Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 338: 127842, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32822902

RESUMO

Cadmium, inorganic arsenic and, potentially, dimethyl arsenic acid are carcinogens widely elevated in rice. Here it was identified that the food-safe and common cadmium chelator citric acid efficiently removed cadmium from intact grain via pre-soaking procedure, while also reducing arsenic species. A twostep pre-soaking stage was developed whereby rice was first incubated, at ambient temperature, in 1 M citric acid for 12 h, and then in 1 M calcium carbonate for another 12 h, the latter step to neutralize pH, followed by cooking. When 10 different individual types of rice were processed in such a way this resulted in removal rates of 79% for cadmium, 81% for inorganic arsenic and a 66% for DMA. The technology is particularly suitable for bulk food processing and could be deployed in the most cadmium and arsenic impacted regions where rice is a staple.


Assuntos
Arsenicais/química , Ácido Cacodílico/química , Cádmio/química , Contaminação de Alimentos/análise , Oryza/química , Arsenicais/análise , Ácido Cacodílico/análise , Cádmio/análise , Carbonato de Cálcio/química , Ácido Cítrico/química , Culinária/métodos , Concentração de Íons de Hidrogênio , Espectrometria de Massas/métodos , Oryza/metabolismo
2.
Talanta ; 179: 520-530, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29310270

RESUMO

Surface enhanced Raman scattering (SERS) has great potential as an alternative tool for arsenic speciation in biological matrices. SERS measurements have advantages over other techniques due to its ability to maintain the integrity of arsenic species and its minimal requirements for sample preparation. Up to now, very few Raman spectra of arsenic compounds have been reported. This is particularly true for thiolated arsenicals, which have recently been found to be widely present in humans. The lack of data for Raman spectra in arsenic speciation hampers the development of new tools using SERS. Herein, we report the results of a study combining the analysis of experimental Raman spectra with that obtained from density functional calculations for some important arsenic metabolites. The results were obtained with a hybrid functional B3LYP approach using different basis sets to calculate Raman spectra of the selected arsenicals. By comparing experimental and calculated spectra of dimethylarsinic acid (DMAV), the basis set 6-311++G** was found to provide computational efficiency and precision in vibrational frequency prediction. The Raman frequencies for the rest of organoarsenicals were studied using this basis set, including monomethylarsonous acid (MMAIII), dimethylarsinous acid (DMAIII), dimethylmonothioarinic acid (DMMTAV), dimethyldithioarsinic acid (DMDTAV), S-(Dimethylarsenic) cysteine (DMAIII(Cys)) and dimethylarsinous glutathione (DMAIIIGS). The results were compared with fingerprint Raman frequencies from As─O, As─C, and As─S obtained under different chemical environments. These fingerprint vibrational frequencies should prove useful in future measurements of different species of arsenic using SERS.


Assuntos
Arsenicais/química , Ácido Cacodílico/análogos & derivados , Ácido Cacodílico/química , Glutationa/análogos & derivados , Compostos Organometálicos/química , Glutationa/química , Teoria Quântica , Soluções , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos , Vibração , Água/química
3.
PLoS One ; 10(6): e0131218, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26121586

RESUMO

Suppressor of cytokine signalling 2 (SOCS2) is the substrate-binding component of a Cullin-RING E3 ubiquitin ligase (CRL) complex that targets phosphorylated hormone receptors for degradation by the ubiquitin-proteasome system. As a key regulator of the transcriptional response to growth signals, SOCS2 and its protein complex partners are potential targets for small molecule development. We found that crystals of SOCS2 in complex with its adaptor proteins, Elongin C and Elongin B, underwent a change in crystallographic parameters when treated with dimethyl sulfoxide during soaking experiments. To solve the phase problem for the new crystal form we identified the presence of arsenic atoms in the crystals, a result of covalent modification of cysteines by cacodylate, and successfully extracted anomalous signal from these atoms for experimental phasing. The resulting structure provides a means for solving future structures where the crystals must be treated with DMSO for ligand soaking approaches. Additionally, the conformational changes induced in this structure reveal flexibility within SOCS2 that match those postulated by previous molecular dynamics simulations. This conformational flexibility illustrates how SOCS2 can orient its substrates for successful ubiquitination by other elements of the CRL complex.


Assuntos
Arsenicais/química , Ácido Cacodílico/química , Proteínas Culina/química , Dimetil Sulfóxido/química , Proteínas Supressoras da Sinalização de Citocina/química , Fatores de Transcrição/química , Arsenicais/metabolismo , Ácido Cacodílico/metabolismo , Cristalografia por Raios X , Proteínas Culina/metabolismo , Cisteína/metabolismo , Elonguina , Humanos , Modelos Moleculares , Conformação Proteica , Soluções , Especificidade por Substrato , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fatores de Transcrição/metabolismo
4.
Sci Total Environ ; 508: 199-205, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25478657

RESUMO

A surface complexation modeling approach was used to extend the knowledge about processes that affect the availability of dimethylarsinic acid (DMA) in the soil rhizosphere in presence of a strong sorbent, e.g., Fe plaques on rice roots. Published spectroscopic and molecular modeling information suggest for the organoarsenical agent to form bidentate-binuclear inner-sphere surface complexes with Fe hydroxides similar to the inorganic As oxyanions. However, since also the ubiquitous silicic acid oxyanion form the same bidentate binuclear surface complexes, our hypothesis was that it may have an effect on the adsorption of DMA by Fe hydroxides in soil. Our experimental batch equilibrium data show that DMA is strongly adsorbed in the acidic pH range, with a steep adsorption edge in the circumneutral pH region between the DMA acidity constant (pKa=6.3) and the point of zero charge value of the goethite adsorbent (pHpzc=8.6). A 1-pK CD-MUSIC surface complexation model was chosen to fit the experimental adsorption vs. pH data. The same was done for silicic acid batch equilibrium data with our goethite adsorbent. Both model parameters for individual DMA and silicic acid adsorption were then merged into one CD-MUSIC model to predict the binary DMA+Si adsorption behavior. Silicic acid (500 µM) was thus predicted by the model to strongly compete for DMA with up to 60% mobilization of the latter at a pH6. This model result could be verified subsequently by experimental batch equilibrium data with zero adjustable parameters. The thus quantified antagonistic relation between DMA and silicic acid is discussed as one of factors to explain the increase of the DMA proportion in rice grains as observed upon silica fertilization of rice fields.


Assuntos
Ácido Cacodílico/química , Compostos de Ferro/química , Minerais/química , Modelos Moleculares , Ácido Silícico/química , Adsorção , Propriedades de Superfície
5.
PLoS One ; 9(10): e110924, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25349987

RESUMO

Arsenic (III) methyltransferase (AS3MT) is a cysteine (Cys)-rich enzyme that catalyzes the biomethylation of arsenic. To investigate how these crucial Cys residues promote catalysis, we used matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) to analyze Cys residues in recombinant human arsenic (III) methyltransferase (hAS3MT). We detected two disulfide bonds, Cys250-Cys32 and Cys368-Cys369, in hAS3MT. The Cys250-Cys32 disulfide bond was reduced by glutathione (GSH) or other disulfide bond reductants before the enzymatic methylation of arsenite (iAs3+). In addition to exposing residues around the active sites, cleavage of the Cys250-Cys32 pair modulated the conformation of hAS3MT. This adjustment may stabilize the binding of S-Adenosyl-L-methionine (AdoMet) and favor iAs3+ binding to hAS3MT. Additionally, we observed the intermediate of Cys250-S-adenosylhomocysteine (AdoHcy), suggesting that Cys250 is involved in the transmethylation. In recovery experiments, we confirmed that trivalent arsenicals were substrates for hAS3MT, methylation of arsenic occurred on the enzyme, and an intramolecular disulfide bond might be formed after iAs3+ was methylated to dimethylarsinous acid (DMA3+). In this work, we clarified both the functional roles of GSH and the crucial Cys residues in iAs3+ methylation catalyzed by hAS3MT.


Assuntos
Arsenitos/química , Cisteína/química , Metiltransferases/química , Proteínas Recombinantes/química , Arsênio/química , Ácido Cacodílico/análogos & derivados , Ácido Cacodílico/química , Catálise , Domínio Catalítico , Dissulfetos/química , Glutationa/química , Humanos , Metionina/química , Mutação , S-Adenosil-Homocisteína/química , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Yao Xue Xue Bao ; 49(5): 666-71, 2014 May.
Artigo em Chinês | MEDLINE | ID: mdl-25151739

RESUMO

In our previous work, we found that trivalent dimethylarsinous acid (DMA(III)) have high affinity binding to cysteine residue 13 of rat hemoglobin. However, it is still unknown why arsenic intermediate metabolite DMA(III) has high binding affinity for Cysl3 but not for other cysteine residues 93, 140, 111 and 125. In order to better understand the molecular mechanism of DMA(III) with rat hemoglobin, we have done current study. So, SD rats were divided into control and arsenic-treated groups randomly. Arsenic species in lysate of red blood cells were analyzed by HPLC-ICP-MS, and then determined by a hybrid quadrupole TOF MS. In addition, trivalent DMA(III) binds to different cysteine residues in rat hemoglobin alpha and beta chains were also simulated by Molecular Docking. Only Cys13 in alpha chain is able to bind to DMA(III) from the experiment results. Cys13 of alpha chain in rat hemoglobin is a specific binding site for DMA(III), and we found that amino acids compose pockets structure and surround Cys13 (but not other cysteine residues), make DMA(III) much easy to bind cysteine 13. Taken together, the DMA(III) specific binding to Cys13 is related to spatial structure of Cys13.


Assuntos
Ácido Cacodílico/análogos & derivados , Hemoglobinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Arsênio/metabolismo , Sítios de Ligação , Ácido Cacodílico/química , Cromatografia Líquida de Alta Pressão , Cisteína/metabolismo , Espectrometria de Massas , Ratos
7.
Metallomics ; 5(8): 1031-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23752250

RESUMO

Whereas inorganic arsenic is classified as a human carcinogen, risks to human health related to the presence of arsenosugars in marine food are still unclear. Since studies indicate that human inorganic arsenic metabolites contribute to inorganic arsenic induced carcinogenicity, a risk assessment for arsenosugars should also include a toxicological characterization of their respective metabolites. Here we assessed intestinal bioavailability of the human arsenosugar metabolites oxo-DMAA(V), thio-DMAA(V), oxo-DMAE(V), thio-DMAE(V) and thio-DMA(V) in relation to arsenite in the Caco-2 intestinal barrier model. Whereas arsenite and thio-DMA(V) caused barrier disruption at concentrations ≥10 µM, all other metabolites did not cause a barrier leakage, even when applied at 50 times higher concentrations than arsenite and thio-DMA(V). The transfer studies point to a strong intestinal bioavailability of thio-DMA(V) and thio-DMAE(V), whereas oxo-DMAA(V), thio-DMAA(V) and oxo-DMAE(V) passed the in vitro intestinal barrier only to a very small extent. Detailed influx and efflux studies indicate that arsenite and thio-DMA(V) cross the intestinal barrier most likely by passive diffusion (paracellular) and facilitated (transcellular) transport. LC-ICP-QMS based arsenic speciation studies during the transfer experiments demonstrate transfer of thio-DMA(V) itself across the intestinal barrier and suggest metabolism of thio-DMA(V) using the in vitro intestinal barrier model to its oxygen-analogue DMA(V). In the case of arsenite no metabolism was observed. In summary the two arsenosugar metabolites thio-DMA(V) and thio-DMAE(V) showed intestinal bioavailability similar to that of arsenite, and about 10-fold higher than that reported for arsenosugars (Leffers et al., Mol. Nutr. Food Res., 2013, DOI: 10.1002/mnfr.201200821) in the same in vitro model. Thus, a presystemic metabolism of arsenosugars might strongly impact arsenic intestinal bioavailability after arsenosugar intake and should therefore be considered when assessing the risks to human health related to the consumption of arsenosugar-containing food.


Assuntos
Arseniatos/química , Arseniatos/farmacocinética , Ácido Cacodílico/análogos & derivados , Monossacarídeos/química , Monossacarídeos/farmacocinética , Arsenitos/química , Disponibilidade Biológica , Células CACO-2 , Ácido Cacodílico/química , Carcinógenos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Difusão , Relação Dose-Resposta a Droga , Humanos , Intestinos/efeitos dos fármacos , Oxigênio/química , Permeabilidade
8.
J Hazard Mater ; 262: 1031-8, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23142055

RESUMO

Arsenic (As) bioaccessibility is an important factor in estimating human health risk. Bioaccessibility of As in soils is primarily dependent on As adsorption, which varies with residence time. This study evaluated the effect of soil aging on potential lifetime cancer risk associated with chronic exposure to As contaminated soils. Four soils, chosen based on their differences in As reactivity, were amended with two arsenical pesticides--sodium arsenate, and dimethylarsinic acid (DMA) at two rates (675 and 1500 mg kg(-1)). Rice was used as the test crop. Soil was sampled immediately after spiking, after 6 months, 1 year, and 3 years. Bioaccessible and total soil As concentrations were used to calculate lifetime excess cancer risk (ECR), which decreased significantly with soil-pesticide equilibration time. Immokalee soil, with the least As adsorption capacity, showed the highest decrease in ECR after 6 months resulting in values lower than the USEPA's cancer risk range of 1 × 10(-4) to 1 × 10(-6). For all other soils, the ECR was much higher than the target range even after 3 years. In the absence of significant changes in As bioaccessibility with time, the total soil As concentration more directly influenced the changes in ECR values with soil aging.


Assuntos
Arsênio/análise , Arsenicais/química , Praguicidas/química , Poluentes do Solo/análise , Poluentes do Solo/química , Adsorção , Animais , Arseniatos/química , Arsênio/toxicidade , Bile/metabolismo , Disponibilidade Biológica , Ácido Cacodílico/química , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/induzido quimicamente , Neoplasias/prevenção & controle , Oryza/efeitos dos fármacos , Pepsina A/química , Praguicidas/toxicidade , Medição de Risco , Solo , Suínos , Fatores de Tempo
9.
J Phys Chem A ; 116(41): 10143-9, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23009287

RESUMO

The surface chemistry of phosphorus and arsenic compounds in their organic and inorganic forms is of great interest to the scientific and industrial communities due to its role in controlling their transport, bioaccessibility and speciation. We report herein in situ and surface-sensitive rapid kinetic studies on the adsorption of phosphate to Fe (oxyhydr)oxides in the presence and absence of dimethylarsinic acid (DMA) and arsenate. These studies were conducted at pH 7 using ATR-FTIR in the flow mode, which were complemented with detailed kinetic analysis of the desorption behavior of DMA and arsenate over the same range of aqueous [phosphate]. Values for apparent rates of adsorption and desorption were extracted from the time dependence of given spectral components characteristic of surface phosphate, DMA, or arsenate. Results show that pseudo adsorption rate constants of phosphate on Fe (oxyhydr)oxide films increase in this order: arsenate-covered < DMA-covered ≤ freshly prepared. Also, pseudo desorption rate constants of DMA complexes are 7-12 times higher than arsenate using phosphate as a desorbing agent. When these results are combined with earlier work on the thermodynamics, kinetics, and structure of surface complexes, they suggest that, during initial times of surface interactions, increasing organic substitution on arsenate increases the proportion of relatively weakly bonded complexes (monodentate and outer-sphere).


Assuntos
Arsênio/química , Compostos Férricos/química , Fosfatos/química , Adsorção , Ácido Cacodílico/química , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Termodinâmica
10.
Biochemistry ; 51(5): 944-51, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22257120

RESUMO

The enzyme As(III) S-adenosylmethionine methyltransferase (EC 2.1.1.137) (ArsM or AS3MT) is found in members of every kingdom, from bacteria to humans. In these enzymes, there are three conserved cysteine residues at positions 72, 174, and 224 in the CmArsM orthologue from the thermophilic eukaryotic alga Cyanidioschyzon sp. 5508. Substitution of any of the three led to loss of As(III) methylation. In contrast, a C72A mutant still methylated trivalent methylarsenite [MAs(III)]. Protein fluorescence of a single-tryptophan mutant reported binding of As(III) or MAs(III). As(GS)(3) and MAs(GS)(2) bound significantly faster than As(III), suggesting that the glutathionylated arsenicals are preferred substrates for the enzyme. Protein fluorescence also reported binding of Sb(III), and the purified enzyme methylated and volatilized Sb(III). The results suggest that all three cysteine residues are necessary for the first step in the reaction, As(III) methylation, but that only Cys174 and Cys224 are required for the second step, methylation of MAs(III) to dimethylarsenite [DMAs(III)]. The rate-limiting step was identified as the conversion of DMAs(III) to trimethylarsine, and DMAs(III) accumulates as the principal product.


Assuntos
Arsênio/química , Domínio Catalítico , Metilação de DNA , Metiltransferases/química , Rodófitas/enzimologia , Substituição de Aminoácidos/genética , Ácido Cacodílico/análogos & derivados , Ácido Cacodílico/química , Sequência Conservada/genética , Cisteína/química , Cisteína/genética , Ligação Proteica/genética , Especificidade por Substrato
11.
J Phys Chem A ; 116(6): 1596-604, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22257280

RESUMO

Dimethylarsinic acid (DMA) is an organoarsenical compound that, along with monomethylarsonic acid, poses a health and an environmental risk, and a challenge to the energy industry. Little is known about the surface chemistry of DMA at the molecular level with materials relevant to geochemical environments and industrial sectors. We report herein the first in situ and surface-sensitive rapid kinetic studies on the adsorption and desorption of DMA to/from hematite and goethite at pH 7 and I = 0.01 M KCl using ATR-FTIR. Values for the apparent rates of adsorption and desorption were extracted from experimental data as a function of spectral components, flow rate of the aqueous phase, film thickness of hematite, and using chloride and hydrogen phosphate as desorbing agents. The adsorption kinetic data show fast and slow rates, consistent with the formation of more than one type of adsorbed DMA. Apparent adsorption and desorption rate constants were extracted from the dependency of the initial adsorption rates on [DMA(aq)]. Desorption rate constants were also extracted from desorption experiments using hydrogen phosphate and chloride solutions, and were found to be higher by 1-2 orders of magnitude than those using chloride. In light of the complex ligand exchange reaction mechanism of DMA desorption by phosphate species at pH 7, apparent desorption rate constants were found to depend on [hydrogen phosphate] with an order of 0.3. The impact of our studies on the environmental fate of DMA in geochemical environments, and the design of technologies to reduce arsenic content in fuels is discussed.


Assuntos
Ácido Cacodílico/química , Compostos Férricos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Cinética
12.
Environ Sci Technol ; 45(24): 10438-44, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22029696

RESUMO

Dimethylarsinic Acid (DMA) belongs to an important class of organoarsenical compounds commonly detected in arsenic speciation studies of environmental samples and pyrolysis products of fossil fuels. Transformation of DMA under certain conditions leads to the formation of other forms of arsenic, which could be more toxic than DMA to biota, and more efficient in deactivating catalysts used in petrochemical refining. Published surface sensitive X-ray and infrared spectroscopic work suggested that DMA simultaneously forms inner- and outer-sphere complexes with iron-(oxyhydr)oxides. Computational work on the complexation of arsenicals with various surfaces of environmental and industrial interest provides useful information that aids in the interpretation of experimental spectroscopic data as well as predictions of thermodynamic favorability of surface interactions. We report herein Gibbs free energies of adsorption, ΔG(ads), for various ligand exchange reactions between hydrated complexes of DMA and Fe-(oxyhydr)oxide clusters calculated using density functional theory (DFT) at the B3LYP/6-311+G(d,p) level. Calculations using arsenate were also performed for comparison. Calculated As-(O,Fe) distances and stretching frequencies of As-O bonds are also reported for comparison with experimental spectroscopic data. Gibbs free energies of desorption, ΔG(des), due to reactions with phosphorus species at pH 7 are reported as well. Our results indicate that the formation of both inner- and outer-sphere DMA complexes is thermodynamically favorable, with the former having a more negative ΔG(ads). Values of ΔG(des) indicate that desorption favorability of DMA complexes increases in this order: bidentate < mondentate < outersphere. The significance of our results for the overall surface complexation mechanism of DMA is discussed.


Assuntos
Arseniatos/química , Ácido Cacodílico/química , Compostos Férricos/química , Poluentes Ambientais/química , Ligantes , Modelos Químicos , Termodinâmica
13.
PLoS One ; 6(9): e24227, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21912678

RESUMO

The crystal structures of two proteins, a putative pyrazinamidase/nicotinamidase from the dental pathogen Streptococcus mutans (SmPncA) and the human caspase-6 (Casp6), were solved by de novo arsenic single-wavelength anomalous diffraction (As-SAD) phasing method. Arsenic (As), an uncommonly used element in SAD phasing, was covalently introduced into proteins by cacodylic acid, the buffering agent in the crystallization reservoirs. In SmPncA, the only cysteine was bound to dimethylarsinoyl, which is a pentavalent arsenic group (As (V)). This arsenic atom and a protein-bound zinc atom both generated anomalous signals. The predominant contribution, however, was from the As anomalous signals, which were sufficient to phase the SmPncA structure alone. In Casp6, four cysteines were found to bind cacodyl, a trivalent arsenic group (As (III)), in the presence of the reducing agent, dithiothreitol (DTT), and arsenic atoms were the only anomalous scatterers for SAD phasing. Analyses and discussion of these two As-SAD phasing examples and comparison of As with other traditional heavy atoms that generate anomalous signals, together with a few arsenic-based de novo phasing cases reported previously strongly suggest that As is an ideal anomalous scatterer for SAD phasing in protein crystallography.


Assuntos
Amidoidrolases/química , Arsênio/química , Ácido Cacodílico/química , Caspase 6/química , Cristalização/métodos , Espalhamento de Radiação , Absorção , Soluções Tampão , Cisteína , Humanos , Modelos Moleculares , Conformação Proteica , Streptococcus mutans/enzimologia , Síncrotrons
14.
J Colloid Interface Sci ; 358(2): 534-40, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21457993

RESUMO

Arsenic is an element that exists naturally in many rocks and minerals around the world. It also accumulates in petroleum, shale, oil sands, and coal deposits as a result of biogeochemical processes, and it has been found in fly ash from the combustion of solid biofuels. Arsenic compounds in their organic and inorganic forms pose both a health and an environmental risk, and continue to be a challenge to the energy industry. The environmental fate and removal technologies of arsenic compounds are controlled to a large extent by their surface interactions with inorganic and organic adsorbents. We report thermodynamic binding constants, K(binding), from applying the triple-layer surface complexation model to adsorption isotherm and pH envelope data for dimethylarsinic acid (DMA) and p-arsanilic acid (p-AsA) on hematite and goethite. Ligand exchange reactions were constructed based on the interpretation of ATR-FTIR spectra of DMA and p-AsA surface complexes. Surface coverage of adsorbates was quantified in situ from the spectral component at 840 cm(-1). The best fit to the DMA adsorption data was obtained using outer-sphere complex formation, whereas for p-AsA, the best fit was obtained using two monodentate inner-sphere surface complexes. The significance of the results is discussed in relation to improving modeling tools used by environmental regulators and the energy sector for optimum control of arsenic content in fuels.


Assuntos
Ácido Arsanílico/química , Ácido Cacodílico/química , Compostos Férricos/química , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Adsorção , Sítios de Ligação , Fontes Geradoras de Energia/normas , Poluição Ambiental , Propriedades de Superfície
15.
Chemosphere ; 84(4): 439-45, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21507453

RESUMO

This study was conducted to investigate the effect of external iron status and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake. Rice seedlings (Oryza sativa L.) were used as model plant, and were grown in artificially contaminated sandy soils irrigated with Murashige and Skoog (MS) culture solution. Arsenate uptake in roots and shoots of rice seedlings were affected significantly (p>0.05) while dimethylarsinic acid (DMAA) was not by the additional iron and chelating ligand treatments. Regardless of iron concentrations in the soil solution, HIDS increased arsenic uptake for roots more than EDTA and EDDS. Chelating ligands and arsenic species also influenced iron uptake in rice roots. Irrespective of arsenic species, HIDS was found to be more effective in the increase of iron bioavailability and uptake in rice roots compared to other chelants. There was a significant positive correlation (r=0.78, p<0.05) between arsenate and iron concentrations in the roots of rice seedlings grown with or without additional iron indicating that arsenate inhibit iron uptake. In contrast, there was no correlation between iron and DMAA uptake in roots. Poor correlation between iron and arsenic in shoots indicated that iron uptake in shoots was neither affected by additional iron nor by arsenic species. Compared to the control, chelating ligands increased iron uptake in shoots of rice seedlings significantly (p<0.05). Regardless of additional iron and arsenic species, iron uptake in rice shoots did not differed among EDTA, EDDS, and HIDS treatments.


Assuntos
Arsênio/metabolismo , Ferro/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , Arsênio/análise , Arsênio/química , Ácido Cacodílico/análise , Ácido Cacodílico/química , Ácido Cacodílico/metabolismo , Quelantes/química , Recuperação e Remediação Ambiental/métodos , Ferro/análise , Ferro/química , Raízes de Plantas/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/química
16.
Environ Sci Technol ; 44(20): 7802-7, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20857976

RESUMO

The surface chemistry of methylated arsenicals with ubiquitous geosorbents and industrial catalysts is poorly understood. These arsenic compounds pose both a health and an environmental risk in addition to being a challenge to the energy industry. We report herein a detailed spectroscopic analysis of the surface structure of dimethylarsinic acid (DMA) adsorbed on hematite and goethite using attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Spectra of adsorbed DMA, DMA(ads), were collected in situ as a function of pH and ionic strength, using both H(2)O and D(2)O at 298 K in flow mode. Experimental data were complemented with DFT calculations of geometries and frequencies of hydrated DMA-iron oxide clusters. Results indicate the simultaneous formation of inner- and outer-sphere complexes with distinct spectral components. Desorption behavior of DMA due to chloride and phosphate was studied as a function of time from the decrease in the absorbance of apparent spectral features. The impact of our studies on the environmental fate of DMA in geochemical environments and the design of technologies to reduce arsenic content in fuels are discussed.


Assuntos
Ácido Cacodílico/química , Compostos Férricos/química , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Propriedades de Superfície
17.
J Am Soc Mass Spectrom ; 19(10): 1559-67, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18657439

RESUMO

It has been suggested recently that arsenic-glutathione (As-GSH) complexes play an important role in the methylation of arsenic. The present study describes the development of high-performance liquid chromatography (HPLC)-electrospray tandem mass spectrometry (ES-MS/MS), operated in the selected reaction monitoring (SRM) mode, and HPLC-inductively coupled plasma mass spectrometry (ICP-MS) methods suitable for the sensitive and selective identification of four As-GSH complexes. Method optimization was carried out using a series of synthetically prepared standards, i.e., three As-GSH species containing trivalent arsenic: tri(glutamyl-cysteinyl-glycinyl)trithio-arsenite (ATG), di(glutamyl-cysteinyl-glycinyl)methyl-dithio-arsonite (MADG), and (ã-glutamyl-cysteinyl-glycinyl) dimethyl-thio-arsinite (DMAG), as well as one As-GSH species containing pentavalent As: dimethylthioarsinic acid-glutathione (DMTA(V)-GSH). The collision induced dissociation behavior of these compounds was investigated in detail to identify optimum SRM transitions for each complex. Both methods were based on reversed-phase chromatography using gradient elution with methanol, formic acid, and water as solvents. The amount of methanol that was used with this HPLC method (up to 12% vol/vol) was compatible with ICP-MS, without the need of a specially adapted interface. Subsequently, these analytical methods were applied to carry out a preliminary investigation about the role of As-GSH complexes in the methylation of arsenite by methylcobalamin (CH(3)B(12)) in the presence of glutathione (GSH). For the first time, the complexes ATG, MADG, and trace amounts of DMAG were detected as products of this reaction.


Assuntos
Arsenicais/análise , Glutationa/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Arsenicais/química , Arsenitos/química , Ácido Cacodílico/química , Cromatografia Líquida de Alta Pressão/métodos , Glutationa/análogos & derivados , Glutationa/química , Compostos de Sódio/química
18.
J Proteome Res ; 7(8): 3080-90, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18613716

RESUMO

Trivalent arsenicals have high affinity for thiols (such as free cysteines) in proteins. We describe here the use of this property to develop a collision-induced dissociation (CID) tandem mass spectrometry (MS/MS) technique for the identification of reactive cysteines in proteins. A trivalent arsenic species, dimethylarsinous acid (DMA (III)), with a residue mass (103.9607) and mass defect distinct from the normal 20 amino acids, was used to selectively label reactive cysteine residues in proteins. The CID fragment ions of the arsenic-labeled sequences shifted away from the more abundant normal fragments that would otherwise overlap with the ions of interest. Along with the internal and immonium ions, the arsenic-labeled fragment ions served as MS/MS signatures for identification of the binding sites and for assessment of the relative reactivity of individual cysteine residues in a protein. Using this method, we have identified two highly reactive binding sites in rat hemoglobin (Hb): Cys-13alpha and Cys-125beta. Cys-13alpha was bound to DMA (III) in the Hb of rats fed with arsenic, and this binding was responsible for arsenic accumulation in rat blood, while Cys-125beta was found to bind to glutathione in rat blood. This study revealed the relative reactivity of the cysteines in rat Hb in the following decreasing order: Cys-13alpha >> Cys-111alpha > Cys-104alpha and Cys-13alpha >> Cys-125beta > Cys-93beta. Arsenic-labeling is easy and fast for identification of active binding sites without enzymatic digestion and acid hydrolysis, and useful for characterization and identification of metal binding sites in other proteins.


Assuntos
Ácido Cacodílico/análogos & derivados , Cisteína/análise , Hemoglobinas/análise , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ácido Cacodílico/química , Eritrócitos/química , Glutationa/metabolismo , Hemoglobinas/química , Dados de Sequência Molecular , Ligação Proteica , Ratos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
19.
J Hazard Mater ; 160(2-3): 356-61, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-18430512

RESUMO

The uptake of arsenate (As(V)) and dimethylarsinic acid (DMAA) by aquatic macrophyte Spirodela polyrhiza L. was investigated to determine the influence of arsenic interaction with PO4(3-) and Fe ions. Plants were grown hydroponically on standard Murashige and Skoog (MS) culture solutions. Arsenic concentrations in Fe-oxide (Fe-plaque) on plant surfaces were determined by citrate-bicarbonate-ethylenediaminetetraacetic acid (CBE) technique. S. polyrhiza L. accumulated 51-fold arsenic from arsenate solution compared to that from DMAA solution with initial concentrations of 4.0 and 0.02microM of arsenic and phosphate, respectively. The arsenate uptake was negatively (p<0.001) correlated with phosphate uptake and positively (p<0.05) correlated with iron uptake. About 56% of the total arsenic was accumulated into the plant tissues while 44% was adsorbed on Fe-plaque (CBE-extract), when the plants were grown on arsenate solution. The DMAA uptake into the plant was neither affected by the phosphate concentrations nor correlated (p>0.05) with iron accumulation. The results suggest that adsorption of arsenate on Fe-plaque of the surface of S. polyrhiza L. contributes to the arsenic uptake significantly. Thus, arsenate uptake in S. polyrhiza L. occurred through the phosphate uptake pathway and by physico-chemical adsorption on Fe-plaques of plant surfaces as well. The S. polyrhiza L. uses different mechanisms for DMAA uptake.


Assuntos
Arsenicais/metabolismo , Ferro/química , Fosfatos/química , Plantas/metabolismo , Arseniatos/química , Bicarbonatos/química , Ácido Cacodílico/química , Quelantes/química , Citratos/química , Interpretação Estatística de Dados , Ácido Edético/química , Compostos Férricos/química , Raízes de Plantas/química , Plantas/química , Espectrofotometria Atômica
20.
Chem Res Toxicol ; 21(3): 678-85, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18247522

RESUMO

Chronic exposure to arsenic causes a wide range of diseases such as hyperkeratosis, cardiovascular diseases, and skin, lung, and bladder cancers, and millions of people are chronically exposed to arsenic worldwide. However, little is known about the mechanisms underlying these toxic actions. The metabolism of arsenic is essential for understanding the toxic actions. Here, we identified the major arsenic-binding protein (As-BP) in the plasma of rats after oral administration of arsenite by the use of two different HPLC columns, gel filtration and anion exchange ones, coupled with an inductively coupled argon plasma mass spectrometer (ICP MS). The molecular mass of the As-BP was estimated to be 90 kDa based on results using the former column, and arsenic bound to this protein only in the form of dimethylarsinous acid (DMA (III)) in the plasma in vivo. In addition, the purified As-BP was shown to consist of two different proteins, haptoglobin (Hp) of 37 kDa (three bands) and the hemoglobin (Hb) alpha chain of 14 kDa (single band), using sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), respectively, suggesting that the As-BP was the ternary DMA (III)-Hb-Hp complex. To confirm the present observations, an arsenic-binding assay was carried out in vitro . Although DMA (III) bound directly to fresh rat plasma proteins, they were different from that identified in vivo. However, when a DMA (III)-exposed rat RBC lysate (DMA (III) binds to Hb in rat RBCs) was added to control rat plasma, a new arsenic peak increased at the expense of the arsenic-Hb one. Furthermore, this new arsenic peak was consistent with the As-BP identified in the plasma in vivo, suggesting that arsenic bound to Hb further binds to haptoglobin (Hp), forming the ternary As-Hb-Hp complex.


Assuntos
Ácido Cacodílico/análogos & derivados , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Sequência de Aminoácidos , Animais , Arsênio/sangue , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Ácido Cacodílico/sangue , Ácido Cacodílico/química , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Haptoglobinas/química , Hemoglobinas/química , Indicadores e Reagentes , Masculino , Espectrometria de Massas , Dados de Sequência Molecular , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA