Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 57, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397945

RESUMO

Autophagy catabolizes cellular constituents to promote survival during nutrient deprivation. Yet, a metabolic comprehension of this recycling operation, despite its crucial importance, remains incomplete. Here, we uncover a specific metabolic function of autophagy that exquisitely adjusts cellular metabolism according to nitrogen availability in the budding yeast Saccharomyces cerevisiae. Autophagy enables metabolic plasticity to promote glutamate and aspartate synthesis, which empowers nitrogen-starved cells to replenish their nitrogen currency and sustain macromolecule synthesis. Our findings provide critical insights into the metabolic basis by which autophagy recycles cellular components and may also have important implications in understanding the role of autophagy in diseases such as cancer.


Assuntos
Ácido Aspártico/biossíntese , Autofagia , Ácido Glutâmico/biossíntese , Nitrogênio/deficiência , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Compostos de Amônio/metabolismo , Autofagia/efeitos dos fármacos , Glutamato Sintase (NADH)/metabolismo , Substâncias Macromoleculares/metabolismo , Modelos Biológicos , Mutação/genética , Ácidos Nucleicos/biossíntese , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimo/farmacologia
2.
Cell Rep ; 26(9): 2257-2265.e4, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30811976

RESUMO

Cellular aspartate drives cancer cell proliferation, but signaling pathways that rewire aspartate biosynthesis to control cell growth remain largely unknown. Hypoxia-inducible factor-1α (HIF1α) can suppress tumor cell proliferation. Here, we discovered that HIF1α acts as a direct repressor of aspartate biosynthesis involving the suppression of several key aspartate-producing proteins, including cytosolic glutamic-oxaloacetic transaminase-1 (GOT1) and mitochondrial GOT2. Accordingly, HIF1α suppresses aspartate production from both glutamine oxidation as well as the glutamine reductive pathway. Strikingly, the addition of aspartate to the culture medium is sufficient to relieve HIF1α-dependent repression of tumor cell proliferation. Furthermore, these key aspartate-producing players are specifically repressed in VHL-deficient human renal carcinomas, a paradigmatic tumor type in which HIF1α acts as a tumor suppressor, highlighting the in vivo relevance of these findings. In conclusion, we show that HIF1α inhibits cytosolic and mitochondrial aspartate biosynthesis and that this mechanism is the molecular basis for HIF1α tumor suppressor activity.


Assuntos
Ácido Aspártico/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Neoplasias/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Aspartato Aminotransferase Citoplasmática/metabolismo , Aspartato Aminotransferase Mitocondrial/metabolismo , Ácido Aspártico/farmacologia , Carcinoma de Células Renais/enzimologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Glutamina/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/enzimologia , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/antagonistas & inibidores , Neoplasias/patologia , Oxirredução , Proteínas Supressoras de Tumor/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética
3.
Mol Oncol ; 13(4): 959-977, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30714292

RESUMO

Breast cancer susceptibility gene 1 (BRCA1) has been implicated in modulating metabolism via transcriptional regulation. However, direct metabolic targets of BRCA1 and the underlying regulatory mechanisms are still unknown. Here, we identified several metabolic genes, including the gene which encodes glutamate-oxaloacetate transaminase 2 (GOT2), a key enzyme for aspartate biosynthesis, which are repressed by BRCA1. We report that BRCA1 forms a co-repressor complex with ZBRK1 that coordinately represses GOT2 expression via a ZBRK1 recognition element in the promoter of GOT2. Impairment of this complex results in upregulation of GOT2, which in turn increases aspartate and alpha ketoglutarate production, leading to rapid cell proliferation of breast cancer cells. Importantly, we found that GOT2 can serve as an independent prognostic factor for overall survival and disease-free survival of patients with breast cancer, especially triple-negative breast cancer. Interestingly, we also demonstrated that GOT2 overexpression sensitized breast cancer cells to methotrexate, suggesting a promising precision therapeutic strategy for breast cancer treatment. In summary, our findings reveal that BRCA1 modulates aspartate biosynthesis through transcriptional repression of GOT2, and provides a biological basis for treatment choices in breast cancer.


Assuntos
Aspartato Aminotransferase Mitocondrial/genética , Ácido Aspártico/biossíntese , Proteína BRCA1/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Animais , Aspartato Aminotransferase Mitocondrial/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ácidos Cetoglutáricos/metabolismo , Metotrexato/farmacologia , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Fenótipo , Ligação Proteica/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
4.
EMBO J ; 37(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30209241

RESUMO

Nutrient restriction reprograms cellular signaling and metabolic network to shape cancer phenotype. Lactate dehydrogenase A (LDHA) has a key role in aerobic glycolysis (the Warburg effect) through regeneration of the electron acceptor NAD+ and is widely regarded as a desirable target for cancer therapeutics. However, the mechanisms of cellular response and adaptation to LDHA inhibition remain largely unknown. Here, we show that LDHA activity supports serine and aspartate biosynthesis. Surprisingly, however, LDHA inhibition fails to impact human melanoma cell proliferation, survival, or tumor growth. Reduced intracellular serine and aspartate following LDHA inhibition engage GCN2-ATF4 signaling to initiate an expansive pro-survival response. This includes the upregulation of glutamine transporter SLC1A5 and glutamine uptake, with concomitant build-up of essential amino acids, and mTORC1 activation, to ameliorate the effects of LDHA inhibition. Tumors with low LDHA expression and melanoma patients acquiring resistance to MAPK signaling inhibitors, which target the Warburg effect, exhibit altered metabolic gene expression reminiscent of the ATF4-mediated survival signaling. ATF4-controlled survival mechanisms conferring synthetic vulnerability to the approaches targeting the Warburg effect offer efficacious therapeutic strategies.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Proliferação de Células , Glicólise , L-Lactato Desidrogenase/metabolismo , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Fator 4 Ativador da Transcrição/genética , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Ácido Aspártico/biossíntese , Ácido Aspártico/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Melanoma/genética , Melanoma/patologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/biossíntese , Serina/genética
5.
Proc Natl Acad Sci U S A ; 114(35): E7226-E7235, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28808024

RESUMO

Cyclic di-3',5'-adenosine monophosphate (c-di-AMP) is a broadly conserved bacterial second messenger that has been implicated in a wide range of cellular processes. Our earlier studies showed that c-di-AMP regulates central metabolism in Listeria monocytogenes by inhibiting its pyruvate carboxylase (LmPC), a biotin-dependent enzyme with biotin carboxylase (BC) and carboxyltransferase (CT) activities. We report here structural, biochemical, and functional studies on the inhibition of Lactococcus lactis PC (LlPC) by c-di-AMP. The compound is bound at the dimer interface of the CT domain, at a site equivalent to that in LmPC, although it has a distinct binding mode in the LlPC complex. This binding site is not well conserved among PCs, and only a subset of these bacterial enzymes are sensitive to c-di-AMP. Conformational changes in the CT dimer induced by c-di-AMP binding may be the molecular mechanism for its inhibitory activity. Mutations of residues in the binding site can abolish c-di-AMP inhibition. In L. lactis, LlPC is required for efficient milk acidification through its essential role in aspartate biosynthesis. The aspartate pool in L. lactis is negatively regulated by c-di-AMP, and high aspartate levels can be restored by expression of a c-di-AMP-insensitive LlPC. LlPC has high intrinsic catalytic activity and is not sensitive to acetyl-CoA activation, in contrast to other PC enzymes.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Piruvato Carboxilase/metabolismo , Piruvato Carboxilase/fisiologia , Monofosfato de Adenosina/metabolismo , Ácido Aspártico/biossíntese , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X/métodos , AMP Cíclico/metabolismo , Fosfatos de Dinucleosídeos/fisiologia , Lactobacillales/metabolismo , Lactococcus lactis/metabolismo , Conformação Proteica , Sistemas do Segundo Mensageiro/fisiologia , Relação Estrutura-Atividade
6.
Cell Metab ; 24(5): 716-727, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27746050

RESUMO

Metformin use is associated with reduced cancer mortality, but how metformin impacts cancer outcomes is controversial. Although metformin can act on cells autonomously to inhibit tumor growth, the doses of metformin that inhibit proliferation in tissue culture are much higher than what has been described in vivo. Here, we show that the environment drastically alters sensitivity to metformin and other complex I inhibitors. We find that complex I supports proliferation by regenerating nicotinamide adenine dinucleotide (NAD)+, and metformin's anti-proliferative effect is due to loss of NAD+/NADH homeostasis and inhibition of aspartate biosynthesis. However, complex I is only one of many inputs that determines the cellular NAD+/NADH ratio, and dependency on complex I is dictated by the activity of other pathways that affect NAD+ regeneration and aspartate levels. This suggests that cancer drug sensitivity and resistance are not intrinsic properties of cancer cells, and demonstrates that the environment can dictate sensitivity to therapies that impact cell metabolism.


Assuntos
Ácido Aspártico/biossíntese , Complexo I de Transporte de Elétrons/metabolismo , Metformina/farmacologia , Mitocôndrias/metabolismo , NAD/metabolismo , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Ácido Pirúvico/farmacologia
7.
J Gen Appl Microbiol ; 62(4): 174-80, 2016 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-27250664

RESUMO

One of the nitrile-synthesizing enzymes, ß-cyano-L-alanine synthase, catalyzes ß-cyano-L-alanine (ß-CNAla) from potassium cyanide and O-acetyl-L-serine or L-cysteine. We have identified this enzyme from Pseudomonas ovalis No. 111. In this study, we cloned the ß-CNAla synthase gene and expressed it in Escherichia coli and Rhodococcus rhodochrous. Furthermore, we carried out co-expression of ß-CNAla synthase with nitrilase or nitrile hydratases in order to synthesize aspartic acid and asparagine from KCN and O-acetyl-L-serine. This strategy can be used for the synthesis of labeled amino acids by using a carbon-labeled KCN as a substrate, resulting in an application for positron emission tomography.


Assuntos
Clonagem Molecular , Escherichia coli/genética , Liases/genética , Liases/metabolismo , Nitrilas/metabolismo , Pseudomonas/enzimologia , Rhodococcus/genética , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Aminoácidos/química , Aminoidrolases/genética , Asparagina/biossíntese , Ácido Aspártico/biossíntese , Escherichia coli/metabolismo , Expressão Gênica , Hidroliases/genética , Hidroliases/metabolismo , Tomografia por Emissão de Pósitrons , Cianeto de Potássio/metabolismo , Pseudomonas/genética , Rhodococcus/metabolismo , Especificidade por Substrato
8.
J Biol Chem ; 291(26): 13715-29, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27129239

RESUMO

Inflammatory breast cancer (IBC) is an extremely lethal cancer that rapidly metastasizes. Although the molecular attributes of IBC have been described, little is known about the underlying metabolic features of the disease. Using a variety of metabolic assays, including (13)C tracer experiments, we found that SUM149 cells, the primary in vitro model of IBC, exhibit metabolic abnormalities that distinguish them from other breast cancer cells, including elevated levels of N-acetylaspartate, a metabolite primarily associated with neuronal disorders and gliomas. Here we provide the first evidence of N-acetylaspartate in breast cancer. We also report that the oncogene RhoC, a driver of metastatic potential, modulates glutamine and N-acetylaspartate metabolism in IBC cells in vitro, revealing a novel role for RhoC as a regulator of tumor cell metabolism that extends beyond its well known role in cytoskeletal rearrangement.


Assuntos
Ácido Aspártico/análogos & derivados , Glutamina/metabolismo , Neoplasias Inflamatórias Mamárias/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Ácido Aspártico/biossíntese , Ácido Aspártico/genética , Linhagem Celular Tumoral , Feminino , Glutamina/genética , Humanos , Neoplasias Inflamatórias Mamárias/genética , Neoplasias Inflamatórias Mamárias/patologia , Proteínas de Neoplasias/genética , Proteínas rho de Ligação ao GTP/genética , Proteína de Ligação a GTP rhoC
9.
Bioorg Med Chem Lett ; 26(2): 556-560, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26642769

RESUMO

Mammalian cells possess the molecular apparatus necessary to take up, degrade, synthesize, and release free d-aspartate, which plays an important role in physiological functions within the body. Here, biologically active microbial compounds and pre-existing drugs were screened for their ability to alter the intracellular d-aspartate level in mammalian cells, and several candidate compounds were identified. Detailed analytical studies suggested that two of these compounds, mithramycin A and geldanamycin, suppress the biosynthesis of d-aspartate in cells. Further studies suggested that these compounds act at distinct sites within the cell. These compounds may advance our current understanding of biosynthesis of d-aspartate in mammals, a whole picture of which remains to be disclosed.


Assuntos
Ácido Aspártico/antagonistas & inibidores , Benzoquinonas/farmacologia , Lactamas Macrocíclicas/farmacologia , Plicamicina/análogos & derivados , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Ácido Aspártico/biossíntese , Células HEK293 , Humanos , Células PC12 , Plicamicina/farmacologia , Ratos , Sesquiterpenos/farmacologia , Estereoisomerismo
10.
Nat Cell Biol ; 17(10): 1317-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26302408

RESUMO

Succinate dehydrogenase (SDH) is a heterotetrameric nuclear-encoded complex responsible for the oxidation of succinate to fumarate in the tricarboxylic acid cycle. Loss-of-function mutations in any of the SDH genes are associated with cancer formation. However, the impact of SDH loss on cell metabolism and the mechanisms enabling growth of SDH-defective cells are largely unknown. Here, we generated Sdhb-ablated kidney mouse cells and used comparative metabolomics and stable-isotope-labelling approaches to identify nutritional requirements and metabolic adaptations to SDH loss. We found that lack of SDH activity commits cells to consume extracellular pyruvate, which sustains Warburg-like bioenergetic features. We further demonstrated that pyruvate carboxylation diverts glucose-derived carbons into aspartate biosynthesis, thus sustaining cell growth. By identifying pyruvate carboxylase as essential for the proliferation and tumorigenic capacity of SDH-deficient cells, this study revealed a metabolic vulnerability for potential future treatment of SDH-associated malignancies.


Assuntos
Ácido Aspártico/biossíntese , Proliferação de Células , Ácido Pirúvico/metabolismo , Succinato Desidrogenase/metabolismo , Animais , Ácidos Carboxílicos/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Transformada , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Humanos , Immunoblotting , Rim/citologia , Rim/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Metabolômica/métodos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Piruvato Carboxilase/metabolismo , Interferência de RNA , Succinato Desidrogenase/genética
11.
Cell ; 162(3): 552-63, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232225

RESUMO

Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis.


Assuntos
Ácido Aspártico/biossíntese , Proliferação de Células , Respiração Celular , Trifosfato de Adenosina/metabolismo , Butiratos/metabolismo , Linhagem Celular Tumoral , Elétrons , Humanos , Mitocôndrias/metabolismo , Nucleotídeos/biossíntese , Ácido Pirúvico
12.
Mol Cell ; 56(2): 205-218, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25242145

RESUMO

Many cancer cells consume large quantities of glutamine to maintain TCA cycle anaplerosis and support cell survival. It was therefore surprising when RNAi screening revealed that suppression of citrate synthase (CS), the first TCA cycle enzyme, prevented glutamine-withdrawal-induced apoptosis. CS suppression reduced TCA cycle activity and diverted oxaloacetate, the substrate of CS, into production of the nonessential amino acids aspartate and asparagine. We found that asparagine was necessary and sufficient to suppress glutamine-withdrawal-induced apoptosis without restoring the levels of other nonessential amino acids or TCA cycle intermediates. In complete medium, tumor cells exhibiting high rates of glutamine consumption underwent rapid apoptosis when glutamine-dependent asparagine synthesis was suppressed, and expression of asparagine synthetase was statistically correlated with poor prognosis in human tumors. Coupled with the success of L-asparaginase as a therapy for childhood leukemia, the data suggest that intracellular asparagine is a critical suppressor of apoptosis in many human tumors.


Assuntos
Apoptose/genética , Asparagina/metabolismo , Aspartato-Amônia Ligase/antagonistas & inibidores , Citrato (si)-Sintase/genética , Glutamina/deficiência , Fator 4 Ativador da Transcrição/metabolismo , Asparagina/biossíntese , Asparagina/química , Aspartato-Amônia Ligase/biossíntese , Ácido Aspártico/biossíntese , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Ciclo do Ácido Cítrico , Humanos , Ácido Oxaloacético/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
13.
Anal Biochem ; 441(1): 13-7, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23770236

RESUMO

Due to the heterogeneous nature of commercial human serum albumin (cHSA), other components, such as the protease dipeptidyl peptidase IV (DPP-IV), possibly contribute to the therapeutic effect of cHSA. Here, we provide evidence for the first time that DPP-IV activity contributes to the formation of aspartate-alanine diketopiperazine (DA-DKP), a known immunomodulatory molecule from the N terminus of human albumin. cHSA was assayed for DPP-IV activity using a specific DPP-IV substrate and inhibitor. DPP-IV activity was assayed at 37 and 60°C because cHSA solutions are pasteurized at 60°C. DPP-IV activity in cHSA was compared with other sources of albumin such as a recombinant albumin (rHSA). In addition, the production of DA-DKP was measured by negative electrospray ionization/liquid chromatography mass spectrometry (ESI(-)/LCMS). Significant levels of DPP-IV activity were present in cHSA. This activity was abolished using a specific DPP-IV inhibitor. Fully 70 to 80% DPP-IV activity remained at 60°C compared with the 37°C incubate. No DPP-IV activity was present in rHSA, suggesting that DPP-IV activity is present only in HSA produced using the Cohn fractionation process. The formation of DA-DKP at 60°C was observed with the DPP-IV inhibitor significantly decreasing this formation. DPP-IV activity in cHSA results in the production of DA-DKP, which could account for some of the clinical effects of cHSA.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Albumina Sérica , Alanina/biossíntese , Ácido Aspártico/biossíntese , Dicetopiperazinas/metabolismo , Dipeptidil Peptidase 4/química , Contaminação de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Soluções
14.
J Biol Chem ; 286(9): 6879-89, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21163943

RESUMO

Ccc2, the yeast copper-transporting ATPase, pumps copper from the cytosol to the Golgi lumen. During its catalytic cycle, Ccc2 undergoes auto-phosphorylation on Asp(627) and uses the energy gained to transport copper across the cell membrane. We previously demonstrated that cAMP-dependent protein kinase (PKA) controls the energy interconversion (Cu)E∼P → E-P + Cu when Ser(258) is phosphorylated. We now demonstrate that Ser(258) is essential in vivo for copper homeostasis in extremely low copper and iron concentrations. The S258A mutation abrogates all PKA-mediated phosphorylations of Ccc2, whereas the S971A mutation leads to a 100% increase in its global regulatory phosphorylation. With S258A, the first-order rate constant of catalytic phosphorylation by ATP decreases from 0.057 to 0.030 s(-1), with an 8-fold decrease in the burst of initial phosphorylation. With the S971A mutant, the rate constant decreases to 0.007 s(-1). PKAi(5-24) decreases the amount of the aspartylphosphate intermediate (EP) in Ccc2 wt by 50% within 1 min, but not in S258A, S971A, or S258A/S971A. The increase of the initial burst and the extremely slow phosphorylation when the "phosphomimetic" mutant S258D was assayed (k = 0.0036 s(-1)), indicate that electrostatic and conformational (non-electrostatic) mechanisms are involved in the regulatory role of Ser(258). Accumulation of an ADP-insensitive form in S971A demonstrates that Ser(971) is required to accelerate the hydrolysis of the E-P form during turnover. We propose that Ser(258) and Ser(971) are under long-range intramolecular, reciprocal and concerted control, in a sequential process that is crucial for catalysis and copper transport in the yeast copper ATPase.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/biossíntese , Ácido Aspártico/metabolismo , Catálise , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Proteínas de Transporte de Cobre , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/fisiologia , Homeostase/fisiologia , Insetos , Cinética , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Transdução de Sinais/fisiologia
15.
Biochemistry ; 49(43): 9391-401, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20853825

RESUMO

Inhibitor docking studies have implicated a conserved glutamate residue (Glu-348) as a general base in the synthetase active site of the enzyme asparagine synthetase B from Escherichia coli (AS-B). We now report steady-state kinetic, isotope transfer, and positional isotope exchange experiments for a series of site-directed AS-B mutants in which Glu-348 is substituted by conservative amino acid replacements. We find that formation of the ß-aspartyl-AMP intermediate, and therefore the eventual production of asparagine, is dependent on the presence of a carboxylate side chain at this position in the synthetase active site. In addition, Glu-348 may also play a role in mediating the conformational changes needed to (i) coordinate, albeit weakly, the glutaminase and synthetase activities of the enzyme and (ii) establish the structural integrity of the intramolecular tunnel along which ammonia is translocated. The importance of Glu-348 in mediating acyl-adenylate formation contrasts with the functional role of the cognate residues in ß-lactam synthetase (BLS) and carbapenem synthetase (CPS) (Tyr-348 and Tyr-345, respectively), which both likely evolved from asparagine synthetase. Given the similarity of the chemistry catalyzed by AS-B, BLS, and CPS, our work highlights the difficulty of predicting the functional outcome of single site mutations on enzymes that catalyze almost identical chemical transformations.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Aspartato-Amônia Ligase/química , Ácido Aspártico/análogos & derivados , Ácido Glutâmico , Monofosfato de Adenosina/biossíntese , Amônia/metabolismo , Ácido Aspártico/biossíntese , Domínio Catalítico , Proteínas de Escherichia coli/química , Cinética , Mutagênese Sítio-Dirigida
16.
Brain Res ; 1335: 1-13, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20385109

RESUMO

N-acetylaspartate (NAA) is a concentrated, neuron-specific brain metabolite routinely used as a magnetic resonance spectroscopy marker for brain injury and disease. Despite decades of research, the functional roles of NAA remain unclear. Biochemical investigations over several decades have associated NAA with myelin lipid synthesis and energy metabolism. However, studies have been hampered by an inability to identify the gene for the NAA biosynthetic enzyme aspartate N-acetyltransferase (Asp-NAT). A very recent report has identified Nat8l as the gene encoding Asp-NAT and confirmed that the only child diagnosed with a lack of NAA on brain magnetic resonance spectrograms has a 19-bp deletion in this gene. Based on in vitro Nat8l expression studies the researchers concluded that many previous biochemical investigations have been technically flawed and that NAA may not be associated with brain energy or lipid metabolism. In studies done concurrently in our laboratory we have demonstrated via cloning, expression, specificity for acetylation of aspartate, responsiveness to methamphetamine treatment, molecular modeling and comparative immunolocalization that NAT8L is the NAA biosynthetic enzyme Asp-NAT. We conclude that NAA is a major storage and transport form of acetyl coenzyme A specific to the nervous system, thus linking it to both lipid synthesis and energy metabolism.


Assuntos
Acetilcoenzima A/metabolismo , Acetiltransferases/biossíntese , Ácido Aspártico/análogos & derivados , Metanfetamina/farmacologia , Neurônios/enzimologia , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Ácido Aspártico/biossíntese , Linhagem Celular , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/enzimologia , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato/genética
17.
Neurochem Int ; 55(4): 219-25, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19524112

RESUMO

N-acetylaspartate (NAA) is synthesized predominantly in neurons, and brain homogenate subfractionation studies suggest that biosynthesis occurs at both microsomal (cytoplasmic) and mitochondrial sites. We investigated NAA synthesis in SH-SY5Y human neuroblastoma cells using distinct metabolic precursors that are preferentially metabolized in mitochondria and cytoplasm. Incorporation of (14)C-aspartate and (14)C-malate into NAA was examined in the presence and absence of an inhibitor (aminooxyacetic acid, AOAA) of aspartate aminotransferase (AAT), a central enzyme involved in the biosynthesis of aspartate in mitochondria, and degradation of aspartate in the cytoplasm. AOAA increased the incorporation of (14)C-aspartate into NAA, reflecting direct aspartate-->NAA synthesis in an extramitochondrial location. As expected, AOAA decreased incorporation of (14)C-malate into NAA, reflecting NAA synthesis in mitochondria via the malate-->oxaloacetate-->aspartate-->NAA pathway. When (14)C-malate was used as substrate, the (14)C-NAA/(14)C-aspartate ratio was over 20-fold higher than the ratio obtained with (14)C-aspartate. Because NAA can only be synthesized from aspartate, the higher (14)C-NAA/(14)C-aspartate (product/substrate) ratio obtained with (14)C-malate suggests greater NAA biosynthetic activity. We conclude that NAA biosynthesis occurs in both the cytoplasm and mitochondria of SH-SY5Y cells, and that the contribution from the mitochondrial compartment is quantitatively larger than that in the extramitochondrial compartment.


Assuntos
Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Citoplasma/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Ácido Amino-Oxiacético/farmacologia , Aspartato Aminotransferases/antagonistas & inibidores , Aspartato Aminotransferases/metabolismo , Ácido Aspártico/biossíntese , Ácido Aspártico/metabolismo , Encéfalo/ultraestrutura , Radioisótopos de Carbono/metabolismo , Compartimento Celular/fisiologia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Citoplasma/ultraestrutura , Inibidores Enzimáticos/farmacologia , Humanos , Malatos/metabolismo , Mitocôndrias/ultraestrutura , Neurônios/ultraestrutura , Ácido Oxaloacético/metabolismo
18.
J Neurochem ; 98(6): 2034-42, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16945114

RESUMO

The neuronal dipeptide N-acetylaspartylglutamate (NAAG) is thought to be synthesized enzymatically from N-acetylaspartate (NAA) and glutamate. We used radiolabeled precursors to examine NAA and NAAG biosynthesis in SH-SY5Y human neuroblastoma cells stimulated with activators of protein kinase A (dbcAMP; N6,2'-O-dibutyryl cAMP) and protein kinase C (PMA; phorbol-12-myristate-13-acetate). Differentiation over the course of several days with dbcAMP resulted in increased endogenous NAA levels and NAAG synthesis from l-[(3)H]glutamine, whereas PMA-induced differentiation reduced both. Exogenously applied NAA caused dose dependent increases in intracellular NAA levels, and NAAG biosynthesis from l-[(3)H]glutamine, suggesting precursor-product and mass-action relationships between NAA and NAAG. Incorporation of l-[(3)H]aspartate into NAA and NAAG occurred sequentially, appearing in NAA by 1 h, but not in NAAG until between 6 and 24 h. Synthesis of NAAG from l-[(3)H]aspartate was increased by dbcAMP and decreased by PMA at 24 h. The effects of PMA on l-[(3)H]aspartate incorporation into NAA were temporally biphasic. Using short incubation times (1 and 6 h), PMA increased l-[(3)H]aspartate incorporation into NAA, but with longer incubation (24 h), incorporation was significantly reduced. These results suggest that, while the neuronal production of NAA and NAAG are biochemically related, significant differences exist in the regulatory mechanisms controlling their biosynthesis.


Assuntos
Ácido Aspártico/análogos & derivados , Dipeptídeos/biossíntese , Neuroblastoma/metabolismo , Proteínas Quinases/metabolismo , Ácido Aspártico/administração & dosagem , Ácido Aspártico/biossíntese , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Bucladesina/farmacologia , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/fisiologia , Glutamina/metabolismo , Humanos , Neuroblastoma/patologia , Proteína Quinase C/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo
19.
Arch Biochem Biophys ; 404(1): 92-7, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12127073

RESUMO

In a previous report (FEBS Lett. 434 (1998) 231), we demonstrated for the first time that D-aspartate (D-Asp) is synthesized in rat pheochromocytoma 12 (PC12) cells. This unique amino acid is believed to act as a novel messenger in mammalian cell regulation. However, the dynamics of D-Asp homeostasis in mammalian cells is yet to be elucidated. In this communication, we demonstrate that D-Asp is also synthesized in MPT1 cells (a subclone of PC12 cells) and that the D- and L-Asp levels in cells are regulated by cell density of the culture. Our data show that D-Asp levels increase, while in contrast, L-Asp levels decrease as a function of increased cell density. Conversely, in PC12 cells, which do not express the glutamate transporter involved in the incorporation of D- and L-Asp into cells, L-Asp levels decrease upon cell density increase while D-Asp concentrations remain almost unchanged. The results indicate that the biochemical behaviors of D- and L-Asp in mammalian cells are distinct and that the cellular levels of these stereoisomers appear to be under different control mechanisms.


Assuntos
Ácido Aspártico/metabolismo , Feocromocitoma/metabolismo , Animais , Ácido Aspártico/biossíntese , Ácido Aspártico/química , Contagem de Células , Homeostase , Células PC12 , Feocromocitoma/patologia , Ratos , Estereoisomerismo
20.
Brain Res ; 908(2): 149-54, 2001 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-11454325

RESUMO

The effect of methylmercury on glutamate metabolism was studied by (13)C magnetic resonance spectroscopy. Cerebral cortical astrocytes were pretreated with methylmercury, either 1 microM for 24 h, or 10 microM for 30 min, and subsequently with 0.5 mM [U-(13)C]glutamate for 2 h. Labeled glutamate, glutamine, aspartate and glutathione were present in cell extracts, and glutamine, aspartate and lactate in the medium of all groups. HPLC analysis of these amino acids showed no changes in concentrations between groups. Surprisingly, the amounts of [U-(13)C]glutamate and unlabeled glucose taken up by the astrocytes were unchanged. Furthermore, the amounts of most metabolites synthesized from [U-(13)C]glutamate were also unchanged in all groups. However, formation of [U-(13)C]lactate was decreased in the 10 microM methylmercury group. This was not observed for labeled aspartate. It is noteworthy that both [U-(13)C]lactate and [U-(13)C]aspartate can only be derived from [U-(13)C]glutamate via mitochondrial metabolism. [U-(13)C]glutamate enters the tricarboxylic acid cycle (located in mitochondria) after conversion to 2-[U-13C]oxoglutarate and [U-(13)C]aspartate is formed from [U-(13)C]oxaloacetate, as is [U-(13)C]lactate. [U-(13)C]lactate can also be formed from [U-(13)C]malate. This differential effect on labeled aspartate and lactate indicates cellular compartmentation and thus selective vulnerability of mitochondria within the astrocytes to the effects of methylmercury. The decreased lactate production from glutamate might be detrimental to surrounding cells since lactate has been shown to be an important substrate for neurons.


Assuntos
Astrócitos/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácido Glutâmico/efeitos dos fármacos , Intoxicação do Sistema Nervoso por Mercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Mitocôndrias/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Ácido Aspártico/biossíntese , Astrócitos/metabolismo , Radioisótopos de Carbono/farmacocinética , Células Cultivadas/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético/fisiologia , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacocinética , Glutamina/biossíntese , Glutationa/biossíntese , Intoxicação do Sistema Nervoso por Mercúrio/fisiopatologia , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA