Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Plant Mol Biol ; 114(6): 117, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39448407

RESUMO

Plant biomass can significantly contribute to alternative energy sources. Sorghum bicolor is a promising plant for producing energy, but is susceptible to iron deficiency, which inhibits its cultivation in iron-limiting calcareous soils. The molecular basis for the susceptibility of sorghum to iron deficiency remains unclear. Here, we explored the sorghum genome to identify genes involved in iron uptake and translocation. Iron deficiency-responsive gene expression was comparable to that in other graminaceous plants. A nicotianamine synthase gene, SbNAS1, was induced in response to iron deficiency, and SbNAS1 showed enzyme activity. Sorghum secreted 2'-deoxymugineic acid and other phytosiderophores under iron deficiency, but their levels were relatively low. Intercropping of sorghum with barley or rice rescued iron deficiency symptoms of sorghum. To produce bioengineered sorghum with enhanced tolerance to iron deficiency, we introduced four cassettes into sorghum: 35S promoter-OsIRO2 for activation of iron acquisition-related gene expression, SbIRT1 promoter-Refre1/372 for enhanced ferric-chelate reductase activity, and barley IDS3, and HvNAS1 genomic fragments for enhanced production of phytosiderophores and nicotianamine. The resultant single sorghum line exhibited enhanced secretion of phytosiderophores, increased ferric-chelate reductase activity, and improved iron uptake and leaf greenness compared with non-transformants under iron-limiting conditions. Similar traits were also conferred to rice by introducing the four cassettes. Moreover, these rice lines showed similar or better tolerance in calcareous soils and increased grain iron accumulation compared with previous rice lines carrying two or three comparable cassettes. These results provide a molecular basis for the bioengineering of sorghum tolerant of low iron availability in calcareous soils.


Assuntos
Regulação da Expressão Gênica de Plantas , Deficiências de Ferro , Ferro , Oryza , Proteínas de Plantas , Solo , Sorghum , Sorghum/genética , Sorghum/metabolismo , Solo/química , Ferro/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Hordeum/genética , Hordeum/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Bioengenharia , Sideróforos/metabolismo , Regiões Promotoras Genéticas
2.
New Phytol ; 242(6): 2586-2603, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38523234

RESUMO

Nicotianamine (NA) plays a crucial role in transporting metal ions, including iron (Fe), in plants; therefore, NICOTIANAMINE SYNTHASE (NAS) genes, which control NA synthesis, are tightly regulated at the transcriptional level. However, the transcriptional regulatory mechanisms of NAS genes require further investigations. In this study, we determined the role of bZIP44 in mediating plant response to Fe deficiency stress by conducting transformation experiments and assays. bZIP44 positively regulated the response of Arabidopsis to Fe deficiency stress by interacting with MYB10 and MYB72 to enhance their abilities to bind at NAS2 and NAS4 promoters, thereby increasing NAS2 and NAS4 transcriptional levels and promote NA synthesis. In summary, the transcription activities of bZIP44, MYB10, and MYB72 were induced in response to Fe deficiency stress, which enhanced the interaction between bZIP44 and MYB10 or MYB72 proteins, synergistically activated the transcriptional activity of NAS2 and NAS4, promoted NA synthesis, and improved Fe transport, thereby enhancing plant tolerance to Fe deficiency stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Regulação da Expressão Gênica de Plantas , Ferro , Estresse Fisiológico , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Ferro/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estresse Fisiológico/genética
3.
BMC Plant Biol ; 22(1): 37, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039017

RESUMO

BACKGROUND: Nicotianamine (NA), 2'-deoxymugineic acid (DMA), and mugineic acid (MA) are chelators required for iron uptake and transport in plants. Nicotianamine aminotransferase (NAAT), 2'-deoxymugineic acid synthase (DMAS), transporter of MAs (TOM), and efflux transporter of NA (ENA) are involved in iron uptake and transport in rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare); however, these families have not been fully identified and comprehensively analyzed in maize (Zea mays L.). RESULTS: Here, we identified 5 ZmNAAT, 9 ZmDMAS, 11 ZmTOM, and 2 ZmENA genes by genome mining. RNA-sequencing and quantitative real-time PCR analysis revealed that these genes are expressed in various tissues and respond differently to high and low iron conditions. In particular, iron deficiency stimulated the expression of ZmDMAS1, ZmTOM1, ZmTOM3, and ZmENA1. Furthermore, we determined protein subcellular localization by transient expression of green fluorescent protein fusions in maize mesophyll protoplasts. ZmNAAT1, ZmNAAT-L4, ZmDMAS1, and ZmDMAS-L1 localized in the cytoplasm, whereas ZmTOMs and ZmENAs targeted to plasma and tonoplast membranes, endomembranes, and vesicles. CONCLUSIONS: Our results suggest that the different gene expression profiles and subcellular localizations of ZmNAAT, ZmDMAS, ZmTOM, and ZmENA family members may enable specific regulation of phytosiderophore metabolism in different tissues and under different external conditions, shedding light on iron homeostasis in maize and providing candidate genes for breeding iron-rich maize varieties.


Assuntos
Genoma de Planta/genética , Ferro/metabolismo , Família Multigênica/genética , Proteínas de Plantas/genética , Zea mays/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Homeostase , Deficiências de Ferro , Filogenia , Proteínas de Plantas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão , Sideróforos/metabolismo , Transaminases/genética , Transaminases/metabolismo , Zea mays/enzimologia , Zea mays/fisiologia
4.
Biomolecules ; 11(5)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068552

RESUMO

Strategies boosting both innate and adaptive immunity have great application prospects in cancer immunotherapy. Antibodies dual blocking the innate checkpoint CD47 and adaptive checkpoint PD-L1 or TIGIT could achieve durable anti-tumor effects. However, a small molecule dual blockade of CD47/SIRPα and TIGIT/PVR pathways has not been investigated. Here, an elevated expression of CD47 and PVR was observed in tumor tissues and cell lines analyzed with the GEO datasets and by flow cytometry, respectively. Compounds approved by the FDA were screened with the software MOE by docking to the potential binding pockets of SIRPα and PVR identified with the corresponding structural analysis. The candidate compounds were screened by blocking and MST binding assays. Azelnidipine was found to dual block CD47/SIRPα and TIGIT/PVR pathways by co-targeting SIRPα and PVR. In vitro, azelnidipine could enhance the macrophage phagocytosis when co-cultured with tumor cells. In vivo, azelnidipine alone or combined with irradiation could significantly inhibit the growth of MC38 tumors. Azelnidipine also significantly inhibits the growth of CT26 tumors, by enhancing the infiltration and function of CD8+ T cell in tumor and systematic immune response in the tumor-draining lymph node and spleen in a CD8+ T cell dependent manner. Our research suggests that the anti-hypertensive drug azelnidipine could be repositioned for cancer immunotherapy.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Di-Hidropiridinas/farmacologia , Reposicionamento de Medicamentos/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Imunoterapia/métodos , Neoplasias/terapia , Animais , Ácido Azetidinocarboxílico/farmacologia , Antígeno CD47/antagonistas & inibidores , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular Tumoral , Cricetinae , Modelos Animais de Doenças , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptores Imunológicos/antagonistas & inibidores , Receptores Virais/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos
5.
J Biol Chem ; 296: 100418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33837730

RESUMO

The nicotianamine-iron chelate [NA-Fe2+], which is found in many plant-based foods, has been recently described as a new form of bioavailable iron in mice and chickens. How NA-Fe2+ is assimilated from the diet, however, remains unclear. The current investigation by Murata et al. has identified the proton-coupled amino acid transporter 1 (PAT1) as the main mechanism by which NA-Fe2+ is absorbed in the mammalian intestine. Discovery of this new form of dietary iron and elucidation of its pathway of intestinal absorption may lead to the development of improved iron supplementation approaches.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Quelantes de Ferro/metabolismo , Simportadores/metabolismo , Animais , Ácido Azetidinocarboxílico/metabolismo , Absorção Intestinal , Ferro da Dieta/metabolismo , Camundongos , Xenopus
6.
Nat Commun ; 12(1): 1558, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692352

RESUMO

Iron (Fe) is an essential nutrient, but is poorly bioavailable because of its low solubility in alkaline soils; this leads to reduced agricultural productivity. To overcome this problem, we first showed that the soil application of synthetic 2'-deoxymugineic acid, a natural phytosiderophore from the Poaceae, can recover Fe deficiency in rice grown in calcareous soil. However, the high cost and poor stability of synthetic 2'-deoxymugineic acid preclude its agricultural use. In this work, we develop a more stable and less expensive analog, proline-2'-deoxymugineic acid, and demonstrate its practical synthesis and transport of its Fe-chelated form across the plasma membrane by Fe(III)•2'-deoxymugineic acid transporters. Possibility of its use as an iron fertilizer on alkaline soils is supported by promotion of rice growth in a calcareous soil by soil application of metal free proline-2'-deoxymugineic acid.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Fertilizantes , Ferro/química , Ácido Azetidinocarboxílico/química , Sideróforos/química , Solo/química
7.
J Biol Chem ; 296: 100195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334885

RESUMO

Iron is an essential metal for all living organisms that is absorbed in the intestinal cells as a heme-chelated or free form. It is unclear how important plant-derived chelators, such as nicotianamine (NA), an organic small molecule that is ubiquitous in crops, vegetables, and various other foods, contribute to iron bioavailability in mammals. We performed electrophysiological assays with Xenopus laevis oocytes and radioactive tracer experiments with Caco-2 cells. The findings revealed that the proton-coupled amino acid transporter SLC36A1 (PAT1) transports iron in the form of NA-Fe (II) complex in vitro. Decreased expression of hPAT1 by RNA interference in Caco-2 cells reduced the uptake of NA-59Fe (II) complex. The uptake of inorganic 59Fe (II) was relatively unaffected. These results imply that PAT1 transports iron as a NA-Fe (II) complex. The rate of 59Fe absorption in the spleen, liver, and kidney was higher when mice were orally administered NA-59Fe (II) compared with free 59Fe (II). The profile of site-specific PAT1 expression in the mouse intestine coincided with those of NA and iron contents, which were the highest in the proximal jejunum. Orally administered NA-59Fe (II) complex in mice was detected in the proximal jejunum by thin layer chromatography. In contrast, much less 59Fe (or NA) was detected in the duodenum, where the divalent metal transporter SLC11A2 (DMT1) absorbs free Fe (II). The collective results revealed the role of PAT1 in NA-Fe (II) absorption in the intestine and potential implication of NA in iron uptake in mammals.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Quelantes/farmacologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Ferro/metabolismo , Animais , Ácido Azetidinocarboxílico/farmacologia , Disponibilidade Biológica , Transporte Biológico/efeitos dos fármacos , Células Cultivadas , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Humanos , Absorção Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Compostos Fitoquímicos/farmacologia , Xenopus laevis
8.
Sci Rep ; 10(1): 2297, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041969

RESUMO

Wheat flour iron (Fe) fortification is mandatory in 75 countries worldwide yet many Fe fortificants, such as Fe-ethylenediaminetetraacetate (EDTA), result in unwanted sensory properties and/or gastrointestinal dysfunction and dysbiosis. Nicotianamine (NA) is a natural chelator of Fe, zinc (Zn) and other metals in higher plants and NA-chelated Fe is highly bioavailable in vitro. In graminaceous plants NA serves as the biosynthetic precursor to 2' -deoxymugineic acid (DMA), a related Fe chelator and enhancer of Fe bioavailability, and increased NA/DMA biosynthesis has proved an effective Fe biofortification strategy in several cereal crops. Here we utilized the chicken (Gallus gallus) model to investigate impacts of NA-chelated Fe on Fe status and gastrointestinal health when delivered to chickens through intraamniotic administration (short-term exposure) or over a period of six weeks as part of a biofortified wheat diet containing increased NA, Fe, Zn and DMA (long-term exposure). Striking similarities in host Fe status, intestinal functionality and gut microbiome were observed between the short-term and long-term treatments, suggesting that the effects were largely if not entirely due to consumption of NA-chelated Fe. These results provide strong support for wheat with increased NA-chelated Fe as an effective biofortification strategy and uncover novel impacts of NA-chelated Fe on gastrointestinal health and functionality.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Alimentos Fortificados , Mucosa Intestinal/efeitos dos fármacos , Quelantes de Ferro/química , Ferro/farmacologia , Triticum/química , Ração Animal , Animais , Ácido Azetidinocarboxílico/química , Ácido Azetidinocarboxílico/metabolismo , Biofortificação/métodos , Disponibilidade Biológica , Embrião de Galinha , Galinhas , Ácido Edético/química , Farinha , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Ferro/análise , Ferro/química , Modelos Animais , Triticum/metabolismo
9.
Plant Cell Environ ; 43(1): 261-274, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674679

RESUMO

Iron (Fe) is an essential micronutrient for plant growth development and plays a key role in regulating numerous cellular processes. In rice, OsHRZ1, an Fe-binding ubiquitin ligase, is a putative sensor of Fe homeostasis that negatively regulates iron acquisition. Despite its apparent importance, only a single basic-Helix-Loop-Helix (bHLH) transcription factor, OsPRI1, has been identified as a direct target of OsHRZ1. In this study, we identified and functionally characterized OsPRI2 and OsPRI3, two paralogs of OsPRI1, observing that they directly interact with OsHRZ1. Additional analyses suggested that OsHRZ1 promotes the degradation of OsPRI2 and OsPRI3. The translocation of Fe from roots to shoots was impaired in plants with loss-of-function mutations in OsPRI2 or OsPRI3, causing the downregulation of Fe-deficiency-responsive genes. In contrast, overexpression of OsPRI2 and OsPRI3 promotes Fe accumulation and activates the expression of Fe-deficiency-responsive genes. We also provide evidence that OsPRI2 and OsPRI3 bind to the promoters of OsIRO2 and OsIRO3, two key regulators of Fe homeostasis. Moreover, OsPRI2 and OsPRI3 directly induce expression of the metal-nicotianamine transporter, OsYSL2, by associating with the promoter in response to Fe deficiency. Our results provide insights into the complex network regulating Fe homeostasis in rice.


Assuntos
Homeostase/fisiologia , Ferro/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Proteínas de Transporte de Cátions/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas
10.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861687

RESUMO

Iron (Fe) is an essential element required for plant growth and development. Under Fe-deficientconditions, plants have developed two distinct strategies (designated as strategy I and II) to acquire Fe from soil. As a graminaceous species, rice is not a typical strategy II plant, as it not only synthesizes DMA (2'-deoxymugineic acid) in roots to chelate Fe3+ but also acquires Fe2+ through transporters OsIRT1 and OsIRT2. During the synthesis of DMA in rice, there are three sequential enzymatic reactions catalyzed by enzymes NAS (nicotianamine synthase), NAAT (nicotianamine aminotransferase), and DMAS (deoxymugineic acid synthase). Many transporters required for Fe uptake from the rhizosphere and internal translocation have also been identified in rice. In addition, the signaling networks composed of various transcription factors (such as IDEF1, IDEF2, and members of the bHLH (basic helix-loop-helix) family), phytohormones, and signaling molecules are demonstrated to regulate Fe uptake and translocation. This knowledge greatly contributes to our understanding of the molecular mechanisms underlying iron deficiency responses in rice.


Assuntos
Ferro/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Alquil e Aril Transferases/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Estresse Fisiológico , Transaminases/metabolismo
11.
Nutrients ; 11(7)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31262064

RESUMO

Nicotianamine (NA) is a low-molecular weight metal chelator in plants with high affinity for ferrous iron (Fe2+) and other divalent metal cations. In graminaceous plant species, NA serves as the biosynthetic precursor to 2' deoxymugineic acid (DMA), a root-secreted mugineic acid family phytosiderophore that chelates ferric iron (Fe3+) in the rhizosphere for subsequent uptake by the plant. Previous studies have flagged NA and/or DMA as enhancers of Fe bioavailability in cereal grain although the extent of this promotion has not been quantified. In this study, we utilized the Caco-2 cell system to compare NA and DMA to two known enhancers of Fe bioavailability-epicatechin (Epi) and ascorbic acid (AsA)-and found that both NA and DMA are stronger enhancers of Fe bioavailability than Epi, and NA is a stronger enhancer of Fe bioavailability than AsA. Furthermore, NA reversed Fe uptake inhibition by Myricetin (Myr) more than Epi, highlighting NA as an important target for biofortification strategies aimed at improving Fe bioavailability in staple plant foods.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Mucosa Intestinal/efeitos dos fármacos , Quelantes de Ferro/farmacologia , Ferro/metabolismo , Ácido Ascórbico/farmacologia , Ácido Azetidinocarboxílico/farmacologia , Disponibilidade Biológica , Células CACO-2 , Catequina/farmacologia , Flavonoides/farmacologia , Humanos , Mucosa Intestinal/metabolismo
12.
Plant Physiol ; 181(1): 276-288, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31331995

RESUMO

Essential metals, such as iron (Fe) and zinc (Zn), in grains are important sources for seed germination and nutritional requirements, but the molecular mechanisms underlying their loading into grains are poorly understood. Recently, nodes in rice (Oryza sativa) were reported to play an important role in the preferential distribution of mineral elements to the grains. In this study, we functionally characterized a rice gene highly expressed in nodes, OsVMT (VACUOLAR MUGINEIC ACID TRANSPORTER), belonging to a major facilitator superfamily. OsVMT is highly expressed in the parenchyma cell bridges of node I, where Fe and Zn are highly deposited. The expression of OsVMT was induced by Fe deficiency in the roots but not in the shoot basal region and uppermost node. OsVMT localized to the tonoplast and showed efflux transport activity for 2'-deoxymugineic acid (DMA). At the vegetative stage, knockout of OsVMT resulted in decreased DMA but increased ferric Fe in the root cell sap. As a result, the concentration of DMA in the xylem sap increased but that of ferric Fe decreased in the xylem sap in the mutants. In the polished rice grain, the mutants accumulated 1.8- to 2.1-fold, 1.5- to 1.6-fold, and 1.4- to 1.5-fold higher Fe, Zn, and DMA, respectively, than the wild type. Taken together, our results indicate that OsVMT is involved in sequestering DMA into the vacuoles and that knockout of this gene enhances the accumulation of Fe and Zn in polished rice grains through DMA-increased solubilization of Fe and Zn deposited in the node.


Assuntos
Ferro/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Sideróforos/metabolismo , Zinco/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Grão Comestível , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Especificidade de Órgãos , Oryza/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transporte Proteico , Sideróforos/genética , Vacúolos/metabolismo , Xilema/genética , Xilema/metabolismo
13.
Int J Mol Sci ; 20(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100819

RESUMO

Iron is an essential element for plant growth and development. While abundant in soil, the available Fe in soil is limited. In this regard, plants have evolved a series of mechanisms for efficient iron uptake, allowing plants to better adapt to iron deficient conditions. These mechanisms include iron acquisition from soil, iron transport from roots to shoots, and iron storage in cells. The mobilization of Fe in plants often occurs via chelating with phytosiderophores, citrate, nicotianamine, mugineic acid, or in the form of free iron ions. Recent work further elucidates that these genes' response to iron deficiency are tightly controlled at transcriptional and posttranscriptional levels to maintain iron homeostasis. Moreover, increasing evidences shed light on certain factors that are identified to be interconnected and integrated to adjust iron deficiency. In this review, we highlight the molecular and physiological bases of iron acquisition from soil to plants and transport mechanisms for tolerating iron deficiency in dicotyledonous plants and rice.


Assuntos
Transporte Biológico/fisiologia , Homeostase/fisiologia , Ferro/metabolismo , Plantas/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Transporte Biológico/genética , Ácido Cítrico , Regulação da Expressão Gênica de Plantas , Homeostase/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas/genética , Sideróforos
14.
Plant Biotechnol J ; 17(8): 1514-1526, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30623558

RESUMO

Bread wheat (Triticum aestivum L.) is cultivated on more land than any other crop and produces a fifth of the calories consumed by humans. Wheat endosperm is rich in starch yet contains low concentrations of dietary iron (Fe) and zinc (Zn). Biofortification is a micronutrient intervention aimed at increasing the density and bioavailability of essential vitamins and minerals in staple crops; Fe biofortification of wheat has proved challenging. In this study we employed constitutive expression (CE) of the rice (Oryza sativa L.) nicotianamine synthase 2 (OsNAS2) gene in bread wheat to up-regulate biosynthesis of two low molecular weight metal chelators - nicotianamine (NA) and 2'-deoxymugineic acid (DMA) - that play key roles in metal transport and nutrition. The CE-OsNAS2 plants accumulated higher concentrations of grain Fe, Zn, NA and DMA and synchrotron X-ray fluorescence microscopy (XFM) revealed enhanced localization of Fe and Zn in endosperm and crease tissues, respectively. Iron bioavailability was increased in white flour milled from field-grown CE-OsNAS2 grain and positively correlated with NA and DMA concentrations.


Assuntos
Farinha/análise , Ferro da Dieta/análise , Engenharia Metabólica , Triticum/química , Alquil e Aril Transferases/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/química , Disponibilidade Biológica , Grão Comestível/química , Oryza/enzimologia , Oryza/genética , Plantas Geneticamente Modificadas/química , Triticum/genética
15.
Planta ; 249(3): 751-763, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30382344

RESUMO

MAIN CONCLUSION: Fe uptake machinery of chloroplasts prefers to utilise Fe(III)-citrate over Fe-nicotianamine complexes. Iron uptake in chloroplasts is a process of prime importance. Although a few members of their iron transport machinery were identified, the substrate preference of the system is still unknown. Intact chloroplasts of oilseed rape (Brassica napus) were purified and subjected to iron uptake studies using natural and artificial iron complexes. Fe-nicotianamine (NA) complexes were characterised by 5 K, 5 T Mössbauer spectrometry. Expression of components of the chloroplast Fe uptake machinery was also studied. Fe(III)-NA contained a minor paramagnetic Fe(II) component (ca. 9%), a paramagnetic Fe(III) component exhibiting dimeric or oligomeric structure (ca. 20%), and a Fe(III) complex, likely being a monomeric structure, which undergoes slow electronic relaxation at 5 K (ca. 61%). Fe(II)-NA contained more than one similar chemical Fe(II) environment with no sign of Fe(III) components. Chloroplasts preferred Fe(III)-citrate compared to Fe(III)-NA and Fe(II)-NA, but also to Fe(III)-EDTA and Fe(III)-o,o'EDDHA, and the Km value was lower for Fe(III)-citrate than for the Fe-NA complexes. Only the uptake of Fe(III)-citrate was light-dependent. Regarding the components of the chloroplast Fe uptake system, only genes of the reduction-based Fe uptake system showed high expression. Chloroplasts more effectively utilize Fe(III)-citrate, but hardly Fe-NA complexes in Fe uptake.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Brassica napus/metabolismo , Cloroplastos/metabolismo , Compostos Férricos/metabolismo , Ferro/metabolismo , Ácido Azetidinocarboxílico/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Espectroscopia de Mossbauer , Transcriptoma
16.
Biol Pharm Bull ; 41(10): 1502-1507, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30270318

RESUMO

An organic chemistry approach to the mechanistic elucidation of iron acquisition in graminaceous plants is introduced here. To elucidate this detailed mechanism using phytosiderophores, the efficient synthesis of 2'-deoxymugineic acid (DMA), a phytosiderophore of rice, was established. The synthetic DMA was confirmed to have similar iron transport activity to that of natural mugineic acid (MA). It was also revealed that the addition of synthetic DMA, along with iron, to a rice hydroponic solution enabled the rice to grow well even under an alkaline condition, and DMA clearly showed its high potential as a fertilizer to improve food production. On the other hand, the 2'-hydroxy group of MA was confirmed to serve as a point of introduction for labeling, allowing the synthesis of various mugineic acid derivatives as molecular probes. The incorporation of fluorescent mugineic acid into cells allowed them to be clearly observed by fluorescence confocal analysis, and this provided the first direct experimental evidence of transporter-mediated internalization of mugineic acid into cells.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Hordeum/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Compostos Organometálicos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Ácido Azetidinocarboxílico/metabolismo , Química Orgânica/métodos , Fertilizantes , Hordeum/crescimento & desenvolvimento , Compostos de Ferro/metabolismo , Oryza/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sideróforos/metabolismo , Coloração e Rotulagem
17.
BMC Plant Biol ; 18(1): 238, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326849

RESUMO

BACKGROUND: Among cereals, durum wheat (Triticum turgidum L. subsp. durum) accumulates cadmium (Cd) at higher concentration if grown in Cd-polluted soils. Since cadmium accumulation is a risk for human health, the international trade organizations have limited the acceptable concentration of Cd in edible crops. Therefore, durum wheat cultivars accumulating low cadmium in grains should be preferred by farmers and consumers. To identify the response of durum wheat to the presence of Cd, the transcriptomes of roots and shoots of Creso and Svevo cultivars were sequenced after a 50-day exposure to 0.5 µM Cd in hydroponic solution. RESULTS: No phytotoxic effects or biomass reduction was observed in Creso and Svevo plants at this Cd concentration. Despite this null effect, cadmium was accumulated in root tissues, in shoots and in grains suggesting a good cadmium translocation rate among tissues. The mRNA sequencing revealed a general transcriptome rearrangement after Cd treatment and more than 7000 genes were found differentially expressed in root and shoot tissues. Among these, the up-regulated genes in roots showed a clear correlation with cadmium uptake and detoxification. In particular, about three hundred genes were commonly up-regulated in Creso and Svevo roots suggesting a well defined molecular strategy characterized by the transcriptomic activation of several transcription factors mainly belonging to bHLH and WRKY families. bHLHs are probably the activators of the strong up-regulation of three NAS genes, responsible for the synthesis of the phytosiderophore nicotianamine (NA). Moreover, we found the overall up-regulation of the methionine salvage pathway that is tightly connected with NA synthesis and supply the S-adenosyl methionine necessary for NA biosynthesis. Finally, several vacuolar NA chelating heavy metal transporters were vigorously activated. CONCLUSIONS: In conclusion, the exposure of durum wheat to cadmium activates in roots a complex gene network involved in cadmium translocation and detoxification from heavy metals. These findings are confident with a role of nicotianamine and methionine salvage pathway in the accumulation of cadmium in durum wheat.


Assuntos
Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Triticum/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Biomassa , Cádmio/metabolismo , Grão Comestível , Hidroponia , Metionina/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/fisiologia , Triticum/efeitos dos fármacos , Triticum/fisiologia
18.
BMC Plant Biol ; 18(1): 105, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866051

RESUMO

BACKGROUND: The release of phytosiderephores (PS) to the rhizosphere is the main root response to iron (Fe) deficiency in graminaceous plants. We have investigated the role of the Fe status in the shoot as well as of the signaling pathways controlled by three relevant phytoregulators - indolacetic acid (IAA), ethylene and nitric oxide (NO) - in the regulation of this root response in Fe-starved wheat plants. To this end, the PS accumulation in the nutrient solution and the root expression of the genes encoding the nicotianamine aminotransferase (TaNAAT) and ferritin (TaFER) have been evaluated in plants subjected to different treatments. RESULTS: The application of Fe to leaves of Fe-deficient plants prevented the increase in both PS root release and TaNAAT gene expression thus showing the relevant role of the shoot to root communication in the regulation of PS root release and some steps of PS biosynthesis. Experiments with specific hormone inhibitors showed that while ethylene and NO did not positively regulate Fe-deficiency induced PS root release, auxin plays an essential role in the regulation of this process. Moreover, the application of IAA to Fe-sufficient plants promoted both PS root release and TaNAAT gene expression thus indicating that auxin might be involved in the shoot to root signaling network regulating Fe-deficiency root responses in wheat. CONCLUSIONS: These results therefore indicate that PS root release in Fe-deficient wheat plants is directly modulated by the shoot Fe status through signaling pathways involving, among other possible effectors, auxin.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Ácidos Indolacéticos/metabolismo , Ferro/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sideróforos/metabolismo , Triticum/fisiologia , Ácido Azetidinocarboxílico/metabolismo , Deficiências de Ferro , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Transdução de Sinais , Triticum/genética
19.
Phytomedicine ; 43: 92-102, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29747759

RESUMO

BACKGROUND: Hypertension is a serious component of metabolic syndrome (MetS). HYPOTHESIS: This research investigates the potential protective effect of limonin against MetS-associated hypertension in comparison with azelnidipine, a common calcium channel blocker. STUDY DESIGN: MetS was induced in rats by 10% fructose in water and 3% salt in diet over a 16-week period. Limonin (50 mg/kg) and azelnidipine (5 mg/kg) were administered daily in the last four weeks METHODS: Non-invasive blood pressure (BP) was recorded in conscious animals. Concentration-response curves for phenylephrine (PE) and acetylcholine (ACh) were analysed in thoracic aorta (macrovessels) and kidney microvessels. Blood glucose level, serum insulin level, advanced glycation end products (AGEs), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA) and transforming growth factor-ß1 (TGF-ß1) were determined. RESULTS: Limonin alleviated elevations in systolic and diastolic BP associated with MetS similar to levels associated with azelnidipine. Limonin prevented the MetS induced exaggerated macro- and micro-vascular contractility to PE and the impaired dilatation to ACh. However, in vitro incubation with limonin partially alleviated the deteriorated vascular reactivity of aorta isolated from MetS animals or AGEs injured aorta. Limonin did not have direct relaxant effect on the isolated vessel. On the other hand, limonin reduced the elevated serum levels of AGEs, TNF-α and MDA. Limonin suppressed the vascular fibrosis through reducing the elevated serum level of TGF-ß1 and excessive aortic collagen deposition. Limonin decreased the elevated HOMA-IR in MetS animals. CONCLUSION: Limonin offsets the hypertensive and vascular impairment associated with MetS via attenuation of inflammation and fibrosis. Its impact is comparable to that of azelnidipine.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Di-Hidropiridinas/farmacologia , Hipertensão/prevenção & controle , Limoninas/farmacologia , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/fisiopatologia , Animais , Aorta Torácica/efeitos dos fármacos , Ácido Azetidinocarboxílico/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Frutose/efeitos adversos , Produtos Finais de Glicação Avançada/metabolismo , Hipertensão/etiologia , Resistência à Insulina/fisiologia , Limoninas/administração & dosagem , Masculino , Síndrome Metabólica/complicações , Ratos
20.
Yakugaku Zasshi ; 138(3): 373-387, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-29503431

RESUMO

 The X-ray crystallographic analysis of the single-crystal mugineic acid-Cu(II) complex showed that mugineic acid acts as a hexadentate ligand. Mugineic acid, a typical phytosiderophore, shows a marked stimulating effect on 59Fe-uptake and chlorophyll synthesis in rice plants. A salient feature is the higher reduction potential of the mugineic acid-Fe(III) complex than those of bacterial siderophores. X-ray diffraction study of the structurally analogous Co(III) complex of the mugineic acid-Fe(III) complex demonstrates that the azetidine nitrogen and secondary amine nitrogen, and both terminal carboxylate oxygens, coordinate as basal planar donors, and the hydroxyl oxygen and intermediate carboxylate oxygen bind as axial donors in a nearly octahedral configuration. The iron-transport mechanism in gramineous plants appears to involve the excretion of mugineic acid from the roots, which aids Fe(III)-solubilization and reduction of Fe(III) to Fe(II). Manganese peroxidase (MnP) is a component of the lignin degradation system of the basidiomycetous fungus, Phanerochaete chrysosporium. To elucidate the heme environment of this novel Mn(II)-dependent extracellular enzyme, we studied its ESR and resonance Raman spectroscopic properties. Consequently, it is most likely that the heme environment of MnP resembles that of cytochrome c peroxidase. In addition, degradation methods using basidiomycetous fungi or Fe3+-H2O2 mixed reagent were developed for dioxins and polychlorinated biphenyls. The complete amino acid sequences of respective [2Fe-2S] ferredoxins were determined and compared with those of other higher plants. Finally, the toxic effects of iron on human health and the development of novel antibacterial drugs capable of inhibiting the iron transport system of Vibrio vulnificus are described.


Assuntos
Complexos de Coordenação/química , Ferro/química , Plantas/metabolismo , Sequência de Aminoácidos , Animais , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/química , Ácido Azetidinocarboxílico/metabolismo , Clorofila/biossíntese , Complexos de Coordenação/metabolismo , Cristalografia por Raios X , Feminino , Ferredoxinas/química , Humanos , Ferro/metabolismo , Ferro/toxicidade , Masculino , Peroxidases , Sideróforos , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA