Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
New Phytol ; 242(6): 2682-2701, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622771

RESUMO

Plant cell death is regulated in plant-pathogen interactions. While some aspartic proteases (APs) participate in regulating programmed cell death or defense responses, the defense functions of most APs remain largely unknown. Here, we report on a virulence factor, PlPeL8, which is a pectate lyase found in the hemibiotrophic pathogen Peronophythora litchii. Through in vivo and in vitro assays, we confirmed the interaction between PlPeL8 and LcAP1 from litchi, and identified LcAP1 as a positive regulator of plant immunity. PlPeL8 induced cell death associated with NbSOBIR1 and NbMEK2. The 11 conserved residues of PlPeL8 were essential for inducing cell death and enhancing plant susceptibility. Twenty-three LcAPs suppressed cell death induced by PlPeL8 in Nicotiana benthamiana depending on their interaction with PlPeL8. The N-terminus of LcAP1 was required for inhibiting PlPeL8-triggered cell death and susceptibility. Furthermore, PlPeL8 led to higher susceptibility in NbAPs-silenced N. benthamiana than the GUS-control. Our results indicate the crucial roles of LcAP1 and its homologs in enhancing plant resistance via suppression of cell death triggered by PlPeL8, and LcAP1 represents a promising target for engineering disease resistance. Our study provides new insights into the role of plant cell death in the arms race between plants and hemibiotrophic pathogens.


Assuntos
Ácido Aspártico Proteases , Morte Celular , Resistência à Doença , Litchi , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Polissacarídeo-Liases , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/genética , Ácido Aspártico Proteases/metabolismo , Ácido Aspártico Proteases/genética , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Nicotiana/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Litchi/genética , Regulação da Expressão Gênica de Plantas , Sequência de Aminoácidos , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Imunidade Vegetal/genética , Ligação Proteica
2.
Appl Microbiol Biotechnol ; 108(1): 131, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229301

RESUMO

A novel aspartic protease gene (TaproA1) from Trichoderma asperellum was successfully expressed in Komagataella phaffii (Pichia pastoris). TaproA1 showed 52.8% amino acid sequence identity with the aspartic protease PEP3 from Coccidioides posadasii C735. TaproA1 was efficiently produced in a 5 L fermenter with a protease activity of 4092 U/mL. It exhibited optimal reaction conditions at pH 3.0 and 50 °C and was stable within pH 3.0-6.0 and at temperatures up to 45 °C. The protease exhibited broad substrate specificity with high hydrolysis activity towards myoglobin and hemoglobin. Furthermore, duck blood proteins (hemoglobin and plasma protein) were hydrolyzed by TaproA1 to prepare bioactive peptides with high ACE inhibitory activity. The IC50 values of hemoglobin and plasma protein hydrolysates from duck blood proteins were 0.105 mg/mL and 0.091 mg/mL, respectively. Thus, the high yield and excellent biochemical characterization of TaproA1 presented here make it a potential candidate for the preparation of duck blood peptides. KEY POINTS: • An aspartic protease (TaproA1) from Trichoderma asperellum was expressed in Komagataella phaffii. • TaproA1 exhibited broad substrate specificity and the highest activity towards myoglobin and hemoglobin. • TaproA1 has great potential for the preparation of bioactive peptides from duck blood proteins.


Assuntos
Ácido Aspártico Proteases , Hypocreales , Saccharomycetales , Trichoderma , Animais , Proteínas Fúngicas/metabolismo , Patos , Mioglobina , Peptídeos , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Proteínas Sanguíneas , Hemoglobinas , Trichoderma/genética
3.
Mol Microbiol ; 118(6): 601-622, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36210525

RESUMO

Virulence and persistence of the obligate intracellular parasite Toxoplasma gondii involve the secretion of effector proteins belonging to the family of dense granule proteins (GRAs) that act notably as modulators of the host defense mechanisms and participate in cyst wall formation. The subset of GRAs residing in the parasitophorous vacuole (PV) or exported into the host cell, undergo proteolytic cleavage in the Golgi upon the action of the aspartyl protease 5 (ASP5). In tachyzoites, ASP5 substrates play central roles in the morphology of the PV and the export of effectors across the translocon complex MYR1/2/3. Here, we used N-terminal amine isotopic labeling of substrates to identify novel ASP5 cleavage products by comparing the N-terminome of wild-type and Δasp5 lines in tachyzoites and bradyzoites. Validated substrates reside within the PV or PVM in an ASP5-dependent manner. Remarkably, Δasp5 bradyzoites are impaired in the formation of the cyst wall in vitro and exhibit a considerably reduced cyst burden in chronically infected animals. More specifically two-photon serial tomography of infected mouse brains revealed a comparatively reduced number and size of the cysts throughout the establishment of persistence in the absence of ASP5.


Assuntos
Ácido Aspártico Proteases , Toxoplasma , Animais , Camundongos , Toxoplasma/metabolismo , Ácido Aspártico Proteases/metabolismo , Proteínas de Protozoários/metabolismo , Infecção Persistente , Vacúolos/metabolismo , Ácido Aspártico Endopeptidases/metabolismo
4.
Cell Death Dis ; 13(5): 475, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589686

RESUMO

Proteasome inhibitors, such as bortezomib, are first-line therapy against multiple myeloma (MM). Unfortunately, patients frequently become refractory to this treatment. The transcription factor NRF1 has been proposed to initiate an adaptation program that regulates proteasome levels. In the context of proteasome inhibition, the cytosolic protease DDI2 cleaves NRF1 to release an active fragment that translocates to the nucleus to promote the transcription of new proteasome subunits. However, the contribution of the DDI2-NRF1 pathway to bortezomib resistance is poorly understood. Here we show that upon prolonged bortezomib treatment, MM cells become resistant to proteasome inhibition by increasing the expression of DDI2 and consequently activation of NRF1. Furthermore, we found that many MM cells became more sensitive to proteasome impairment in the context of DDI2 deficiency. Mechanistically, we demonstrate that both the protease and the HDD domains of DDI2 are required to activate NRF1. Finally, we show that partial inhibition of the DDI2-protease domain with the antiviral drug nelfinavir increased bortezomib susceptibility in treated MM cells. Altogether, these findings define the DDI2-NRF1 pathway as an essential program contributing to proteasome inhibition responses and identifying DDI2 domains that could be targets of interest in bortezomib-treated MM patients.


Assuntos
Antineoplásicos , Ácido Aspártico Proteases , Mieloma Múltiplo , Antineoplásicos/uso terapêutico , Ácido Aspártico Endopeptidases , Ácido Aspártico Proteases/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico
5.
Cells ; 11(3)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159253

RESUMO

In this contribution, we report on the possibility that cryptococcal protease(s) could activate the SARS-CoV-2 spike (S) protein. The S protein is documented to have a unique four-amino-acid sequence (underlined, SPRRAR↓S) at the interface between the S1 and S2 sites, that serves as a cleavage site for the human protease, furin. We compared the biochemical efficiency of cryptococcal protease(s) and furin to mediate the proteolytic cleavage of the S1/S2 site in a fluorogenic peptide. We show that cryptococcal protease(s) processes this site in a manner comparable to the efficiency of furin (p > 0.581). We conclude the paper by discussing the impact of these findings in the context of a SARS-CoV-2 disease manifesting while there is an underlying cryptococcal infection.


Assuntos
Ácido Aspártico Proteases/metabolismo , Proteínas de Bactérias/metabolismo , Cryptococcus neoformans/enzimologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Ácido Aspártico Proteases/genética , Proteínas de Bactérias/genética , Sítios de Ligação , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Cryptococcus neoformans/genética , Corantes Fluorescentes/química , Furina/genética , Furina/metabolismo , Humanos , Pandemias , Peptídeos/química , Peptídeos/metabolismo , Proteólise , SARS-CoV-2/fisiologia
6.
Blood Adv ; 6(2): 429-440, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34649278

RESUMO

Multiple myeloma (MM) cells suffer from baseline proteotoxicity as the result of an imbalance between the load of misfolded proteins awaiting proteolysis and the capacity of the ubiquitin-proteasome system to degrade them. This intrinsic vulnerability is at the base of MM sensitivity to agents that perturb proteostasis, such as proteasome inhibitors (PIs), the mainstay of modern-day myeloma therapy. De novo and acquired PI resistance are important clinical limitations that adversely affect prognosis. The molecular mechanisms underpinning PI resistance are only partially understood, limiting the development of drugs that can overcome it. The transcription factor NRF1 is activated by the aspartic protease DNA damage inducible 1 homolog 2 (DDI2) upon proteasome insufficiency and governs proteasome biogenesis. In this article, we show that MM cells exhibit baseline NRF1 activation and are dependent upon DDI2 for survival. DDI2 knockout (KO) is cytotoxic for MM cells, both in vitro and in vivo. Protein structure-function studies show that DDI2 KO blocks NRF1 cleavage and nuclear translocation, causing impaired proteasome activity recovery upon irreversible proteasome inhibition and, thereby, increasing sensitivity to PIs. Add-back of wild-type, but not of catalytically dead DDI2, fully rescues these phenotypes. We propose that DDI2 is an unexplored promising molecular target in MM by disrupting the proteasome stress response and exacerbating proteotoxicity.


Assuntos
Ácido Aspártico Proteases/metabolismo , Mieloma Múltiplo , Fator 1 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma , Humanos , Fator 1 Relacionado a NF-E2/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteólise
7.
Drug Chem Toxicol ; 45(6): 2843-2851, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34747284

RESUMO

Fluorouracil (5-FU) is a widely used chemotherapeutic agent in various malignant tumors. However, intestinal toxicity is considered the irritant unavoidable adverse effect during the course therapy. The aim of the current study was to screen the effect of a new selective histamine receptor 1 blocker and platelet-activating factor (PAF) blocker on 5-FU induced intestinal toxicity. Five groups (6 rats each) of adult male rats (Wistar) were arranged as follows: (1) control group that was treated with carboxymethylcellulose, (2) a group that received rupatadine (higher dose) only, (3) a group that received 5-FU and (4) and (5) groups that received 5-FU plus lower or higher dose rupatadine, respectively. At end of the experiment, we determined intestinal malondialdehyde (MDA), glutathione reduced (GSH), nitric oxide (NO), tumor necrosis factor (TNF-α), interleukin 1ß, 6, 10 (IL-1ß, IL-6, IL-10), PAF, histamine, myeloperoxidase, cysteine-aspartic acid protease-3 (caspase-3), and nuclear factor kappa B (NF-κB) as well as the histological analysis. 5-FU injection caused marked elevation of MDA, NO, TNF-α, IL-1ß, IL-6, PAF, histamine, myeloperoxidase, caspase-3, and NF-κB expressions. The intoxicated animals showed deficient GSH and IL-10 along with significant loss of villi, disorganized crypts, and inflammatory cell infiltration. Rupatadine pretreatment reduced the previously mentioned parameters, preserved a nearly normal intestinal mucosa picture with replenished GSH and elevated IL-10. In conclusion, rupatadine is a dual histamine receptor 1, and a PAF blocker could reduce 5-FU-induced oxidative damage, inflammation, apoptosis, and ulceration of the intestinal epithelium. Rupatadine may be a valuable modality to decrease 5-FU induced intestinal mucositis.


Assuntos
Ácido Aspártico Proteases , Peroxidase , Animais , Masculino , Ratos , Apoptose , Ácido Aspártico Proteases/metabolismo , Ácido Aspártico Proteases/farmacologia , Carboximetilcelulose Sódica/metabolismo , Carboximetilcelulose Sódica/farmacologia , Caspase 3/metabolismo , Cisteína , Fluoruracila/efeitos adversos , Fluoruracila/toxicidade , Glutationa/metabolismo , Histamina/metabolismo , Histamina/farmacologia , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6 , Mucosa Intestinal/metabolismo , Irritantes , Malondialdeído/metabolismo , NF-kappa B , Óxido Nítrico/metabolismo , Permeabilidade , Peroxidase/metabolismo , Peroxidase/farmacologia , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
8.
J Med Chem ; 64(10): 6706-6719, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34006103

RESUMO

Cryptococcosis is an invasive infection that accounts for 15% of AIDS-related fatalities. Still, treating cryptococcosis remains a significant challenge due to the poor availability of effective antifungal therapies and emergence of drug resistance. Interestingly, protease inhibitor components of antiretroviral therapy regimens have shown some clinical benefits in these opportunistic infections. We investigated Major aspartyl peptidase 1 (May1), a secreted Cryptococcus neoformans protease, as a possible target for the development of drugs that act against both fungal and retroviral aspartyl proteases. Here, we describe the biochemical characterization of May1, present its high-resolution X-ray structure, and provide its substrate specificity analysis. Through combinatorial screening of 11,520 compounds, we identified a potent inhibitor of May1 and HIV protease. This dual-specificity inhibitor exhibits antifungal activity in yeast culture, low cytotoxicity, and low off-target activity against host proteases and could thus serve as a lead compound for further development of May1 and HIV protease inhibitors.


Assuntos
Antifúngicos/química , Ácido Aspártico Proteases/antagonistas & inibidores , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/antagonistas & inibidores , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/efeitos dos fármacos , HIV/enzimologia , Protease de HIV/química , Protease de HIV/metabolismo , Simulação de Dinâmica Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Especificidade por Substrato
9.
Bioorg Med Chem Lett ; 41: 127959, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766772

RESUMO

Solanum tuberosum aspartic Proteases (StAPs) show selective plasma membrane permeabilization, inducing cytotoxicity of cancer cells versus normal cells in vitro. Herein, we aimed to evaluate both StAP3 systemic toxicity and antitumoral activity against human melanoma in vivo. The toxicity of a single high dose of StAP3 (10 µg/g body weight, intraperitoneally) was assessed in a Balb/c mice model. Subcutaneous A375 human melanoma xenografts in athymic nude (nu/nu) mice were induced. Once tumors developed (mean larger dimension = 3.8 ± 0.09 mm), mice were StAP3-treated (6 µg/g body weight, subcutaneously under the tumor at a single dose). For both models, controls were treated with physiologic saline solution. StAP3-treated mice showed a significant inhibition of tumor growth (p < 0.05) compared with controls. No signs of toxicity were detected in StAP3-treated mice in both models. These results suggest the potential of these plant proteases as anticancer agents.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ácido Aspártico Proteases/farmacologia , Melanoma/tratamento farmacológico , Solanum tuberosum/enzimologia , Animais , Antineoplásicos Fitogênicos/metabolismo , Ácido Aspártico Proteases/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia
10.
Future Microbiol ; 16: 211-219, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33595345

RESUMO

Aim: To study the behavior of Candida albicans in women with vulvovaginal candidiasis (VVC), recurrent VVC (RVVC) and asymptomatic (AS), regarding adhesion on HeLa cells and their ability to express secreted aspartic proteinases (SAP) genes, agglutinin-like sequence (ALS) genes and HWP1. Materials & methods: The adhesion of Candida albicans to HeLa cells was evaluated by colony-forming units, and the expressed genes were evaluated by qRT-PCR. Results: AS and VVC isolates showed greater ability to adhere HeLa cells when compared with RVVC isolate. Nevertheless, RVVC isolate exhibited upregulation of a large number of genes of ALS and SAP gene families and HWP1 gene. Conclusion: The results demonstrated that RVVC isolate expressed significantly important genes for invasion and yeast-host interactions.


Assuntos
Ácido Aspártico Proteases/metabolismo , Candida albicans/genética , Candidíase Vulvovaginal/microbiologia , Ácido Aspártico Proteases/genética , Candida albicans/enzimologia , Candida albicans/crescimento & desenvolvimento , Colo do Útero/microbiologia , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Células HeLa , Humanos
11.
Commun Biol ; 4(1): 11, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398053

RESUMO

Proteins covalently attached to DNA, also known as DNA-protein crosslinks (DPCs), are common and bulky DNA lesions that interfere with DNA replication, repair, transcription and recombination. Research in the past several years indicates that cells possess dedicated enzymes, known as DPC proteases, which digest the protein component of a DPC. Interestingly, DPC proteases also play a role in proteolysis beside DPC repair, such as in degrading excess histones during DNA replication or controlling DNA replication checkpoints. Here, we discuss the importance of DPC proteases in DNA replication, genome stability and their direct link to human diseases and cancer therapy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Ácido Aspártico Proteases/metabolismo , Dano ao DNA , Replicação do DNA , Humanos , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Virais/metabolismo
12.
Future Med Chem ; 13(3): 313-334, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32564615

RESUMO

Fungal infections with increasing resistance to conventional therapies are a growing concern. Candida albicans is a major opportunistic yeast responsible for mucosal and invasive infections. Targeting the initial step of the infection process (i.e., C. albicans adhesion to the host cell) is a promising strategy. A wide variety of molecules can interfere with adhesion processes via an assortment of mechanisms. Herein, we focus on how small molecules disrupt biosynthesis of fungal cell wall components and membrane structure, prevent the localization of GPI-anchor proteins, inhibit production of enzymes involved in adhesion, downregulate genes encoding adhesins and competitively inhibit receptor interactions. As a result, adhesion of C. albicans to host cells is reduced, paving the way to new classes of antifungal agents.


Assuntos
Antifúngicos/química , Candida albicans/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas Fúngicas/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ácido Aspártico Proteases/antagonistas & inibidores , Ácido Aspártico Proteases/metabolismo , Candida albicans/patogenicidade , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/metabolismo , Polifenóis/química , Polifenóis/metabolismo , Polifenóis/farmacologia , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/metabolismo , Compostos de Amônio Quaternário/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
13.
Cell Signal ; 75: 109775, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32916277

RESUMO

Proteasome inhibitors (PIs) are currently used in the clinic to treat cancers such as multiple myeloma (MM). However, cancer cells often rapidly develop drug resistance towards PIs due to a compensatory mechanism mediated by nuclear factor erythroid 2 like 1 (NFE2L1) and aspartic protease DNA damage inducible 1 homolog 2 (DDI2). Following DDI2-mediated cleavage, NFE2L1 is able to induce transcription of virtually all proteasome subunit genes. Under normal condition, cleaved NFE2L1 is constantly degraded by proteasome, whereas in the presence of PIs, it accumulates and induces proteasome synthesis which in turn promotes the development of drug resistance towards PIs. Here, we report that Nelfinavir (NFV), an HIV protease inhibitor, can inhibit DDI2 activity directly. Inhibition of DDI2 by NFV effectively blocks NFE2L1 proteolysis and potentiates cytotoxicity of PIs in cancer cells. Recent clinical evidence indicated that NFV can effectively delay the refractory period of MM patients treated with PI-based therapy. Our finding hence provides a specific molecular mechanism for combinatorial therapy using NFV and PIs for treating MM and probably additional cancers.


Assuntos
Ácido Aspártico Proteases/metabolismo , Inibidores da Protease de HIV/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Nelfinavir/farmacologia , Inibidores de Proteassoma/farmacologia , Células HCT116 , Células HEK293 , Humanos , Proteólise
14.
Genetics ; 216(2): 409-429, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32839241

RESUMO

An unusual feature of the opportunistic pathogen Candida albicans is its ability to switch stochastically between two distinct, heritable cell types called white and opaque. Here, we show that only opaque cells, in response to environmental signals, massively upregulate a specific group of secreted proteases and peptide transporters, allowing exceptionally efficient use of proteins as sources of nitrogen. We identify the specific proteases [members of the secreted aspartyl protease (SAP) family] needed for opaque cells to proliferate under these conditions, and we identify four transcriptional regulators of this specialized proteolysis and uptake program. We also show that, in mixed cultures, opaque cells enable white cells to also proliferate efficiently when proteins are the sole nitrogen source. Based on these observations, we suggest that one role of white-opaque switching is to create mixed populations where the different phenotypes derived from a single genome are shared between two distinct cell types.


Assuntos
Ácido Aspártico Proteases/metabolismo , Candida albicans/genética , Proteínas Fúngicas/metabolismo , Interações Microbianas , Ácido Aspártico Proteases/genética , Candida albicans/metabolismo , Candida albicans/fisiologia , Proliferação de Células , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Nitrogênio/metabolismo , Peptídeos/metabolismo , Fenótipo
15.
PLoS Negl Trop Dis ; 14(4): e0008269, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32339171

RESUMO

BACKGROUND: T. spiralis aspartic protease has been identified in excretion/secretion (ES) proteins, but its roles in larval invasion are unclear. The aim of this study was to characterize T. spiralis aspartic protease-2 (TsASP2) and assess its roles in T. spiralis invasion into intestinal epithelial cells (IECs) using RNAi. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant TsASP2 (rTsASP2) was expressed and purified. The native TsASP2 of 43 kDa was recognized by anti-rTsASP2 serum in all worm stages except newborn larvae (NBL), and qPCR indicated that TsASP2 transcription was highest at the stage of intestinal infective larvae (IIL). IFA results confirmed that TsASP2 was located in the hindgut, midgut and muscle cells of muscle larvae (ML) and IIL and intrauterine embryos of the female adult worm (AW), but not in NBL. rTsASP2 cleaved several host proteins (human hemoglobin (Hb), mouse Hb, collagen and IgM). The proteolytic activity of rTsASP2 was host-specific, as it hydrolyzed mouse Hb more efficiently than human Hb. The enzymatic activity of rTsASP2 was significantly inhibited by pepstatin A. The expression levels of TsASP2 mRNA and protein were significantly suppressed by RNAi with 5 µM TsASP2-specific siRNA. Native aspartic protease activity in ML crude proteins was reduced to 54.82% after transfection with siRNA. Larval invasion of IECs was promoted by rTsASP2 and inhibited by anti-rTsASP2 serum and siRNA. Furthermore, cell monolayer damage due to larval invasion was obviously alleviated when siRNA-treated larvae were used. The adult worm burden, length of adult worms and female fecundity were clearly reduced in mice challenged using siRNA-treated ML relative to the PBS group. CONCLUSIONS: rTsASP2 possesses the enzymatic activity of native aspartic protease and facilitates T. spiralis invasion of host IECs.


Assuntos
Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Endocitose , Células Epiteliais/parasitologia , Trichinella spiralis/enzimologia , Trichinella spiralis/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Hemoglobinas/metabolismo , Humanos , Imuno-Histoquímica , Camundongos Endogâmicos BALB C , Carga Parasitária , Proteólise , Reação em Cadeia da Polimerase em Tempo Real , Trichinella spiralis/genética , Triquinelose/parasitologia
16.
J Enzyme Inhib Med Chem ; 35(1): 629-638, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32037904

RESUMO

Phialophora verrucosa causes several fungal human diseases, mainly chromoblastomycosis, which is extremely difficult to treat. Several studies have shown that human immunodeficiency virus peptidase inhibitors (HIV-PIs) are attractive candidates for antifungal therapies. This work focused on studying the action of HIV-PIs on peptidase activity secreted by P. verrucosa and their effects on fungal proliferation and macrophage interaction. We detected a peptidase activity from P. verrucosa able to cleave albumin, sensitive to pepstatin A and HIV-PIs, especially lopinavir, ritonavir and amprenavir, showing for the first time that this fungus secretes aspartic-type peptidase. Furthermore, lopinavir, ritonavir and nelfinavir reduced the fungal growth, causing remarkable ultrastructural alterations. Lopinavir and ritonavir also affected the conidia-macrophage adhesion and macrophage killing. Interestingly, P. verrucosa had its growth inhibited by ritonavir combined with either itraconazole or ketoconazole. Collectively, our results support the antifungal action of HIV-PIs and their relevance as a possible alternative therapy for fungal infections.


Assuntos
Antifúngicos/farmacologia , Ácido Aspártico Proteases/antagonistas & inibidores , Inibidores da Protease de HIV/farmacologia , Macrófagos/efeitos dos fármacos , Phialophora/efeitos dos fármacos , Antifúngicos/síntese química , Antifúngicos/química , Ácido Aspártico Proteases/metabolismo , Carbamatos/síntese química , Carbamatos/química , Carbamatos/farmacologia , Relação Dose-Resposta a Droga , Furanos , Inibidores da Protease de HIV/síntese química , Inibidores da Protease de HIV/química , Humanos , Lopinavir/síntese química , Lopinavir/química , Lopinavir/farmacologia , Macrófagos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Phialophora/enzimologia , Phialophora/crescimento & desenvolvimento , Ritonavir/síntese química , Ritonavir/química , Ritonavir/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia
17.
mSphere ; 5(1)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051238

RESUMO

The lysosome-like vacuolar compartment (VAC) is a major site of proteolysis in the intracellular parasite Toxoplasma gondii Previous studies have shown that genetic ablation of a VAC-residing cysteine protease, cathepsin protease L (CPL), resulted in the accumulation of undigested protein in the VAC and loss of parasite viability during the chronic stage of infection. However, since the maturation of another VAC localizing protease, cathepsin protease B (CPB), is dependent on CPL, it remained unknown whether these defects result directly from ablation of CPL or indirectly from a lack of CPB maturation. Likewise, although a previously described cathepsin D-like aspartyl protease 1 (ASP1) could also play a role in proteolysis, its definitive residence and function in the Toxoplasma endolysosomal system were not well defined. Here, we demonstrate that CPB is not necessary for protein turnover in the VAC and that CPB-deficient parasites have normal growth and viability in both the acute and chronic stages of infection. We also show that ASP1 depends on CPL for correct maturation, and it resides in the T. gondii VAC, where, similar to CPB, it plays a dispensable role in protein digestion. Taken together with previous work, our findings suggest that CPL is the dominant protease in a hierarchy of proteolytic enzymes within the VAC. This unusual lack of redundancy for CPL in T. gondii makes it a single exploitable target for disrupting chronic toxoplasmosis.IMPORTANCE Roughly one-third of the human population is chronically infected with the intracellular single-celled parasite Toxoplasma gondii, but little is known about how this organism persists inside people. Previous research suggested that a parasite proteolytic enzyme, termed cathepsin protease L, is important for Toxoplasma persistence; however, it remained possible that other associated proteolytic enzymes could also be involved in the long-term survival of the parasite during infection. Here, we show that two proteolytic enzymes associated with cathepsin protease L play dispensable roles and are dependent on cathepsin L to reach maturity, which differs from the corresponding enzymes in humans. These findings establish a divergent hierarchy of proteases and help focus attention principally on cathepsin protease L as a potential target for interrupting Toxoplasma chronic infection.


Assuntos
Ácido Aspártico Proteases/metabolismo , Catepsina B/metabolismo , Lisossomos/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Humanos , Estágios do Ciclo de Vida , Proteólise , Toxoplasma/crescimento & desenvolvimento , Vacúolos/metabolismo
18.
Int J Mol Sci ; 21(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947743

RESUMO

Proteasome inhibition is used therapeutically to induce proteotoxic stress and trigger apoptosis in cancer cells that are highly dependent on the proteasome. As a mechanism of resistance, inhibition of the cellular proteasome induces the synthesis of new, uninhibited proteasomes to restore proteasome activity and relieve proteotoxic stress in the cell, thus evading apoptosis. This evolutionarily conserved compensatory mechanism is referred to as the proteasome-bounce back response and is orchestrated in mammalian cells by nuclear factor erythroid derived 2-related factor 1 (NRF1), a transcription factor and master regulator of proteasome subunit genes. Upon synthesis, NRF1 is cotranslationally inserted into the endoplasmic reticulum (ER), then is rapidly retrotranslocated into the cytosol and degraded by the proteasome. In contrast, during conditions of proteasome inhibition or insufficiency, NRF1 escapes degradation, is proteolytically cleaved by the aspartyl protease DNA damage inducible 1 homolog 2 (DDI2) to its active form, and enters the nucleus as an active transcription factor. Despite these insights, the cellular compartment where the proteolytic processing step occurs remains unclear. Here we further probed this pathway and found that NRF1 can be completely retrotranslocated into the cytosol where it is then cleaved and activated by DDI2. Furthermore, using a triple-negative breast cancer cell line MDA-MB-231, we investigated the therapeutic utility of attenuating DDI2 function. We found that DDI2 depletion attenuated NRF1 activation and potentiated the cytotoxic effects of the proteasome inhibitor carfilzomib. More importantly, expression of a point-mutant of DDI2 that is protease-dead recapitulated these effects. Taken together, our results provide a strong rationale for a combinational therapy that utilizes inhibition of the proteasome and the protease function of DDI2. This approach could expand the repertoire of cancer types that can be successfully treated with proteasome inhibitors in the clinic.


Assuntos
Ácido Aspártico Proteases/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Oligopeptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citosol/efeitos dos fármacos , Citosol/metabolismo , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Transporte Proteico/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
19.
Plant Cell Rep ; 39(1): 89-100, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31583429

RESUMO

KEY MESSAGE: Extracts from hairy root cultures of Cynara cardunculus L. contain proteases and show milk-clotting activity. Cynara cardunculus L. or cardoon is often used as rennet in traditional cheese manufacturing, due to the presence of specific proteases in the flower. However, the flower extracts are variable depending on the provenance and quality of the flowers as well as high genetic variability among cardoon populations, and this affects the quality of the final product. In search for alternative sources of milk-clotting enzymes, hairy root cultures from cardoon were obtained and characterized regarding their protease content and proteolytic activity toward milk proteins. Aspartic, serine and cysteine proteases were identified in hairy roots by mass spectrometry analysis and an azocasein assay combined with specific inhibitors. RT-PCR analysis revealed the expression of cardosin A and D, and immunoblotting analysis suggested the presence of cardosin A or cardosin A-like enzyme in its mature form, supporting this system as an alternative source of cardosins. Hairy root protein extracts showed activity over caseins, supporting its use as milk coagulant, which was further tested by milk-clotting assays. This is also the first report on the establishment of hairy root cultures from cardoon, which paves the way for future work on controlled platforms for production of valuable metabolites which are known to be present in this species.


Assuntos
Cynara/enzimologia , Cynara/microbiologia , Hipocótilo/enzimologia , Raízes de Plantas/enzimologia , Agrobacterium , Animais , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Proteases/metabolismo , Caseínas/metabolismo , Queijo/microbiologia , Cynara/química , Cynara/metabolismo , Cisteína Proteases/metabolismo , Flores/enzimologia , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/microbiologia , Leite , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteólise , Proteoma/metabolismo , Serina Proteases/metabolismo
20.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861919

RESUMO

Akkermansia muciniphila can produce various mucin-degrading proteins. However, the functional characteristics of these proteins and their role in mucin degradation are unclear. Of the predicted protein-coding genes, Amuc_1434, which encodes for a hypothetical protein, is the focus in this study. A recombinant enzyme Amuc_1434 containing the 6× His-tag produced in Escherichia coli (hereinafter termed Amuc_1434*) was isolated to homogeneity and biochemically characterised. Results showed that the enzyme can hydrolyse hemoglobin with an activity of 17.21 U/µg. The optimal pH and temperature for hemoglobin hydrolysis of Amuc_1434* were found to be around 8.0 and 40 °C, respectively. Amuc_1434* is identified as a member of the aspartic protease family through the action of inhibitor pepstatin A. Amuc_1434* promotes the adhesion of colon cancer cell line LS174T, which can highly express Muc2. Significantly Amuc_1434* can degrade Muc2 of colon cancer cells. Amuc_1434 is mainly located in the colon of BALB/c mice. These results suggest that the presence of Amuc_1434 from Akkermansia muciniphila may be correlated with the restoration of gut barrier function by decreasing mucus layer thickness.


Assuntos
Ácido Aspártico Proteases/metabolismo , Proteínas de Bactérias/metabolismo , Mucina-2/metabolismo , Verrucomicrobia/metabolismo , Akkermansia , Animais , Ácido Aspártico Proteases/isolamento & purificação , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA