Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69.404
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1448: 211-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39117817

RESUMO

The herpesviruses are the most common infectious agents associated with both primary and secondary cytokine storm syndromes (CSS). While Epstein-Barr Virus (EBV) is most frequently reported in association with CSS, cytomegalovirus (CMV) and many other herpesviruses (e.g., herpes simplex virus, varicella zoster virus, and human herpesviruses 6 and 8) are clearly associated with CSS in children and adults. Immunocompromised hosts, whether due to primary immunodeficiency or secondary immune compromise (e.g., solid organ or stem cell transplantation), appear to be at particularly increased risk of herpesvirus-associated CSS. In this chapter, the association of the non-EBV herpesviruses with CSS will be discussed, including predisposing factors and treatment considerations.


Assuntos
Síndrome da Liberação de Citocina , Infecções por Herpesviridae , Herpesviridae , Humanos , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/virologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/complicações , Herpesviridae/imunologia , Herpesviridae/patogenicidade , Herpesviridae/fisiologia , Hospedeiro Imunocomprometido
2.
Sci Rep ; 14(1): 18052, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103395

RESUMO

The novelty of this study lies in demonstrating a new approach to control wilt diseases using Jania ethyl acetate extract. In the current investigation, the potential impacts of Jania sp. ethyl acetate extract (JE) on Tomato Fusarium oxysporum wilt (FOW) have been studied. The in vitro antifungal potential of JE against F. oxysporum (FO) was examined. GC-MS investigation of the JE revealed that, the compounds possessing fungicidal action were Phenol,2-methoxy-4-(2-propenyl)-,acetate, Eugenol, Caryophyllene oxide, Isoespintanol, Cadinene, Caryophylla-4(12),8(13)-dien-5à-ol and Copaen. Jania sp. ethyl acetate extract exhibited strong antifungal potential against FO, achieving a 20 mmzone of inhibition. In the experiment, two different methods were applied: soil irrigation (SI) and foliar application (FS) of JE. The results showed that both treatments reduced disease index present DIP by 20.83% and 33.33% respectively. The findings indicated that during FOW, proline, phenolics, and the antioxidant enzymes activity increased, while growth and photosynthetic pigments decreased. The morphological features, photosynthetic pigments, total phenol content, and antioxidant enzyme activity of infected plants improved when JE was applied through soil or foliar methods. It is interesting to note that the application of JE had a substantially less negative effect on the isozymes peroxidase and polyphenol oxidase in tomato plants, compared to FOW. These reactions differed depending on whether JE was applied foliarly or via the soil. Finally, the use of Jania sp. could be utilized commercially as an ecologically acceptable method to protect tomato plants against FOW.


Assuntos
Fusarium , Doenças das Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/efeitos dos fármacos , Fusarium/patogenicidade , Fusarium/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Alga Marinha , Imunidade Vegetal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Rodófitas , Antifúngicos/farmacologia
3.
Front Cell Infect Microbiol ; 14: 1420298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119298

RESUMO

Focal Epithelial Hyperplasia or Multifocal Epithelial Hyperplasia (MEH), also known as Heck's disease, is considered a rare pathology of the oral mucosa associated with human papillomavirus types 13 and 32. For reasons not fully understood, MEH disproportionally affects specific populations of indigenous groups around the world. After the first reports in Native Americans, the epidemiology of the disease has been described in different geographical regions mainly related to particular indigenous populations, the majority of the studies are clinical case reports, but the biological determinants are still unknown. Some suggested risk factors include chronic irritation caused by smoking, a galvanic current, vitamin A deficiency, and/or a familial-genetic predisposition; however, the scientific evidence is not solid due the scarcity of case-control studies or longitudinal cohorts. In light of the evidence, further study of the pathology of MEH should be considered and proper clinical trials for effective treatments should be designed. The disease warrants further study as it is considered as neglected by research and it affects rural/remote population groups usually living in adverse socioeconomic conditions.


Assuntos
Hiperplasia Epitelial Focal , Mucosa Bucal , Infecções por Papillomavirus , Humanos , Hiperplasia Epitelial Focal/patologia , Mucosa Bucal/patologia , Fatores de Risco , Infecções por Papillomavirus/complicações , Etnicidade , Papillomaviridae/genética , Papillomaviridae/patogenicidade
4.
Front Cell Infect Microbiol ; 14: 1394008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39099884

RESUMO

Edwardsiella ictaluri is a Gram-negative, facultative intracellular bacterium that causes enteric septicemia in catfish (ESC). The RNA chaperone Hfq (host factor for phage Qß replication) facilitates gene regulation via small RNAs (sRNAs) in various pathogenic bacteria. Despite its significance in other bacterial species, the role of hfq in E. ictaluri remains unexplored. This study aimed to elucidate the role of hfq in E. ictaluri by creating an hfq mutant (EiΔhfq) through in-frame gene deletion and characterization. Our findings revealed that the Hfq protein is highly conserved within the genus Edwardsiella. The deletion of hfq resulted in a significantly reduced growth rate during the late exponential phase. Additionally, EiΔhfq displayed a diminished capacity for biofilm formation and exhibited increased motility. Under acidic and oxidative stress conditions, EiΔhfq demonstrated impaired growth, and we observed elevated hfq expression when subjected to in vitro and in vivo stress conditions. EiΔhfq exhibited reduced survival within catfish peritoneal macrophages, although it had no discernible effect on the adherence and invasion of epithelial cells. The infection model revealed that hfq is needed for bacterial persistence in catfish, and its absence caused significant virulence attenuation in catfish. Finally, the EiΔhfq vaccination completely protected catfish against subsequent EiWT infection. In summary, these results underscore the pivotal role of hfq in E. ictaluri, affecting its growth, motility, biofilm formation, stress response, and virulence in macrophages and within catfish host.


Assuntos
Biofilmes , Peixes-Gato , Edwardsiella ictaluri , Infecções por Enterobacteriaceae , Fator Proteico 1 do Hospedeiro , Edwardsiella ictaluri/genética , Edwardsiella ictaluri/patogenicidade , Animais , Fator Proteico 1 do Hospedeiro/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Biofilmes/crescimento & desenvolvimento , Infecções por Enterobacteriaceae/microbiologia , Peixes-Gato/microbiologia , Doenças dos Peixes/microbiologia , Virulência , Macrófagos/microbiologia , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Células Epiteliais/microbiologia , Aderência Bacteriana/genética
5.
Sci Rep ; 14(1): 18326, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112526

RESUMO

Corynespora cassiicola is a highly diverse fungal pathogen that commonly occurs in tropical, subtropical, and greenhouse environments worldwide. In this study, the isolates were identified as C. cassiicola, and the optimum growth and sporulation were studied. The phenotypic characteristics of C. cassiicola, concerning 950 different growth conditions, were tested using Biolog PM plates 1-10. In addition, the strain of C. cassiicola DWZ from tobacco hosts was sequenced for the using Illumina PE150 and Pacbio technologies. The host resistance of tobacco Yunyan 87 with different maturity levels was investigated. In addition, the resistance evaluation of 10 common tobacco varieties was investigated. The results showed that C. cassiicola metabolized 89.47% of the tested carbon source, 100% of the nitrogen source, 100% of the phosphorus source, and 97.14% of the sulfur source. It can adapt to a variety of different osmotic pressure and pH environments, and has good decarboxylase and deaminase activities. The optimum conditions for pathogen growth and sporulation were 25-30 °C, and the growth was better on AEA and OA medium. The total length of the genome was 45.9 Mbp, the GC content was 51.23%, and a total of 13,061 protein-coding genes, 202 non-coding RNAs and 2801 and repeat sequences were predicted. Mature leaves were more susceptible than proper mature and immature leaves, and the average diameter of diseased spots reached 17.74 mm at 12 days. None of the tested ten cultivars exhibited obvious resistance to Corynespora leaf spot of tobacco, whereby all disease spot diameters reached > 10 mm and > 30 mm when at 5 and 10 days after inoculation, respectively. The phenotypic characteristics, genomic analysis of C. cassiicola and the cultivar resistance assessment of this pathogen have increased our understanding of Corynespora leaf spot of tobacco.


Assuntos
Ascomicetos , Nicotiana , Doenças das Plantas , Nicotiana/microbiologia , Nicotiana/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Genômica/métodos , Resistência à Doença/genética , Genoma Fúngico , Fenótipo
6.
Exp Cell Res ; 441(2): 114182, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39094903

RESUMO

Kawasaki disease (KD) is a systemic vasculitis with an unknown cause that primarily affects children. The objective of this study was to explore the function and underlying mechanism of mitophagy in Mycoplasma pneumoniae (MP)-induced KD. To create MP-induced KD models, Human coronary endothelial cells (HCAECs) and DBA/2 mice were employed and treated with Mp-Lipid-associated membrane proteins (LAMPs). Lactate dehydrogenase (LDH) levels were tested to determine cellular damage or death. The inflammatory cytokines tumor necrosis factor (TNF)--α and interleukin (IL)-6 were measured using the Enzyme-Linked Immunosorbent Assay (ELISA) method. RT-qPCR and Western blotting were used to determine the expression of Intercellular Adhesion Molecule(ICAM)-1, vascular cell adhesion molecule (VCAM)-1, inducible nitric oxide synthase(iNOS), LC3, p62, PINK1(a mitochondrial serine/threonine-protein kinase), and PARKIN(a cytosolic E3-ubiquitin ligase). The adenosine triphosphate (ATP), reactive oxygen species (ROS), and mitochondrial membrane potential(MMP) levels were measured to determine mitochondrial function. Mitophagy was investigated using immunofluorescence and a mitophagy detection test. Autophagosome and mitochondrial morphology were examined using transmission electron microscopy. To identify inflammatory cell infiltration, hematoxylin and eosin staining was utilized. Mp-LAMPs increased the levels of TNF-α, IL-6, ICAM-1, VCAM-1, and iNOS in an HCAEC cell model, along with LDH release. After Mp-LAMPs exposure, there was a rise in LC3 and a reduction in p62. Meanwhile, the expression of PINK1 and Parkin was increased. Cyclosporin A dramatically increased ATP synthesis and MMP in HCAEC cells treated with Mp-LAMPs, while suppressing ROS generation, demonstrating excessive mitophagy-related mitochondrial dysfunction. Additionally, neither body weight nor artery tissue were affected due to PINK1 and Parkin suppression Cyclosporin A in Mp-LAMPs-treated mice. These findings indicated that PINK1/Parkin-mediated mitophagy inhibition may be a therapeutic target for MP-induced KD.


Assuntos
Mitofagia , Síndrome de Linfonodos Mucocutâneos , Mycoplasma pneumoniae , Proteínas Quinases , Ubiquitina-Proteína Ligases , Animais , Síndrome de Linfonodos Mucocutâneos/metabolismo , Síndrome de Linfonodos Mucocutâneos/patologia , Proteínas Quinases/metabolismo , Humanos , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Mycoplasma pneumoniae/patogenicidade , Camundongos Endogâmicos DBA , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Pneumonia por Mycoplasma/metabolismo , Pneumonia por Mycoplasma/patologia , Pneumonia por Mycoplasma/microbiologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial
7.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125729

RESUMO

Epstein-Barr virus (EBV), a member of the γ-herpesvirus family, is one of the most prevalent and persistent human viruses, infecting up to 90% of the adult population globally. EBV's life cycle includes primary infection, latency, and lytic reactivation, with the virus primarily infecting B cells and epithelial cells. This virus has evolved sophisticated strategies to evade both innate and adaptive immune responses, thereby maintaining a lifelong presence within the host. This persistence is facilitated by the expression of latent genes such as EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), which play crucial roles in viral latency and oncogenesis. In addition to their well-known roles in several types of cancer, including nasopharyngeal carcinoma and B-cell lymphomas, recent studies have identified the pathogenic roles of EBV in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. This review highlights the intricate interactions between EBV and the host immune system, underscoring the need for further research to develop effective therapeutic and preventive strategies against EBV-associated diseases.


Assuntos
Doenças Autoimunes , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Evasão da Resposta Imune , Humanos , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/patogenicidade , Doenças Autoimunes/imunologia , Doenças Autoimunes/virologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Animais , Latência Viral/imunologia
8.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125864

RESUMO

The potential role of the transient receptor potential Vanilloid 1 (TRPV1) non-selective cation channel in gastric carcinogenesis remains unclear. The main objective of this study was to evaluate TRPV1 expression in gastric cancer (GC) and precursor lesions compared with controls. Patient inclusion was based on a retrospective review of pathology records. Patients were subdivided into five groups: Helicobacter pylori (H. pylori)-associated gastritis with gastric intestinal metaplasia (GIM) (n = 12), chronic atrophic gastritis (CAG) with GIM (n = 13), H. pylori-associated gastritis without GIM (n = 19), GC (n = 6) and controls (n = 5). TRPV1 expression was determined with immunohistochemistry and was significantly higher in patients with H. pylori-associated gastritis compared with controls (p = 0.002). TRPV1 expression was even higher in the presence of GIM compared with patients without GIM and controls (p < 0.001). There was a complete loss of TRPV1 expression in patients with GC. TRPV1 expression seems to contribute to gastric-mucosal inflammation and precursors of GC, which significantly increases in cancer precursor lesions but is completely lost in GC. These findings suggest TRPV1 expression to be a potential marker for precancerous conditions and a target for individualized treatment. Longitudinal studies are necessary to further address the role of TRPV1 in gastric carcinogenesis.


Assuntos
Infecções por Helicobacter , Neoplasias Gástricas , Canais de Cátion TRPV , Humanos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/complicações , Infecções por Helicobacter/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Estudos Retrospectivos , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Helicobacter pylori/patogenicidade , Metaplasia/metabolismo , Metaplasia/patologia , Gastrite/metabolismo , Gastrite/patologia , Gastrite/microbiologia , Adulto , Imuno-Histoquímica , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Gastrite Atrófica/metabolismo , Gastrite Atrófica/patologia
9.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125874

RESUMO

Oncolytic viruses and morbilliviruses in particular, represent an interesting therapeutic approach for tumors with a poor prognosis and frequent resistance to conventional therapies. Canine histiocytic sarcomas (HS) exemplify such a neoplasm in need for new curative approaches. Previous investigations demonstrated a limited success of an acute intratumoral application of canine distemper virus (CDV) on xenotransplanted canine histiocytic sarcoma cells (DH82 cells), while persistently CDV-infected DH82 cell transplants exhibited a complete spontaneous regression. Therefore, the present study focuses on an intratumoral application of persistently CDV vaccine strain Onderstepoort-infected DH82 (DH82 Ond p.i.) cells into non-infected subcutaneous DH82 cell transplants in a murine model. DH82 cell transplants that received 10 applications, two days apart, showed a transient growth retardation as well as larger areas of intratumoral necrosis, lower mitotic rates, and a decreased intratumoral vascularization compared to controls. Viral mRNA was detected in all neoplasms following application of DH82 Ond p.i. cells until 66 days after the last injection. Furthermore, infectious virus was present until 62 days after the last injection. Although complete regression was not achieved, the present application regimen provides promising results as a basis for further treatments, particularly with genetically modified viruses, to enhance the observed effects.


Assuntos
Vírus da Cinomose Canina , Sarcoma Histiocítico , Terapia Viral Oncolítica , Animais , Vírus da Cinomose Canina/patogenicidade , Vírus da Cinomose Canina/genética , Cães , Sarcoma Histiocítico/virologia , Camundongos , Terapia Viral Oncolítica/métodos , Linhagem Celular Tumoral , Cinomose/virologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia
10.
Front Cell Infect Microbiol ; 14: 1416819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145306

RESUMO

Programmed cell death (PCD) plays a crucial role in maintaining the normal structure and function of the digestive tract in the body. Infection with Helicobacter pylori (H. pylori) is an important factor leading to gastric damage, promoting the Correa cascade and accelerating the transition from gastritis to gastric cancer. Recent research has shown that several PCD signaling pathways are abnormally activated during H. pylori infection, and the dysfunction of PCD is thought to contribute to the development of gastric cancer and interfere with treatment. With the deepening of studies on H. pylori infection in terms of PCD, exploring the interaction mechanisms between H. pylori and the body in different PCD pathways may become an important research direction for the future treatment of H. pylori infection and H. pylori-related gastric cancer. In addition, biologically active compounds that can inhibit or induce PCD may serve as key elements for the treatment of this disease. In this review, we briefly describe the process of PCD, discuss the interaction between different PCD signaling pathways and the mechanisms of H. pylori infection or H. pylori-related gastric cancer, and summarize the active molecules that may play a therapeutic role in each PCD pathway during this process, with the expectation of providing a more comprehensive understanding of the role of PCD in H. pylori infection.


Assuntos
Apoptose , Infecções por Helicobacter , Helicobacter pylori , Transdução de Sinais , Neoplasias Gástricas , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/metabolismo , Humanos , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/complicações , Helicobacter pylori/patogenicidade , Animais , Interações Hospedeiro-Patógeno
11.
Sci Rep ; 14(1): 18781, 2024 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138326

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight in rice. Polyhydroxyalkanoates (PHAs) consitute a diverse group of biopolyesters synthesized by bacteria under nutrient-limited conditions. The phaC gene is important for PHA polymerization. We investigated the effects of phaC gene mutagensis in Xoo strain PXO99A. The phaC gene knock-out mutant exhibited reduced swarming ability relative to that of the wild-type. Under conditions where glucose was the sole sugar source, extracellular polysaccharide (EPS) production by ΔphaC declined by 44.8%. ΔphaC showed weak hypersensitive response (HR) induction in the leaves of non-host Nicotiana tabacum, concomitant with downregulation of hpa1 gene expression. When inoculated in rice leaves by the leaf-clipping method, ΔphaC displayed reduced virulence in terms of lesion length compared with the wild-type strain. The complemented strain showed no significant difference from the wild-type strain, suggesting that the deletion of phaC in Xoo induces significant alterations in various physiological and biological processes. These include bacterial swarming ability, EPS production, transcription of hrp genes, and glucose metabolism. These changes are intricately linked to the energy utilization and virulence of Xoo during plant infection. These findings revealed involvement of phaC in Xoo is in the maintaining carbon metabolism by functioning in the PHA metabolic pathway.


Assuntos
Proteínas de Bactérias , Carbono , Oryza , Doenças das Plantas , Polissacarídeos Bacterianos , Xanthomonas , Xanthomonas/patogenicidade , Xanthomonas/genética , Xanthomonas/metabolismo , Oryza/microbiologia , Carbono/metabolismo , Doenças das Plantas/microbiologia , Virulência/genética , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Regulação Bacteriana da Expressão Gênica , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/metabolismo , Nicotiana/microbiologia , Folhas de Planta/microbiologia
12.
Fluids Barriers CNS ; 21(1): 66, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152442

RESUMO

BACKGROUND: Group B Streptococcus (GBS) is the leading cause of neonatal meningitis responsible for a substantial cause of death and disability worldwide. The vast majority of GBS neonatal meningitis cases are due to the CC17 hypervirulent clone. However, the cellular and molecular pathways involved in brain invasion by GBS CC17 isolates remain largely elusive. Here, we studied the specific interaction of the CC17 clone with the choroid plexus, the main component of the blood-cerebrospinal fluid (CSF) barrier. METHODS: The interaction of GBS CC17 or non-CC17 strains with choroid plexus cells was studied using an in vivo mouse model of meningitis and in vitro models of primary and transformed rodent choroid plexus epithelial cells (CPEC and Z310). In vivo interaction of GBS with the choroid plexus was assessed by microscopy. Bacterial invasion and cell barrier penetration were examined in vitro, as well as chemokines and cytokines in response to infection. RESULTS: GBS CC17 was found associated with the choroid plexus of the lateral, 3rd and 4th ventricles. Infection of choroid plexus epithelial cells revealed an efficient internalization of the bacteria into the cells with GBS CC17 displaying a greater ability to invade these cells than a non-CC17 strain. Internalization of the GBS CC17 strain involved the CC17-specific HvgA adhesin and occurred via a clathrin-dependent mechanism leading to transcellular transcytosis across the choroid plexus epithelial monolayer. CPEC infection resulted in the secretion of several chemokines, including CCL2, CCL3, CCL20, CX3CL1, and the matrix metalloproteinase MMP3, as well as immune cell infiltration. CONCLUSION: Our findings reveal a GBS strain-specific ability to infect the blood-CSF barrier, which appears to be an important site of bacterial entry and an active site of immune cell trafficking in response to infection.


Assuntos
Plexo Corióideo , Streptococcus agalactiae , Plexo Corióideo/metabolismo , Plexo Corióideo/microbiologia , Plexo Corióideo/imunologia , Animais , Streptococcus agalactiae/patogenicidade , Camundongos , Adesinas Bacterianas/metabolismo , Virulência , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Barreira Hematoencefálica/microbiologia , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , Camundongos Endogâmicos C57BL , Transcitose/fisiologia , Feminino
13.
World J Gastroenterol ; 30(26): 3193-3197, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39086636

RESUMO

In this editorial we comment on the article published in the recent issue of the World Journal of Gastroenterology. We focus specifically on the problem of occult hepatitis B virus (HBV) infection, that is a result of previous hepatitis B (PHB) and a source for reactivation of HBV. The prevalence of PHB is underestimated due to the lack of population testing programs. However, this condition not only complicate anticancer treatment, but may be responsible for the development of other diseases, like cancer or autoimmune disorders. Here we unveil possible mechanisms responsible for realization of these processes and suggest practical approaches for diagnosis and treatment.


Assuntos
Vírus da Hepatite B , Hepatite B , Ativação Viral , Humanos , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/patogenicidade , Hepatite B/epidemiologia , Hepatite B/virologia , Hepatite B/diagnóstico , Antivirais/uso terapêutico , Prevalência
14.
Georgian Med News ; (350): 120-126, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39089283

RESUMO

The relationship between Helicobacter pylori infection and gallbladder diseases, particularly cholecystitis and gallbladder polyps, remains unclear. This study aimed to investigate the presence of H. pylori in gallbladder tissues and its potential role in gallbladder pathologies, as well as to examine the expression of chemokines CXCL2 and CXCL5 in these conditions. MATERIAL AND METHODS: A total of 137 laparoscopically excised gallbladders were analysed through histological examination, PCR for H. pylori-specific DNA, and quantitative real-time PCR for CXCL2 and CXCL5 gene expression. The study cohort included patients with acute calculous cholecystitis, chronic calculous cholecystitis, and gallbladder polyps. RESULTS: H. pylori was detected in 30.7% of cases by histological methods and 42.3% by PCR. Elevated expression of CXCL2 and CXCL5 was observed in 62% and 57.7% of cases, respectively, with a higher prevalence in acute cholecystitis compared to chronic conditions. However, no statistically significant association was found between H. pylori presence and the forms of cholecystitis, as well as between H. pylori presence and chemokine expression in gallbladder. CONCLUSIONS: The study did not establish a direct link between the presence of H. pylori infection and forms of gallbladder pathologies. The findings suggest that other factors other than H. pylori may contribute to the upregulation of CXCL2 and CXCL5 in gallbladder diseases. Further research is needed to elucidate the complex interactions between H. pylori, chemokines, and gallbladder pathologies.


Assuntos
Quimiocina CXCL2 , Quimiocina CXCL5 , Vesícula Biliar , Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/patogenicidade , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Masculino , Vesícula Biliar/microbiologia , Vesícula Biliar/patologia , Vesícula Biliar/cirurgia , Feminino , Pessoa de Meia-Idade , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Adulto , Colecistite/microbiologia , Colecistite/patologia , Colecistite/cirurgia , Pólipos/microbiologia , Pólipos/patologia , Doenças da Vesícula Biliar/microbiologia , Doenças da Vesícula Biliar/patologia , Doenças da Vesícula Biliar/cirurgia , Idoso
15.
Mol Biol Rep ; 51(1): 894, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115571

RESUMO

Adenosine is a neuro- and immunomodulator that functions via G protein-coupled cell surface receptors. Several microbes, including viruses, use the adenosine signaling pathway to escape from host defense systems. Since the recent research developments in its role in health and disease, adenosine and its signaling pathway have attracted attention for targeting to treat many diseases. The therapeutic role of adenosine has been extensively studied for neurological, cardiovascular, and inflammatory disorders and bacterial pathophysiology, but published data on the role of adenosine in viral infections are lacking. Therefore, the purpose of this review article was to explain in detail the therapeutic role of adenosine signaling against viral infections, particularly COVID-19 and HIV. Several therapeutic approaches targeting A2AR-mediated pathways are in development and have shown encouraging results in decreasing the intensity of inflammatory reaction. The hypoxia-adenosinergic mechanism provides protection from inflammation-mediated tissue injury during COVID-19. A2AR expression increased remarkably in CD39 + and CD8 + T cells harvested from HIV patients in comparison to healthy subjects. A combined in vitro treatment performed by blocking PD-1 and CD39/adenosine signaling produced a synergistic outcome in restoring the CD8 + T cells funstion in HIV patients. We suggest that A2AR is an ideal target for pharmacological interventions against viral infections because it reduces inflammation, prevents disease progression, and ultimately improves patient survival.


Assuntos
Síndrome da Imunodeficiência Adquirida , Adenosina , COVID-19 , Evasão da Resposta Imune , Receptor A2A de Adenosina , SARS-CoV-2 , Transdução de Sinais , Humanos , COVID-19/imunologia , COVID-19/virologia , Receptor A2A de Adenosina/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Adenosina/metabolismo , Síndrome da Imunodeficiência Adquirida/imunologia , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Tratamento Farmacológico da COVID-19 , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Apirase/metabolismo , Apirase/imunologia
16.
Proc Natl Acad Sci U S A ; 121(33): e2406234121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39102545

RESUMO

Laboratory models are central to microbiology research, advancing the understanding of bacterial physiology by mimicking natural environments, from soil to the human microbiome. When studying host-bacteria interactions, animal models enable investigators to examine bacterial dynamics associated with a host, and in the case of human infections, animal models are necessary to translate basic research into clinical treatments. Efforts toward improving animal infection models are typically based on reproducing host genotypes/phenotypes and disease manifestations, leaving a gap in how well the physiology of microbes reflects their behavior in a human host. Understanding bacterial physiology is vital because it dictates host response and bacterial interactions with antimicrobials. Thus, our goal was to develop an animal model that accurately recapitulates bacterial physiology in human infection. The system we chose to model was a chronic Pseudomonas aeruginosa respiratory infection in cystic fibrosis (CF). To accomplish this goal, we leveraged a framework that we recently developed to evaluate model accuracy by calculating the percentage of bacterial genes that are expressed similarly in a model to how they are expressed in their infection environment. We combined two complementary models of P. aeruginosa infection-an in vitro synthetic CF sputum model (SCFM2) and a mouse acute pneumonia model. This combined model captured the chronic physiology of P. aeruginosa in CF better than the standard mouse infection model, showing the power of a data-driven approach to refining animal models. In addition, the results of this work challenge the assumption that a chronic infection model requires long-term colonization.


Assuntos
Fibrose Cística , Modelos Animais de Doenças , Infecções por Pseudomonas , Pseudomonas aeruginosa , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/patogenicidade , Animais , Infecções por Pseudomonas/microbiologia , Camundongos , Humanos , Infecções Respiratórias/microbiologia , Interações Hospedeiro-Patógeno , Escarro/microbiologia
17.
Commun Biol ; 7(1): 949, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107377

RESUMO

The limitations of TB treatment are the long duration and immune-dampening effects of anti-tuberculosis therapy. The Cell wall plays a crucial role in survival and virulence; hence, enzymes involved in its biosynthesis are good therapeutic targets. Here, we identify Mycobacterium tuberculosis (Mtb) GlmM, (GlmMMtb) engaged in the UDP-GlcNAc synthesis pathway as an essential enzyme. We generated a conditional knockdown strain, Rv-glmMkD using the CRISPR interference-mediated gene silencing approach. Depletion of GlmMMtb affects the morphology and thickness of the cell wall. The Rv-glmMkD strain attenuated Mtb survival in vitro, in the host macrophages (ex vivo), and in a murine mice infection model (in vivo). Results suggest that the depletion of GlmMMtb induces M1 macrophage polarization, prompting a pro-inflammatory cytokine response, apparent from the upregulation of activation markers, including IFNÉ£ and IL-17 that resists the growth of Mtb. These observations provide a rationale for exploring GlmMMtb as a potential therapeutic target.


Assuntos
Proteínas de Bactérias , Macrófagos , Mycobacterium tuberculosis , Tuberculose , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Animais , Camundongos , Tuberculose/imunologia , Tuberculose/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Feminino , Interações Hospedeiro-Patógeno/imunologia , Modelos Animais de Doenças , Humanos
18.
Sci Adv ; 10(32): eadn9519, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39110796

RESUMO

While the significance of N6-methyladenosine (m6A) in viral regulation has been extensively studied, the functions of 5-methylcytosine (m5C) modification in viral biology remain largely unexplored. In this study, we demonstrate that m5C is more abundant than m6A in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and provide a comprehensive profile of the m5C landscape of SARS-CoV-2 RNA. Knockout of NSUN2 reduces m5C levels in SARS-CoV-2 virion RNA and enhances viral replication. Nsun2 deficiency mice exhibited higher viral burden and more severe lung tissue damages. Combined RNA-Bis-seq and m5C-MeRIP-seq identified the NSUN2-dependent m5C-methylated cytosines across the positive-sense genomic RNA of SARS-CoV-2, and the mutations of these cytosines enhance RNA stability. The progeny SARS-CoV-2 virions from Nsun2 deficiency mice with low levels of m5C modification exhibited a stronger replication ability. Overall, our findings uncover the vital role played by NSUN2-mediated m5C modification during SARS-CoV-2 replication and propose a host antiviral strategy via epitranscriptomic addition of m5C methylation to SARS-CoV-2 RNA.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , Replicação Viral , Replicação Viral/genética , Animais , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , COVID-19/virologia , COVID-19/patologia , Camundongos , Humanos , Metilação , Virulência/genética , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Epigênese Genética , Camundongos Knockout , Adenosina/análogos & derivados , Adenosina/metabolismo , Transcriptoma
19.
Mol Plant Pathol ; 25(8): e13502, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39118198

RESUMO

Banana Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a major disease of banana plants worldwide. Effector proteins play critical roles in banana-Foc TR4 interaction. Our previous studies highlighted a ribonuclease protein belonging to the T2 family (named as FocRnt2) in the Foc TR4 secretome, which was predicted to be an effector. However, its biological function in Foc TR4 infection is still unclear. Herein, we observed significant expression of FocRnt2 during the early stage of fungal infection in planta. A yeast signal sequence trap assay showed that FocRnt2 contained a functional signal peptide for secretion. FocRnt2 possessed ribonuclease activity that could degrade the banana total RNA in vitro. Subcellular localization showed that FocRnt2 was localized in the nucleus and cytoplasm of Nicotiana benthamiana leaves. Transient expression of FocRnt2 suppressed the expression of salicylic acid- and jasmonic acid-signalling marker genes, reactive oxygen species accumulation, and BAX-mediated cell death in N. benthamiana. FocRnt2 deletion limited fungal penetration, reduced fusaric acid biosynthesis in Foc TR4, and attenuated fungal virulence against banana plants, but had little effect on Foc TR4 growth and sensitivity to various stresses. Furthermore, FocRnt2 deletion mutants induced higher expression of the defence-related genes in banana plants. These results suggest that FocRnt2 plays an important role in full virulence of Foc TR4, further improving our understanding of effector-mediated Foc TR4 pathogenesis.


Assuntos
Fusarium , Musa , Nicotiana , Doenças das Plantas , Fusarium/patogenicidade , Virulência , Doenças das Plantas/microbiologia , Musa/microbiologia , Nicotiana/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ribonucleases/metabolismo , Ribonucleases/genética , Espécies Reativas de Oxigênio/metabolismo , Endorribonucleases
20.
PLoS Negl Trop Dis ; 18(8): e0012333, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39121159

RESUMO

American tegumentary leishmaniasis (ATL) is highly endemic in the Amazon basin and occurs in all South American countries, except Chile and Uruguay. Most Brazilian ATL cases are due to Leishmania (Viannia) braziliensis, however other neglected Amazonian species are being increasingly reported. They belong to the subgenus L. (Viannia) and information on suitable models to understand immunopathology are scarce. Here, we explored the use of the golden hamster Mesocricetus auratus and its macrophages as a model for L. (Viannia) species. We also studied the interaction of parasite glycoconjugates (LPGs and GIPLs) in murine macrophages. The following strains were used: L. (V.) braziliensis (MHOM/BR/2001/BA788), L. (V.) guyanensis (MHOM/BR/85/M9945), L. (V.) shawi (MHOM/BR/96/M15789), L. (V.) lindenbergi (MHOM/BR/98/M15733) and L. (V.) naiffi (MDAS/BR/79/M5533). In vivo infections were initiated by injecting parasites into the footpad and were followed up at 20- and 40-days PI. Parasites were mixed with salivary gland extract (SGE) from wild-captured Nyssomyia neivai prior to in vivo infections. Animals were euthanized for histopathological evaluation of the footpads, spleen, and liver. The parasite burden was evaluated in the skin and draining lymph nodes. In vitro infections used resident peritoneal macrophages and THP-1 monocytes infected with all species using a MOI (1:10). For biochemical studies, glycoconjugates (LPGs and GIPLs) were extracted, purified, and biochemically characterized using fluorophore-assisted carbohydrate electrophoresis (FACE). They were functionally evaluated after incubation with macrophages from C57BL/6 mice and knockouts (TLR2-/- and TLR4-/-) for nitric oxide (NO) and cytokine/chemokine production. All species, except L. (V.) guyanensis, failed to generate evident macroscopic lesions 40 days PI. The L. (V.) guyanensis lesions were swollen but did not ulcerate and microscopically were characterized by an intense inflammatory exudate. Despite the fact the other species did not produce visible skin lesions there was no or mild pro-inflammatory infiltration at the inoculation site and parasites survived in the hamster skin/lymph nodes and even visceralized. Although none of the species caused severe disease in the hamster, they differentially infected peritoneal macrophages in vitro. LPGs and GIPLs were able to differentially trigger NO and cytokine production via TLR2/TLR4 and TLR4, respectively. The presence of a sidechain in L. (V.) lainsoni LPG (type II) may be responsible for its higher proinflammatory activity. After Principal Component analyses using all phenotypic features, the clustering of L. (V.) lainsoni was separated from all the other L. (Viannia) species. We conclude that M. auratus was a suitable in vivo model for at least four dermotropic L. (Viannia) species. However, in vitro studies using peritoneal cells are a suitable alternative for understanding interactions of the six L. (Viannia) species used here. LRV1 presence was found in L. (V.) guyanensis and L. (V.) shawi with no apparent correlation with virulence in vitro and in vivo. Finally, parasite glycoconjugates were able to functionally trigger various innate immune responses in murine macrophages via TLRs consistent with their inflammatory profile in vivo.


Assuntos
Modelos Animais de Doenças , Leishmania , Macrófagos , Mesocricetus , Animais , Macrófagos/parasitologia , Macrófagos/imunologia , Camundongos , Leishmania/patogenicidade , Cricetinae , Virulência , Feminino , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Leishmaniose Cutânea/imunologia , Glicoconjugados , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA