Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Analyst ; 148(23): 5991-6000, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37876282

RESUMO

High levels of D-amino acid oxidase (DAO) are associated with neurological and psychiatric disorders, while L-amino acid oxidase (LAO) exhibits antimicrobial and antitumor properties. The enzymatic conversion of the non-fluorescent kynurenine (KYN) into the endogenous weak fluorescent kynurenic acid (KYNA) by the action of DAO has previously been reported. However, the fluorescence of KYNA can be improved by changing the substituents on the aromatic rings. In this study, we prepared different 6-phenyl-substituted KYNA derivatives and investigated their fluorescence properties. Among them, 2-MePh-KYNA showed the maximum fluorescence quantum yield of 0.881 at 340 nm excitation and 418 nm emission wavelengths. The effects of solvent properties (dielectric constant, pKa, viscosity, and proticity) on the fluorescence intensity (FLI) of the KYNA derivatives were explored. The FLI of 2-MePh-KYNA was significantly large in protic solvents. Subsequently, 2-MePh-D-KYN and 2-MePh-L-KYN were prepared with high enantiopurity (>99.25%) for the enzymatic conversion. 2-MePh-D-KYN exhibited high sensitivity (∼19 times that of a commercial DAO substrate and ∼60 times that of the previously reported MeS-D-KYN) and high selectivity, as it was not cross-reactive towards LAO, while 2-MePh-L-KYN was also converted into 2-MePh-KYNA by LAO. Furthermore, the 2-MePh-D-KYN probe successfully detected DAO in eel liver, kidney, and heparin-anticoagulated plasma in the in vitro study.


Assuntos
D-Aminoácido Oxidase , Ácido Cinurênico , L-Aminoácido Oxidase , Ácido Cinurênico/química , Corantes Fluorescentes , Enguias , Animais , L-Aminoácido Oxidase/análise , D-Aminoácido Oxidase/análise , Bioensaio , Fluorescência , Cinética , Fígado/enzimologia , Rim/enzimologia
2.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525680

RESUMO

Kynurenic acid (KYNA, 4-oxoquinoline-2-carboxylic acid), an intermediate of the tryptophan metabolism, has been recognized to exert different neuroactive actions; however, the need of how it or its aminoalkylated amide derivative N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-oxo-1,4-dihydroquinoline-2-carboxamide (KYNA-A4) exerts any effects on ion currents in excitable cells remains largely unmet. In this study, the investigations of how KYNA and other structurally similar KYNA derivatives have any adjustments on different ionic currents in pituitary GH3 cells and hippocampal mHippoE-14 neurons were performed by patch-clamp technique. KYNA or KYNA-A4 increased the amplitude of M-type K+ current (IK(M)) and concomitantly enhanced the activation time course of the current. The EC50 value required for KYNA- or KYNA-A4 -stimulated IK(M) was yielded to be 18.1 or 6.4 µM, respectively. The presence of KYNA or KYNA-A4 shifted the relationship of normalized IK(M)-conductance versus membrane potential to more depolarized potential with no change in the gating charge of the current. The voltage-dependent hysteretic area of IK(M) elicited by long-lasting triangular ramp pulse was observed in GH3 cells and that was increased during exposure to KYNA or KYNA-A4. In cell-attached current recordings, addition of KYNA raised the open probability of M-type K+ channels, along with increased mean open time of the channel. Cell exposure to KYNA or KYNA-A4 mildly inhibited delayed-rectifying K+ current; however, neither erg-mediated K+ current, hyperpolarization-activated cation current, nor voltage-gated Na+ current in GH3 cells was changed by KYNA or KYNA-A4. Under whole-cell, current-clamp recordings, exposure to KYNA or KYNA-A4 diminished the frequency of spontaneous action potentials; moreover, their reduction in firing frequency was attenuated by linopirdine, yet not by iberiotoxin or apamin. In hippocampal mHippoE-14 neurons, the addition of KYNA also increased the IK(M) amplitude effectively. Taken together, the actions presented herein would be one of the noticeable mechanisms through which they modulate functional activities of excitable cells occurring in vivo.


Assuntos
Hipocampo/fisiologia , Canais de Potássio KCNQ/efeitos dos fármacos , Ácido Cinurênico/farmacologia , Animais , Apamina/farmacologia , Linhagem Celular , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Indóis/farmacologia , Ácido Cinurênico/química , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Piridinas/farmacologia , Ratos
3.
Carbohydr Polym ; 224: 115168, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472867

RESUMO

Kynurenic acid demonstrates antioxidant, neuroprotective and free radical scavenging properties. However, low aqueous solubility of kynurenic acid limits its therapeutic activity. In the present study, cyclodextrin nanosponges were used to improve the solubility and therapeutic activity of kynurenic acid. The formation of kynurenic acid loaded nanosponge was confirmed by different characterization techniques. The solubility of kynurenic acid was significantly increased with nanosponge (111.1 µg/ml) compared to free kynurenic acid (16.4 µg/ml) and ß-cyclodextrin (28.6 µg/ml). High drug loading (19.06%) and encapsulation efficiency (95.31%) were achieved with NS. The particle size and zeta potential of kynurenic acid loaded nanosponge was around 255.8 nm and -23 mV respectively. Moreover, higher solubilization of kynurenic acid loaded nanosponge produced better antioxidant activity compared to free kynurenic acid. The kynurenic acid loaded nanosponge and blank nanosponge were found nontoxic in the cytotoxicity assay. Thus, these studies demonstrated that nanosponges can be used as a carrier for the delivery of kynurenic acid.


Assuntos
Ciclodextrinas/química , Portadores de Fármacos/química , Sequestradores de Radicais Livres/química , Ácido Cinurênico/química , Nanoestruturas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/toxicidade , Sequestradores de Radicais Livres/toxicidade , Humanos , Ácido Cinurênico/toxicidade , Solubilidade
4.
Molecules ; 24(11)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185582

RESUMO

The in vivo investigation of kynurenic acid (KYNA) and its analogs is one of the recent exciting topics in pharmacology. In the current study we assessed the biological effects of these molecules on bdelloid rotifers (Philodina acuticornis and Adineta vaga) by monitoring changes in their survival and phenotypical characteristics. In addition to longitudinal (slowly changing) markers (survival, number of rotifers alive and body size index), some dynamic (quickly responding) ones (cellular reduction capacity and mastax contraction frequency) were measured as well. KYNA and its analogs increased longevity, reproduction and growth, whereas reduction capacity and energy-dependent muscular activity decreased conversely. We found that spermidine, a calorie restriction mimetic, exerted similar changes in the applied micro-invertebrates. This characterized systemic profile evoked by the above-mentioned compounds was named beneficial physiologic attenuation. In reference experiments, using a stimulator (cyclic adenosine monophosphate) and a toxin (sodium azide), all parameters changed in the same direction (positively or negatively, respectively), as expected. The currently described adaptive phenomenon in bdelloid rotifers may provide holistic perspectives in translational research.


Assuntos
Ácido Cinurênico/análogos & derivados , Ácido Cinurênico/farmacologia , Rotíferos/fisiologia , Animais , Cinética , Ácido Cinurênico/química , Rotíferos/efeitos dos fármacos , Análise de Sobrevida
5.
PLoS One ; 13(4): e0196404, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29689093

RESUMO

The mammalian kynurenine aminotransferase (KAT) enzymes are a family of related isoforms that are pyridoxal 5'-phosphate-dependent, responsible for the irreversible transamination of kynurenine to kynurenic acid. Kynurenic acid is implicated in human diseases such as schizophrenia where it is found in elevated levels and consequently KAT-II, as the isoform predominantly responsible for kynurenic acid production in the brain, has been targeted for the development of specific inhibitors. One class of compounds that have also shown inhibitory activity towards the KAT enzymes are estrogens and their sulfate esters. Estradiol disulfate in particular is very strongly inhibitory and it appears that the 17-sulfate makes a significant contribution to its potency. The work here demonstrates that the effect of this moiety can be mirrored in existing KAT-II inhibitors, from the development of two novel inhibitors, JN-01 and JN-02. Both inhibitors were based on NS-1502 (IC50: 315 µM), but the deliberate placement of a sulfonamide group significantly improved the potency of JN-01 (IC50: 73.8 µM) and JN-02 (IC50: 112.8 µM) in comparison to the parent compound. This 3-4 fold increase in potency shows the potential of these moieties to be accommodated in the KAT-II active site and the effect they can have on improving inhibitors, and the environments in the KAT-II have been suitably modelled using docking calculations.


Assuntos
Inibidores Enzimáticos/síntese química , Ésteres/síntese química , Estradiol/análogos & derivados , Sulfatos/síntese química , Transaminases/antagonistas & inibidores , Domínio Catalítico , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Ésteres/química , Ésteres/metabolismo , Ésteres/farmacologia , Estradiol/química , Estradiol/farmacologia , Ácido Cinurênico/química , Ácido Cinurênico/metabolismo , Cinurenina/química , Cinurenina/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Mimetismo Molecular , Sulfatos/química , Sulfatos/metabolismo , Sulfatos/farmacologia , Transaminases/química , Transaminases/metabolismo
6.
J Phys Chem B ; 120(32): 7844-50, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27459050

RESUMO

This work clearly demonstrates an evaluation process that is easily performed and is simply based on the fitting of temperature-dependent surface plasmon resonance (SPR) sensorgrams to provide detailed thermodynamic characterization of biologically relevant interactions. The reversible binding of kynurenic acid (KYNA) on human glutamate receptor (GluR1) polypeptide (GluR1270-300)-modified gold surface has been studied at various temperatures under physiological conditions by two-dimensional SPR experiments. The registered sensorgrams were fitted by using different kinetic models without application of any commercial software. Assuming that the association of GluR1270-300-KYNA complex is first order in both reactants, the association (ka) and dissociation (kd) constants as well as the equilibrium constants (KA) and the Gibbs free-energy change (ΔG°) were given at 10, 20, 30, and 40 °C. Moreover, the enthalpy (ΔH° = -27.91 kJ mol(-1)), entropy (ΔS° = -60.33 J mol(-1) K(-1)), and heat capacity changes (ΔCp = -1.28 kJ mol(-1) K(-1)) of the model receptor-ligand system were also calculated using a spreadsheet program. Negative values of ΔG° and ΔH° indicate the exothermic formation of a stable GluR1270-300-KYNA complex, because the |ΔH| > |TΔS| relation suggests an enthalpy-driven binding process. The negative ΔH° and ΔS° values strongly support the formation of a salt bridge between KYNA and the positively charged residues of the polypeptide (Arg, Lys) at pH 7.4, confirmed by molecular docking calculations as well.


Assuntos
Ácido Cinurênico/metabolismo , Receptores de AMPA/metabolismo , Ressonância de Plasmônio de Superfície , Ouro , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ácido Cinurênico/química , Modelos Moleculares , Ligação Proteica , Receptores de AMPA/química , Termodinâmica
7.
Colloids Surf B Biointerfaces ; 123: 924-9, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25466458

RESUMO

The interaction between kynurenic acid (KYNA) and two peptide fragments (ca. 30 residues) of Human Glutamate Receptor 201-300 (GluR1) using surface plasmon resonance (SPR) spectroscopy was investigated. Because of the medical interest in the neuroscience, GluR1 is one of the important subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). AMPARs are ionotoropic glutamate receptors, which are mediating fast synaptic transmission and are crucial for plasticity in the brain. On the other hand, KYNA has been suggested to have neuroprotective activity and it has been considered for apply in therapy in certain neurobiological disorders. In this article the adsorption of the GluR1201-230 and GluR1231-259 peptides were studied on gold biosensor chip. The peptides were chemically bonded onto the gold surface via thiol group of L-cysteine resulted in the formation of peptide monolayer on the SPR chip surface. Because the GluR1231-259 peptide does not contain L-cysteine the Val256 was replaced by Cys256. The cross sectional area and the surface orientation of the studied peptides were determined by SPR and theoretical calculations (LOMETS) as well. The binding capability of KYNA on the peptide monolayer was studied in the concentration range of 0.1-5.0 mM using 150 mM NaCl ionic strength at pH 7.4 (±0.02) in phosphate buffer solutions. In order to determine the binding enthalpy the experiments were carried out between +10°C and +40°C. The heat of adsorption was calculated by using adsorption isotherms at different surface loading of KYNA on the SPR chip.


Assuntos
Ácido Cinurênico/química , Fragmentos de Peptídeos/química , Receptores de Glutamato/química , Ressonância de Plasmônio de Superfície/métodos , Adsorção , Humanos , Ligação Proteica
8.
Toxicol Sci ; 115(1): 89-97, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20106948

RESUMO

Inflammatory signaling plays a key role in tumor progression, and the pleiotropic cytokine interleukin-6 (IL-6) is an important mediator of protumorigenic properties. Activation of the aryl hydrocarbon receptor (AHR) with exogenous ligands coupled with inflammatory signals can lead to synergistic induction of IL6 expression in tumor cells. Whether there are endogenous AHR ligands that can mediate IL6 production remains to be established. The indoleamine-2,3-dioxygenase pathway is a tryptophan oxidation pathway that is involved in controlling immune tolerance, which also aids in tumor escape. We screened the metabolites of this pathway for their ability to activate the AHR; results revealed that kynurenic acid (KA) is an efficient agonist for the human AHR. Structure-activity studies further indicate that the carboxylic acid group is required for significant agonist activity. KA is capable of inducing CYP1A1 messenger RNA levels in HepG2 cells and inducing CYP1A-mediated metabolism in primary human hepatocytes. In a human dioxin response element-driven stable reporter cell line, the EC(25) was observed to be 104nM, while in a mouse stable reporter cell line, the EC(25) was 10muM. AHR ligand competition binding assays revealed that KA is a ligand for the AHR. Treatment of MCF-7 cells with interleukin-1beta and a physiologically relevant concentration of KA (e.g., 100nM) leads to induction of IL6 expression that is largely dependent on AHR expression. Our findings have established that KA is a potent AHR endogenous ligand that can induce IL6 production and xenobiotic metabolism in cells at physiologically relevant concentrations.


Assuntos
Antagonistas de Aminoácidos Excitatórios/metabolismo , Hepatócitos/metabolismo , Interleucina-6/biossíntese , Ácido Cinurênico/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Transdução de Sinais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/genética , Poluentes Ambientais/toxicidade , Indução Enzimática/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ácido Cinurênico/química , Ácido Cinurênico/farmacologia , Ligantes , Camundongos , Dibenzodioxinas Policloradas/toxicidade , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Relação Estrutura-Atividade
9.
Mol Biosyst ; 4(6): 622-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18493661

RESUMO

Thiocoraline is a thiodepsipeptide antitumor agent that belongs to the family of bisintercalator natural products that bind duplex DNA through their two planar intercalating moieties. In thiocoraline, the 3-hydroxyquinaldic acid (3HQA) chromophores required for intercalation are derived from L-Trp. We have expressed the Micromonospora sp. ML1 tryptophan 2,3-dioxygenase(TDO) TioF, purified it from E. coli, and confirmed its role in the irreversible oxidation of L-Trp to N-formylkynurenine, the proposed first step during 3HQA biosynthesis. We have established that TioF is a catalyst with broader specificity than other TDOs, but that is less promiscuous than indoleamine 2,3-dioxygenases. TioF was found to display activity with various L-Trp analogs (serotonin, D-Trp, and indole). The TioF reaction products generated during this study will be used as substrates for subsequent analysis of the other enzymes involved in 3HQA biosynthesis.


Assuntos
Depsipeptídeos/biossíntese , Triptofano Oxigenase/metabolismo , Depsipeptídeos/química , Ativação Enzimática , Cinética , Ácido Cinurênico/análogos & derivados , Ácido Cinurênico/química , Micromonospora/enzimologia , Conformação Molecular , Oxirredução , Estereoisomerismo , Especificidade por Substrato , Triptofano Oxigenase/química , Triptofano Oxigenase/isolamento & purificação
10.
Nat Rev Drug Discov ; 1(8): 609-20, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12402501

RESUMO

The kynurenine pathway is the main pathway for tryptophan metabolism. It generates compounds that can modulate activity at glutamate receptors and possibly nicotinic receptors, in addition to some as-yet-unidentified sites. The pathway is in a unique position to regulate other aspects of the metabolism of tryptophan to neuroactive compounds, and also seems to be a key factor in the communication between the nervous and immune systems. It also has potentially important roles in the regulation of cell proliferation and tissue function in the periphery. As a result, the pathway presents a multitude of potential sites for drug discovery in neuroscience, oncology and visceral pathology.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Cinurenina/metabolismo , Tecnologia Farmacêutica/métodos , Animais , Humanos , Ácido Cinurênico/química , Ácido Cinurênico/metabolismo , Cinurenina/análogos & derivados , Cinurenina/química , Transdução de Sinais/fisiologia , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA