrição/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Glicólise , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
19.
Methods Mol Biol ; 2577: 197-209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36173575

RESUMO

Regulation of epigenomic functions requires controlled site-specific alteration of epigenetic information. This can be achieved by using designed DNA-binding domains, associated with effector domains, that function as targeted transcription factors or epigenetic modifiers. These effectors have been employed to study the implications of epigenetic modifications, and sequence-specific targeting has been instrumental in understanding the effect of these modification on gene regulation. Ultimately, these tools could be used for therapeutic applications to revert the epigenetic aberrations that have been linked to various diseases. The ability to spatiotemporally control gene expression is especially important for precise regulation of the epigenomic state. In this chapter, we describe the protocol for achieving highly efficient small molecule-inducible transcriptional activation of endogenous mammalian genes, mediated by a dCas9-based system that recruits transcriptional activation domains binding to a chain of concatenated coiled-coil peptides.


Assuntos
DNA , Fatores de Transcrição , Animais , Sistemas CRISPR-Cas , Mamíferos/genética , Peptídeos/genética , Fatores de Transcrição/genética , Ativação Transcricional , Regulação para Cima
20.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555418

RESUMO

As a well-known cancer-related miRNA, miR-193b-3p is enriched in skeletal muscle and dysregulated in muscle disease. However, the mechanism underpinning this has not been addressed so far. Here, we probed the impact of miR-193b-3p on myogenesis by mainly using goat tissues and skeletal muscle satellite cells (MuSCs), compared with mouse C2C12 myoblasts. miR-193b-3p is highly expressed in goat skeletal muscles, and ectopic miR-193b-3p promotes MuSCs proliferation and differentiation. Moreover, insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) is the most activated insulin signaling gene when there is overexpression of miR-193b-3p; the miRNA recognition element (MRE) within the IGF1BP1 3' untranslated region (UTR) is indispensable for its activation. Consistently, expression patterns and functions of IGF2BP1 were similar to those of miR-193b-3p in tissues and MuSCs. In comparison, ectopic miR-193b-3p failed to induce PAX7 expression and myoblast proliferation when there was IGF2BP1 knockdown. Furthermore, miR-193b-3p destabilized IGF2BP1 mRNA, but unexpectedly promoted levels of IGF2BP1 heteronuclear RNA (hnRNA), dramatically. Moreover, miR-193b-3p could induce its neighboring genes. However, miR-193b-3p inversely regulated IGF2BP1 and myoblast proliferation in the mouse C2C12 myoblast. These data unveil that goat miR-193b-3p promotes myoblast proliferation via activating IGF2BP1 by binding to its 3' UTR. Our novel findings highlight the positive regulation between miRNA and its target genes in muscle development, which further extends the repertoire of miRNA functions.


Assuntos
MicroRNAs , Células Satélites de Músculo Esquelético , Animais , Camundongos , Cabras/genética , Cabras/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , RNA Mensageiro , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA