Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281176

RESUMO

Multicomponent reactions, especially the Ugi-four component reaction (U-4CR), provide powerful protocols to efficiently access compounds having potent biological and pharmacological effects. Thus, a diverse library of betulinic acid (BA), fusidic acid (FA), cholic acid (CA) conjugates with TEMPO (nitroxide) have been prepared using this approach, which also makes them applicable in electron paramagnetic resonance (EPR) spectroscopy. Moreover, convertible amide modified spin-labelled fusidic acid derivatives were selected for post-Ugi modification utilizing a wide range of reaction conditions which kept the paramagnetic center intact. The nitroxide labelled betulinic acid analogue 6 possesses cytotoxic effects towards two investigated cell lines: prostate cancer PC3 (IC50 7.4 ± 0.7 µM) and colon cancer HT29 (IC50 9.0 ± 0.4 µM). Notably, spin-labelled fusidic acid derivative 8 acts strongly against these two cancer cell lines (PC3: IC50 6.0 ± 1.1 µM; HT29: IC50 7.4 ± 0.6 µM). Additionally, another fusidic acid analogue 9 was also found to be active towards HT29 with IC50 7.0 ± 0.3 µM (CV). Studies on the mode of action revealed that compound 8 increased the level of caspase-3 significantly which clearly indicates induction of apoptosis by activation of the caspase pathway. Furthermore, the exclusive mitochondria targeting of compound 18 was successfully achieved, since mitochondria are the major source of ROS generation.


Assuntos
Óxidos N-Cíclicos/química , Bibliotecas de Moléculas Pequenas/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Ácido Cólico/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Ácido Fusídico/química , Humanos , Neoplasias/tratamento farmacológico , Triterpenos Pentacíclicos/química , Marcadores de Spin , Esteroides/farmacologia , Triterpenos/farmacologia , Ácido Betulínico
2.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228147

RESUMO

The heterodimeric ATP-binding cassette (ABC) sterol transporter, ABCG5/G8, is responsible for the biliary and transintestinal secretion of cholesterol and dietary plant sterols. Missense mutations of ABCG5/G8 can cause sitosterolemia, a loss-of-function disorder characterized by plant sterol accumulation and premature atherosclerosis. A new molecular framework was recently established by a crystal structure of human ABCG5/G8 and reveals a network of polar and charged amino acids in the core of the transmembrane domains, namely, a polar relay. In this study, we utilize genetic variants to dissect the mechanistic role of this transmembrane polar relay in controlling ABCG5/G8 function. We demonstrated a sterol-coupled ATPase activity of ABCG5/G8 by cholesteryl hemisuccinate (CHS), a relatively water-soluble cholesterol memetic, and characterized CHS-coupled ATPase activity of three loss-of-function missense variants, R543S, E146Q, and A540F, which are respectively within, in contact with, and distant from the polar relay. The results established an in vitro phenotype of the loss-of-function and missense mutations of ABCG5/G8, showing significantly impaired ATPase activity and loss of energy sufficient to weaken the signal transmission from the transmembrane domains. Our data provide a biochemical evidence underlying the importance of the polar relay and its network in regulating the catalytic activity of ABCG5/G8 sterol transporter.


Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Ésteres do Colesterol/metabolismo , Colesterol/metabolismo , Ácido Cólico/metabolismo , Lipoproteínas/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Transporte Biológico , Colesterol/química , Ésteres do Colesterol/química , Ácido Cólico/química , Expressão Gênica , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Enteropatias/genética , Enteropatias/metabolismo , Enteropatias/patologia , Cinética , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Erros Inatos do Metabolismo Lipídico/patologia , Lipoproteínas/química , Lipoproteínas/genética , Modelos Moleculares , Mutação , Fitosteróis/efeitos adversos , Fitosteróis/genética , Fitosteróis/metabolismo , Pichia/química , Pichia/genética , Pichia/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
3.
Int J Biol Macromol ; 161: 596-604, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32535203

RESUMO

Microtubule affinity regulating kinase (MARK4) is considered as a potential drug target for diabetes, cancer, and neurodegenerative diseases. Since the role of MARK4 in the phosphorylation of tau protein and subsequently Alzheimer's disease has been established, therefore, we have investigated the binding affinity and MARK4 inhibitory potential of cholic acid (CHA) using both computational and spectroscopic methods. Molecular docking suggested a strong binding of CHA to the functionally important residues of MARK4. We further performed 500 ns molecular dynamics simulation which suggested the MARK4-CHA system was quite stable throughout the simulation trajectory. CHA potential binds to the MARK4 with a binding constant (K) of 107 M-1 at 288 K. Further, MARK4 activity was inhibited by CHA with an IC50 = 5.5 µM. Further insights into the thermodynamic parameters suggested that MARK4-CHA complex formation is driven by both electrostatic and van der Waals interactions. Overall study provides a rationale to use CHA in the drug development via MARK4 inhibition, towards possible therapeutic implications in neurodegenerative diseases.


Assuntos
Ácido Cólico/química , Doenças Neurodegenerativas/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos , Microtúbulos/química , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica
4.
Int J Pharm ; 584: 119412, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32418898

RESUMO

Nanofibers based transdermal drug delivery is a promising platform, and it effectively delivers the drug to tumor sites. The objective of the study was to fabricate stimuli-responsive polymeric nanofibers encapsulated with an active targeting micellar system for in situ drug delivery. Stimuli-responsive core-shell nanofibers release thedrug at target sites with minimum side effects to the other organs, decrease the drug administration concentration. Initially, we prepared CA conjugated PCPP polymeric micelles loaded with PTX. Then, core-shell nanofibers were prepared using PHM with coaxial electrospinning and distinct core-shell nanofibers formation confirm by SEM and TEM. Nanofibers showed a homogenous distribution of micelles inside the fiber mesh, diffusion, and erosion processes lead to a controlled release of PTX.In vitro drug release and swelling, revealed the pH based sustained release of the drug for 180 h from the nanofibers mat. Functional and stimuli-responsive nanofibers highly absorb H+ ions and repulsion of cations promoting maximum swelling to release more drugs in acidic pH. An increased transportation rate of 70% drug release through epidermis for 120 h. Nanofibers effectively internalize to the skin, and it confirmed by confocal microscopy. MCF-7 cells grown and spread over the nanofibers, which show the biocompatibility of nanofibers. Compared to PTX, drug-loaded nanofibers exhibited higher cytotoxicity for 8 days which was confirmed by the flow cytometry. These promising results confirm, the novel stimuli-responsive core-shell nanofibers actively target breast cancer cells and lead the way to safe cancer therapy.


Assuntos
Portadores de Fármacos/farmacocinética , Epiderme/metabolismo , Micelas , Nanofibras/química , Paclitaxel/farmacocinética , Animais , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular , Ácido Cólico/química , Preparações de Ação Retardada , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Fibroblastos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Camundongos , Microscopia Eletroquímica de Varredura , Paclitaxel/administração & dosagem , Polímeros/química , Psyllium/química , Absorção Subcutânea , Suínos
5.
Nature ; 579(7797): 123-129, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103176

RESUMO

A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease1-9. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units10), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches11-13 to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry14. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.


Assuntos
Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/química , Metabolômica , Microbiota/fisiologia , Animais , Ácidos e Sais Biliares/metabolismo , Ácido Cólico/biossíntese , Ácido Cólico/química , Ácido Cólico/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Vida Livre de Germes , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Camundongos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
6.
Int J Pharm ; 578: 119078, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31988037

RESUMO

Gene therapy is a promising tool for the treatment of various cancers but is hindered by the physico-chemical properties of siRNA and needs a suitable vector for the delivery of siRNA to the target tissue. Bile acid-based block copolymers offers certain advantages for the loading and delivery of siRNA since they can efficiently complex siRNA and bile acids are biocompatible endogenous molecules. In this study, we demonstrate the use of lipids as co-surfactants for the preparation of mixed micelles to improve the siRNA delivery of cholic acid-based block copolymers. Poly(allyl glycidyl ether) (PAGE) and poly(ethylene glycol) (PEG) were polymerized on the surface of cholic acid to afford a star-shaped block copolymer with four arms (CA-PAGE-b-PEG)4. The allyl groups of PAGE were functionalized to bear primary or tertiary amines and folic acid was grafted onto the PEG chain end to increase cell uptake. (CA-PAGE-b-PEG)4 functionalized with either primary or tertiary amines show high siRNA complexation with close to 100% complexation at N/P ratio of 8. Uniform aggregates with diameters between 181 and 188 nm were obtained. DOPE, DSPE-PEG2k, and DSPE-PEG5k lipids were added as co-surfactants to help stabilize the nanoparticles in the cell culture media. Mixed micelles had high siRNA loading with close to 100% functionalization at N/P ratio of 16 and diameters ranging from 153 to 221 nm. The presence of lipids in the mixed micelles improved cell uptake with a concomitant siRNA transfection in HeLa and HeLa-GFP model cells, respectively.


Assuntos
Ácido Cólico/administração & dosagem , Micelas , RNA Interferente Pequeno/administração & dosagem , Ácido Cólico/química , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/química , Terapia Genética , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/química , Fosfatidiletanolaminas/administração & dosagem , Fosfatidiletanolaminas/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , RNA Interferente Pequeno/química
7.
Drug Deliv ; 26(1): 595-603, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31195837

RESUMO

With high morbidity and death rates, liver cancer has become one of the most common cancers in the world. But, most chemotherapeutic anticancer drugs have high toxicity as well as low specificity. To improve the treatment modalities and enhance the therapeutic effect of liver cancer, a brand new liver-targeting nanoparticle (NP), Ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid (5 F)-loaded cholic acid (CA)-functionalized star-shaped poly (lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-lactobionic acid (LA) (5 F-loaded CA-PLGA-PEG-LA), was developed. The particle size, zeta potential, size distribution, surface morphology, drug loading content, drug encapsulation efficiency and drug release of 5 F-loaded NPs were characterized. Confocal microscopy and flow cytometry showed that the prepared NPs could be internalized by HepG2 cells. Furthermore, the cellular uptake efficiency of coumarin 6-loaded CA-PLGA-PEG-LA NPs was much better in compare with that of CA-PLGA-PEG and CA-PLGA NPs. Moreover, LA-conjugated NPs (CA-PLGA-PEG-LA NPs) enhanced fluorescence of HepG2 cells via ligand-mediated endocytosis. The antitumor effects of 5 F-loaded NPs were evaluated by the MTT assay in vitro and by a xenograft tumor model in vivo, demonstrating that targeted 5 F-loaded CA-PLGA-PEG-LA NPs were significantly superior to free 5 F and 5 F-loaded CA-PLGA-PEG NPs. All the results indicated the 5 F-loaded CA-PLGA-PEG-LA NPs can be employed as a novel potentially targeting drug delivery system for liver cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Neoplasias Hepáticas/tratamento farmacológico , Fígado/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , Polímeros/química , Animais , Linhagem Celular Tumoral , Ácido Cólico/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Feminino , Células Hep G2 , Humanos , Lactatos/química , Ácido Láctico/química , Camundongos , Camundongos Nus , Tamanho da Partícula , Polietilenoglicóis/química , Ácido Poliglicólico/química
8.
Int J Mol Sci ; 19(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142907

RESUMO

Bile acids are a subgroup of sterols and important products of cholesterol catabolism in mammalian organisms. Modifications (e.g., oxidation and 7-dehydroxylation) are predominantly exerted by the intestinal microbiota. Bile acids can be found in almost all living organisms, and their concentration and metabolism can be used for the assessment of the pathological and nutritional status of an organism. Electrochemical oxidation is a rapid, relatively inexpensive approach to simulate natural metabolic redox processes in vitro. This technique further allows the identification of oxidative degradation pathways of individual substances, as well as the demonstration of binding studies of generated oxidation products with biologically relevant molecules. When coupling an electrochemical and a high-resolution mass spectrometric system, oxidation products can be generated and identified directly by non-targeted ESI-MS. Here, a method for the generation of oxidation products of the primary bile acids cholic acid and chenodeoxycholic acid was exemplarily developed. Most products and the highest intensities were observed at a pH value of 6. For cholic acid, a high potential of 3 V was necessary, while for chenodeoxycholic acid, a potential of 2.4 V led to a higher number of oxidation products. In a second approach, a binding study with glutathione was performed to simulate phase II metabolism. It was possible to detect signals of free glutathione, free bile acids, and adducts of both reactants. As the resulting mass spectra also showed some new signals of the oxidized bile acid, which could not be observed without glutathione, it can be assumed that glutathione is able to bind reactive oxidation species before reacting with other products.


Assuntos
Ácido Quenodesoxicólico/química , Ácido Cólico/química , Técnicas Eletroquímicas/métodos , Glutationa/química , Cromatografia Líquida , Concentração de Íons de Hidrogênio , Oxirredução , Soluções , Espectrometria de Massas por Ionização por Electrospray
9.
Bioorg Chem ; 80: 396-407, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29986186

RESUMO

Bile acids, initially discovered as endogenous ligands of farnesoid X receptor (FXR), play a central role in the regulation of triglyceride and cholesterol metabolism and have recently emerged as a privileged structure for interacting with nuclear receptors relevant to a large array of metabolic processes. In this paper, phenoxy containing cholic acid derivatives with excellent drug-likeness have been designed, synthesized, and assayed as agents against cholesterol accumulation in Raw264.7 macrophages. The most active compound 14b reduced total cholesterol accumulation in Raw264.7 cells up to 30.5% at non-toxic 10 µM and dosage-dependently attenuated oxLDL-induced foam cell formation. Western blotting and qPCR results demonstrate that 14b reduced both cholesterol and lipid in Raw264.7 cells through (1) increasing the expression of cholesterol transporters ABCA1 and ABCG1, (2) accelerating ApoA1-mediated cholesterol efflux. Through a cell-based luciferase reporter assay and molecular docking analysis, LXR was identified as the potential target for 14b. Interestingly, unlike conventional LXR agonist, 14b did not increase lipogenesis gene SREBP-1c expression. Overall, these diverse properties disclosed herein highlight the potential of 14b as a promising lead for further development of multifunctional agents in the therapy of cardiovascular disease.


Assuntos
Colesterol/metabolismo , Ácido Cólico/química , Ácido Cólico/farmacologia , Desenho de Fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Animais , Anticolesterolemiantes/síntese química , Anticolesterolemiantes/química , Anticolesterolemiantes/farmacologia , Ácido Cólico/síntese química , Descoberta de Drogas , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
10.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G529-G537, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29927324

RESUMO

Bile acid transporters, including the ileal apical sodium-dependent bile acid transporter (ASBT) and the hepatic sodium-taurocholate cotransporting polypeptide (NTCP), are crucial for the enterohepatic circulation of bile acids. Our objective was to develop a method for measuring bile acid transporter activity in real time to precisely evaluate rapid changes in their function. We designed a reporter system relying on a novel probe: cholic acid attached to luciferin via a disulfide-containing, self-immolating linker (CA-SS-Luc). Incubation of human embryonic kidney-293 cells coexpressing luciferase and ASBT with different concentrations of CA-SS-Luc (0.01-1 µM) resulted in bioluminescence with an intensity that was concentration- and time-dependent. The bioluminescence measured during incubation with 1 µM CA-SS-Luc was dependent on the levels of ASBT or NTCP expressed in the cells. Coincubation of CA-SS-Luc with natural bile acids enhanced the bioluminescence in a concentration-dependent manner with kinetic parameters for ASBT similar to those previously reported using conventional methods. These findings suggest that this method faithfully assesses ASBT function. Further, incubation with tyrosine phosphatase inhibitor III (PTPIII) led to significantly increased bioluminescence in cells expressing ASBT, consistent with previous studies showing an increase in ASBT function by PTPIII. We then investigated CA-SS-Luc in isolated mouse intestinal epithelial cells. Ileal enterocytes displayed significantly higher luminescence compared with jejunal enterocytes, indicating a transport process mediated by ileal ASBT. In conclusion, we have developed a novel method to monitor the activity of bile acid transporters in real time that has potential applications both for in vitro and in vivo studies. NEW & NOTEWORTHY This article reports the development of a real-time method for measuring the uptake of bile acids using a bioluminescent bile acid-based probe. This method has been validated for measuring uptake via the apical sodium-dependent bile acid transporter and the sodium-taurocholate cotransporting polypeptide in cell culture and ex vivo intestinal models.


Assuntos
Enterócitos/metabolismo , Luciferina de Vaga-Lumes/química , Substâncias Luminescentes/química , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Transporte Biológico Ativo , Células Cultivadas , Ácido Cólico/química , Dissulfetos/química , Feminino , Luciferina de Vaga-Lumes/farmacocinética , Células HEK293 , Humanos , Substâncias Luminescentes/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos
11.
Int J Nanomedicine ; 13(T-NANO 2014 Abstracts): 83-85, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593402

RESUMO

Low-molecular-weight polyethylenimine has lower cytotoxicity than high molecular weight polyethylenimine, but it is not an efficient transfection agent because of limitations of DNA delivery into the cytoplasm. Therefore, in the present study, the hydrophobic modification of low-molecular-weight polyethylenimine (PEI 2 kDa [PEI2]) by cholic acid (ChA) was performed to form PEI2-ChA, and in vitro and in vivo studies were performed. Results indicate that the nanoplexes of PEI2-ChA with gWIZ-GFP have greater transfection efficiency (27%) in NT8e cell lines as evaluated by flow cytometry and also observed by fluorescence imaging. The present study concluded that the transferrin-containing nanoplexes of PEI2-ChA conjugates with plasmid p53 warrant clinical trials in humans after exhaustive animal studies for use as a novel gene delivery system.


Assuntos
Ácido Cólico/química , Genes p53 , Nanoestruturas/química , Polietilenoimina/química , Transfecção/métodos , Animais , Linhagem Celular Tumoral , DNA/genética , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/administração & dosagem , Proteínas de Fluorescência Verde/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Peso Molecular , Plasmídeos/administração & dosagem , Transferrina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Bioconjug Chem ; 29(4): 1352-1363, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29433309

RESUMO

Receptor-mediated internalization followed by trafficking and degradation of antibody-conjugates (ACs) via the endosomal-lysosomal pathway is the major mechanism for delivering molecular payloads inside target tumor cells. Although a mainstay for delivering payloads with clinically approved ACs in cancer treatment and imaging, tumor cells are often able to decrease intracellular payload concentrations and thereby reduce the effectiveness of the desired application. Thus, increasing payload intracellular accumulation has become a focus of attention for designing next-generation ACs. We developed a composite compound (ChAcNLS) that enables ACs to escape endosome entrapment and route to the nucleus resulting in the increased intracellular accumulation as an interleukin-5 receptor α-subunit (IL-5Rα)-targeted agent for muscle invasive bladder cancer (MIBC). We constructed 64Cu-A14-ChAcNLS, 64Cu-A14-NLS, and 64Cu-A14 and evaluated their performance by employing mechanistic studies for endosome escape coupled to nuclear routing and determining whether this delivery system results in improved 64Cu cellular accumulation. ACs consisting of ∼20 ChAcNLS or NLS moieties per 64Cu-A14 were prepared in good yield, high monomer content, and maintaining high affinity for IL-5Rα. Confocal microscopy analysis demonstrated ChAcNLS mediated efficient endosome escape and nuclear localization. 64Cu-A14-ChAcNLS increased 64Cu cellular accumulation in HT-1376 and HT-B9 cells relative to 64Cu-A14 and 64Cu-A14-NLS. In addition, we tested 64Cu-A14-ChAcNLS in vivo to evaluate its tissue distribution properties and, ultimately, tumor uptake and targeting. A model of human IL-5Rα MIBC was developed by implanting NOD/SCID mice with subcutaneous HT-1376 or HT-B9MIBC tumors, which grow containing high and low IL-5Rα-positive tumor cell densities, respectively. ACs were intravenously injected, and daily blood sampling, biodistribution at 48 and 96 h, and positron emission tomography (PET) at 24 and 48 h were performed. Region of interest (ROI) analysis was also performed on reconstructed PET images. Pharmacokinetic analysis and biodistribution studies showed that 64Cu-A14-ChAcNLS had faster clearance rates from the blood and healthy organs relative to 64Cu-A14. However, 64Cu-A14-ChAcNLS maintained comparable tumor accumulation relative to 64Cu-A14. This resulted in 64Cu-A14-ChAcNLS having superior tumor/normal tissue ratios at both 48 and 96 h biodistribution time points. Visualization of AC distribution by PET and ROI analysis confirmed that 64Cu-A14-ChAcNLS had improved targeting of MIBC tumor relative to 64Cu-A14. In addition, 64Cu-A14 modified with only NLS had poor tumor targeting. This was a result of poor tumor uptake due to extremely rapid clearance. Thus, the overall findings in this model of human IL-5Rα-positive MIBC describe an endosome escape-nuclear localization cholic-acid-linked peptide that substantially enhances AC cellular accumulation and tumor targeting.


Assuntos
Ácido Cólico/química , Ácido Cólico/farmacocinética , Imunoconjugados/química , Imunoconjugados/farmacocinética , Subunidade alfa de Receptor de Interleucina-5/análise , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Ácido Cólico/administração & dosagem , Radioisótopos de Cobre/administração & dosagem , Radioisótopos de Cobre/química , Radioisótopos de Cobre/farmacocinética , Sistemas de Liberação de Medicamentos , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/imunologia , Subunidade alfa de Receptor de Interleucina-5/imunologia , Camundongos Endogâmicos NOD , Camundongos SCID , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia
13.
Mol Pharm ; 15(3): 1266-1276, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29378128

RESUMO

Doxorubicin (Dox) is a drug of choice in the design of drug delivery systems directed toward breast cancers, but is often limited by loading and control over its release from polymer micelles. Bile acid-based block copolymers present certain advantages over traditional polymer-based systems for drug delivery purposes, since they can enable a higher drug loading via the formation of a reservoir through their aggregation process. In this study, hydrophobic and electrostatic interactions are compared for their influence on Dox loading inside cholic acid based block copolymers. Poly(allyl glycidyl ether) (PAGE) and poly(ethylene glycol) (PEG) were grafted from the cholic acid (CA) core yielding a star-shaped block copolymer with 4 arms (CA-(PAGE- b-PEG)4) and then loaded with Dox via a nanoprecipitation technique. A high Dox loading of 14 wt % was achieved via electrostatic as opposed to hydrophobic interactions with or without oleic acid as a cosurfactant. The electrostatic interactions confer a pH responsiveness to the system. 50% of the loaded Dox was released at pH 5 in comparison to 12% at pH 7.4. The nanoparticles with Dox loaded via hydrophobic interactions did not show such a pH responsiveness. The systems with Dox loaded via electrostatic interactions showed the lowest IC50 and highest cellular internalization, indicating the pre-eminence of this interaction in Dox loading. The blank formulations are biocompatible and did not show cytotoxicity up to 0.17 mg/mL. The new functionalized star block copolymers based on cholic acid show great potential as drug delivery carriers.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Antibióticos Antineoplásicos/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Ácido Cólico/química , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Compostos de Epóxi/química , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Micelas , Nanopartículas/química , Polietilenoglicóis/química
14.
Mol Pharm ; 14(8): 2649-2659, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28665132

RESUMO

Lipid composition in general determines the drug encapsulation efficacy and release kinetics from liposomes that impact the clinical outcomes of cancer therapy. We synthesized three bile acid phospholipids by conjugating the phosphocholine headgroup to the 3'-hydroxyl group of benzylated lithocholic acid (LCA), deoxycholic acid (DCA), and cholic acid (CA); and investigated the impact of membrane rigidity on drug encapsulation efficacy, drug release kinetics, anticancer effects, and mice survival. Liposomes with a hydrodynamic diameter of 100-110 nm were subsequently developed using these phospholipids. Fluorescence-probe based quantification revealed a more fluidic nature of DCA-PC- and CA-PC-derived liposomes, whereas the LCA-PC-derived ones are rigid in nature. Doxorubicin encapsulation studies showed ∼75% encapsulation and ∼38% entrapment efficacy of doxorubicin using more fluidic DCA-PC and CA-PC derived liposomes as compared to ∼58% encapsulation and ∼18% entrapment efficacy in the case of LCA-PC derived liposomes. In vivo anticancer studies in the murine model confirmed that doxorubicin entrapped CA-PC liposomes compromise mice survival, whereas rigid drug entrapped LCA-PC-derived-liposomes increased mice survival with ∼2-fold decrease in tumor volume. Pharmacokinetic and biodistribution studies revealed an ∼1.5-fold increase in plasma drug concentration and an ∼4.0-fold rise in tumor accumulation of doxorubicin on treatment with drug entrapped LCA-PC liposomes as compared to doxorubicin alone. In summary, this study presents the impact of bile acid derived liposomes with different rigidities on drug delivery and mice survivability.


Assuntos
Ácidos e Sais Biliares/química , Doxorrubicina/química , Fosfolipídeos/química , Animais , Ácido Cólico/química , Ácido Desoxicólico/química , Portadores de Fármacos/química , Ácido Litocólico/química , Camundongos
15.
Nanomedicine (Lond) ; 12(10): 1153-1164, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28447909

RESUMO

AIM: To structurally modify our existing cholic acid (CA)-based telodendrimer (TD; PEG5K-CA8) for effective micellar nanoencapsulation and delivery of the US FDA-approved members of taxane family. MATERIALS & METHODS: Generation of hybrid TDs was achieved by replacing four of the eight CAs with biocompatible organic moieties using solution-phase peptide synthesis. Drug loading was done using the standard evaporation method. RESULTS: Hybrid TDs can generate micelles with narrow size distributions, low critical micelle concentration values (1-6 µM), better hematocompatibility and lack of in vitro cytotoxicity. CONCLUSION: Along with PEG5K-CA8, CA-based hybrid nanoplatform is the first of its kind that can stably encapsulate all three FDA-approved taxanes with nearly 100% efficiency up to 20% (w/w) loading.


Assuntos
Antineoplásicos/administração & dosagem , Ácido Cólico/química , Portadores de Fármacos/química , Micelas , Nanopartículas/química , Taxoides/administração & dosagem , Antineoplásicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Linhagem Celular Tumoral , Docetaxel , Humanos , Neoplasias/tratamento farmacológico , Paclitaxel/administração & dosagem , Taxoides/farmacologia
16.
Int J Nanomedicine ; 12: 1673-1684, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28280334

RESUMO

In oral administration, gastrointestinal physiological environment, gastrointestinal epithelial cell membranes, and blood circulation are typical biological barriers to hepatic delivery of ligand-modified nanoparticle drug delivery systems. To elucidate the mechanism of oral hepatic targeting of cholic acid receptor-mediated nanoliposomes (LPs) (distearoyl phosphatidylethanolamine-polyethylene glycol-cholic acid-modified LPs, CA-LPs), evaluations were performed on colon cancer Caco-2 cell monolayers, liver cancer HepG2 cells, and a rat intestinal perfusion model. CA-LPs, ~100 nm in diameter, exhibited sustained-release behavior and had the greatest stability in rat gastrointestinal fluid and serum for both size and entrapment efficiency. CA-LPs demonstrated highest transport across Caco-2 cells and highest cellular uptake by HepG2 cells. The enhanced endocytosis of CA-LPs was found to be mediated by Na+/taurocholate cotransporting polypeptide and involved the caveolin-mediated endocytosis pathway. Further, we used fluorescence resonance energy transfer (FRET) technology to show that the CA-LPs maintained their structural integrity in part during the transport across the Caco-2 cell monolayer and uptake by HepG2 cells.


Assuntos
Ácido Cólico/química , Sistemas de Liberação de Medicamentos , Fígado/metabolismo , Nanopartículas/química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Administração Oral , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Doxorrubicina/farmacologia , Estabilidade de Medicamentos , Endocitose/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Células Hep G2 , Humanos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Lipossomos , Fígado/efeitos dos fármacos , Camundongos , Modelos Animais , Perfusão , Ratos Sprague-Dawley , Temperatura
17.
Artif Cells Nanomed Biotechnol ; 45(8): 1685-1698, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28278583

RESUMO

Hydrophobic modification of low molecular weight polyethylenimine (PEI 2 kDa) by cholic acid (ChA) was done to obtain PEI2-ChA. The nanoplexes of PEI2-ChA with gWIZ-GFP demonstrated increase transfection efficiency (∼27%) in NT8e cell lines. The cell-cycle analysis of NT8e cells (p53 mutant) treated with transferrin containing nanoplexes showed increased apoptosis of cells. In vitro protein expression revealed expression of exogenous p53 protein. In vivo imaging of mice showed localized signal for GFP protein in brain region. The tumors of mice treated with transferrin containing nanoplexes of PEI2-ChA were ∼5 times smaller in size than the tumor of untreated animals.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Polietilenoimina/química , Animais , Proteína Morfogenética Óssea 2/biossíntese , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ácido Cólico/química , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Terapia de Alvo Molecular , Peso Molecular , Distribuição Tecidual , Transferrina/química , Transferrina/farmacologia , Transferrina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Sci Rep ; 7: 42251, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28225016

RESUMO

PSN-357, an effective glycogen phosphorylase (GP) inhibitor for the treatment for type 2 diabetics, is hampered in its clinical use by the poor selectivity between the GP isoforms in liver and in skeletal muscle. In this study, by the introduction of cholic acid, 9 novel potent and liver-targeted conjugates of PSN-357 were obtained. Among these conjugates, conjugate 6 exhibited slight GP inhibitory activity (IC50 = 31.17 µM), good cellular efficacy (IC50 = 13.39 µM) and suitable stability under various conditions. The distribution and pharmacokinetic studies revealed that conjugate 6 could redistribute from plasma to liver resulting in a considerable higher exposure of PSN-357 metabolizing from 6 in liver (AUCliver/AUCplasma ratio was 18.74) vs that of PSN-357 (AUCliver/AUCplasma ratio was 10.06). In the in vivo animal study of hypoglycemia under the same dose of 50 mg/kg, conjugate 6 exhibited a small but significant hypoglycemic effects in longer-acting manners, that the hypoglycemic effects of 6 is somewhat weaker than PSN-357 from administration up to 6 h, and then became higher than PSN-357 for the rest time of the test. Those results indicate that the liver-targeted glycogen phosphorylase inhibitor may hold utility in the treatment of type 2 diabetes.


Assuntos
Ácido Cólico/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Glicogênio Fosforilase/antagonistas & inibidores , Fígado/metabolismo , Piperidinas/uso terapêutico , Administração Intravenosa , Animais , Líquidos Corporais/química , Ácido Cólico/química , Diabetes Mellitus Experimental/metabolismo , Ensaios Enzimáticos , Glicogênio Fosforilase/metabolismo , Glicogenólise , Células Hep G2 , Humanos , Concentração Inibidora 50 , Camundongos , Microssomos Hepáticos/metabolismo , Piperidinas/química , Coelhos , Relação Estrutura-Atividade , Fatores de Tempo , Distribuição Tecidual
19.
Biomacromolecules ; 18(3): 778-786, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28094989

RESUMO

Natural compounds glucosamine and cholic acid have been used to make acrylic monomers which are subsequently used to prepare amphiphilic block copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization. Despite the striking difference in polarity and solubility, three diblock copolymers consisting of glucosamine and cholic acid pendants with different hydrophilic and hydrophobic chain lengths have been synthesized without the use of protecting groups. They are shown to self-assemble into polymeric micelles with a "bitter" bile acid core and "sweet" sugar shell in aqueous solutions, as evidenced by dynamic light scattering and transmission electron microscopy. The critical micelle concentration varies with the hydrophobic/hydrophilic ratio, ranging from 0.62 to 1.31 mg/L. Longer chains of polymers induced the formation of larger micelles in range of 50-70 nm. These micelles can solubilize hydrophobic compounds such as Nile Red in aqueous solutions. Their loading capacity mainly depends upon the hydrophobic/hydrophilic ratio of the polymers, and may be also related to the length of the hydrophilic block. These polymeric micelles allowed for a 10-fold increase in the aqueous solubility of paclitaxel and showed no cytotoxicity below the concentration of 500 mg/L. Such properties make these polymeric micelles interesting reservoirs for hydrophobic molecules and drugs for biomedical applications.


Assuntos
Ácido Cólico/química , Glucosamina/química , Micelas , Polímeros/química , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Camundongos , Oxazinas/química , Paclitaxel/química , Polietilenoglicóis/química , Polimerização
20.
Toxicol Lett ; 265: 86-96, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27871908

RESUMO

The Pregnane X (PXR), Vitamin D (VDR) and Farnesoid X (FXR) nuclear receptors have been shown to be receptors of bile acids controlling their detoxification or synthesis. Chenodeoxycholic (CDCA) and lithocholic (LCA) acids are ligands of FXR and VDR, respectively, whereas 3-keto and acetylated derivates of LCA have been described as ligands for all three receptors. In this study, we hypothesized that oxidation or acetylation at position 3, 7 and 12 of bile acids DCA (deoxycholic acid), LCA, CA (cholic acid), and CDCA by detoxification enzymes or microbiome may have an effect on the interactions with bile acid nuclear receptors. We employed reporter gene assays in HepG2 cells, the TR-FRET assay with recombinant PXR and RT-PCR to study the effects of acetylated and keto bile acids on the nuclear receptors activation and their target gene expression in differentiated hepatic HepaRG cells. We demonstrate that the DCA 3,12-diacetate and CA 3,7,12-triacetate derivatives are ligands of PXR and DCA 3,12-diacetate induces PXR target genes such as CYP3A4, CYP2B6 and ABCB1/MDR1. In conclusion, we found that acetylated DCA and CA are potent ligands of PXR. Whether the acetylated bile acid derivatives are novel endogenous ligands of PXR with detoxification or physiological functions should be further studied in ongoing experiments.


Assuntos
Ácido Cólico/química , Ácido Desoxicólico/química , Receptores de Esteroides/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Acetilação , Animais , Técnicas de Cultura de Células , Ácido Cólico/metabolismo , Ácido Cólico/farmacologia , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP3A/genética , Ácido Desoxicólico/metabolismo , Ácido Desoxicólico/farmacologia , Relação Dose-Resposta a Droga , Genes Reporter , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Oxirredução , Plasmídeos , Receptor de Pregnano X , Ligação Proteica , Receptores de Calcitriol/química , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Transfecção , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA