Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.305
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Food Res Int ; 186: 114321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729691

RESUMO

Biogenic nanoparticles are promising carriers to deliver essential minerals. Here, calcium-enriched polyphosphate nanoparticles (CaPNPs) with a Ca/P molar ratio > 0.5 were produced by Synechococcus sp. PCC 7002 in the growth medium containing 1.08 g/L CaCl2, and had nearly spherical morphologies with a wide size distribution of 5-75 nm and strongly anionic surface properties with an average ζ-potential of -39 mV, according to dynamic light-scattering analysis, transmission and scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The ex-vivo ligated mouse ileal loop assays found that calcium in CaPNPs was readily available to intestinal absorption via both ion channel-mediated and endocytic pathways, specifically invoking macropinocytic internalization, lysosomal degradation, and transcytosis. Rat oral pharmacokinetics revealed that CaPNPs had a calcium bioavailability approximately 100 % relative to that of CaCl2 and more than 1.6 times of that of CaCO3. CaPNPs corrected the retinoic acid-induced increase in serum calcium, phosphorus, and bone-specific alkaline phosphatase, and decrease in serum osteocalcin, bone mineral content/density, and femoral geometric parameters with an efficacy equivalent to CaCl2 and markedly greater than CaCO3. In contrast to CaCl2, CaPNPs possessed desirable resistance against phytate's antagonistic action on calcium absorption in these ex vivo and in vivo studies. Overall, CaPNPs are attractive as a candidate agent for calcium supplementation, especially to populations on high-phytate diets.


Assuntos
Disponibilidade Biológica , Cálcio , Microalgas , Nanopartículas , Ácido Fítico , Polifosfatos , Animais , Polifosfatos/química , Camundongos , Ácido Fítico/química , Cálcio/metabolismo , Masculino , Ratos , Absorção Intestinal/efeitos dos fármacos , Ratos Sprague-Dawley
2.
ACS Appl Bio Mater ; 7(5): 3283-3294, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38727030

RESUMO

Medical implants are constantly facing the risk of bacterial infections, especially infections caused by multidrug resistant bacteria. To mitigate this problem, gold nanoparticles with alkyl bromide moieties (Au NPs-Br) on the surfaces were prepared. Xenon light irradiation triggered the plasmon effect of Au NPs-Br to induce free radical graft polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA), leading to the formation of poly(DMAEMA) brush-grafted Au NPs (Au NPs-g-PDM). The Au NPs-g-PDM nanocomposites were conjugated with phytic acid (PA) via electrostatic interaction and van der Waals interaction. The as-formed aggregates were deposited on the titanium (Ti) substrates to form the PA/Au NPs-g-PDM (PAP) hybrid coatings through surface adherence of PA and the gravitational effect. Synergistic bactericidal effects of contact-killing caused by the cationic PDM brushes, and local heating generated by the Au NPs under near-infrared irradiation, conferred strong antibacterial effects on the PAP-deposited Ti (Ti-PAP) substrates. The synergistic bactericidal effects reduced the threshold temperature required for the photothermal sterilization, which in turn minimized the secondary damage to the implant site. The Ti-PAP substrates exhibited 97.34% and 99.97% antibacterial and antiadhesive efficacy, respectively, against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), compared to the control under in vitro antimicrobial assays. Furthermore, the as-constructed Ti-PAP surface exhibited a 99.42% reduction in the inoculated S. aureus under in vivo assays. In addition, the PAP coatings exhibited good biocompatibility in the hemolysis and cytotoxicity assays as well as in the subcutaneous implantation of rats.


Assuntos
Antibacterianos , Escherichia coli , Ouro , Teste de Materiais , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Ácido Fítico , Staphylococcus aureus , Ouro/química , Ouro/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Nanopartículas Metálicas/química , Ácido Fítico/química , Ácido Fítico/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Animais , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Cátions/química , Cátions/farmacologia , Polímeros/química , Polímeros/farmacologia , Titânio/química , Titânio/farmacologia
3.
Biochemistry ; 63(9): 1097-1106, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38669178

RESUMO

As a key component for NADPH oxidase 2 (NOX2) activation, the peripheral membrane protein p47phox translocates a cytosolic activating complex to the membrane through its PX domain. This study elucidates a potential regulatory mechanism of p47phox recruitment and NOX2 activation by inositol hexaphosphate (IP6). Through NMR, fluorescence polarization, and FRET experimental results, IP6 is shown to be capable of breaking the lipid binding and membrane anchoring events of p47phox-PX with low micromolar potency. Other phosphorylated inositol species such as IP5(1,3,4,5,6), IP4(1,3,4,5), and IP3(1,3,4) show weaker binding and no ability to inhibit lipid interactions in physiological concentration ranges. The low micromolar potency of IP6 inhibition of the p47phox membrane anchoring suggests that physiologically relevant concentrations of IP6 serve as regulators, as seen in other membrane anchoring domains. The PX domain of p47phox is known to be promiscuous to a variety of phosphatidylinositol phosphate (PIP) lipids, and this regulation may help target the domain only to the membranes most highly enriched with the highest affinity PIPs, such as the phagosomal membrane, while preventing aberrant binding to other membranes with high and heterogeneous PIP content, such as the plasma membrane. This study provides insight into a potential novel regulatory mechanism behind NOX2 activation and reveals a role for small-molecule regulation in this important NOX2 activator.


Assuntos
NADPH Oxidases , Ácido Fítico , Ácido Fítico/metabolismo , Ácido Fítico/química , NADPH Oxidases/metabolismo , NADPH Oxidases/antagonistas & inibidores , Humanos , Membrana Celular/metabolismo , NADPH Oxidase 2/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
4.
J Food Sci ; 89(5): 2557-2566, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38578119

RESUMO

Black lentils contain protein, carbohydrates, dietary fiber, minerals, and vitamins, as well as phytochemicals and various bioactive compounds. Ultraviolet (UV) radiation and ultrasound (US) methods are innovative technologies that can be used to increase the efficiency of the germination process in grains and legumes. To improve the nutritional value and bioactive compounds of the cookies, black lentils germinated by applying UV radiation and US technology were used in the cookie formulation. Before the germination process, UV, US, and their combination (UV+US) were applied, and pretreated and unpretreated germinated black lentil flours were used at a level of 20% in the cookie formulation. The results revealed that pretreatment application increased the total phenolic content and antioxidant activity more than the lentil sample germinated without any treatment. In addition, the pretreatments applied further reduced the amount of phytic acid in black lentils and the lowest phytic acid content was obtained with the UV-US combination. Compared to cookies containing unpretreated germinated black lentil flour, higher L* values and lower a* values were obtained in the cookie samples containing pretreated germinated black lentil flour. Cookies containing all pretreated germinated lentils generally exhibited higher Ca and K content. This study demonstrated that UV radiation and US improved the nutritional value and bioactive components of the germinated black lentil flour and the cookies in which it was used, compared to the black lentils germinated without any treatment. PRACTICAL APPLICATION: Pretreatment of black lentils with UV/US application before germination resulted in a greater increase in total phenolic content and antioxidant activity compared to the control sample. The applied pretreatments caused a further decrease in the amount of phytic acid in black lentil samples. Black lentils germinated with the UV+US combination revealed higher Ca, Fe, K, and Mg content compared to the sample germinated without any treatment.


Assuntos
Antioxidantes , Germinação , Lens (Planta) , Valor Nutritivo , Fenóis , Ácido Fítico , Sementes , Raios Ultravioleta , Lens (Planta)/química , Lens (Planta)/efeitos da radiação , Germinação/efeitos da radiação , Antioxidantes/análise , Antioxidantes/farmacologia , Ácido Fítico/análise , Sementes/química , Sementes/efeitos da radiação , Fenóis/análise , Manipulação de Alimentos/métodos , Farinha/análise , Ultrassom/métodos
5.
Carbohydr Polym ; 334: 122040, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553237

RESUMO

Integrating flexible triboelectric nanogenerators (TENGs) into firefighting clothing offers exciting opportunities for wearable portable electronics in personal protective technology. However, it is still a grand challenge to produce eco-friendly TENGs from biodegradable and low-cost natural polymers for mechanical-energy harvesting and self-powered sensing. Herein, conductive polypyrrole (PPy) and natural chitosan (CS)/phytic acid (PA) tribonegative materials were employed onto the Lycra fabric (LC) in turn to assemble the biodegradable and flame-retardant single-electrode mode LC/PPy/CS/PA TENG (abbreviated as LPCP-TENG). The resultant LPCP-TENG exhibits truly wearable breathability (1378.6 mm/s), elasticity (breaking elongation 291 %), and shape adaptivity performance that can produce an open circuit voltage of 0.3 V with 2 N contact pressure at a working frequency of 5 Hz with a limiting oxygen index of 35.2 %. Furthermore, facile monitoring for human motion of firefighters on fireground is verified by LPCP-TENG when used as self-powered flexible tactile sensor. In addition, degradation experiments have shown that waste LPCP-TENG can be fully degraded in soil within 120 days. This work broadens the applicational range of wearable TENG to reduce the environmental effects of abandoned TENG, exhibiting prosperous applications prospects in the field of wearable power source and self-powered motion detection sensor for personal protection application on fireground.


Assuntos
Quitosana , Retardadores de Chama , Dispositivos Eletrônicos Vestíveis , Humanos , Celulose , Polímeros , Pirróis , Ácido Fítico , Vestuário
6.
ACS Chem Neurosci ; 15(6): 1157-1168, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445956

RESUMO

Phytic acid (PA) has been reported to possess anti-inflammatory and antioxidant properties that are critical for neuroprotection in neuronal disorders. This raises the question of whether PA can effectively protect sensory neurons against chemotherapy-induced peripheral neuropathy (CIPN). Peripheral neuropathy is a dose-limiting side effect of chemotherapy treatment often characterized by severe and abnormal pain in hands and feet resulting from peripheral nerve degeneration. Currently, there are no effective treatments available that can prevent or cure peripheral neuropathies other than symptomatic management. Herein, we aim to demonstrate the neuroprotective effects of PA against the neurodegeneration induced by the chemotherapeutics cisplatin (CDDP) and oxaliplatin. Further aims of this study are to provide the proposed mechanism of PA-mediated neuroprotection. The neuronal protection and survivability against CDDP were characterized by axon length measurements and cell body counting of the dorsal root ganglia (DRG) neurons. A cellular phenotype study was conducted microscopically. Intracellular reactive oxygen species (ROS) was estimated by fluorogenic probe dichlorofluorescein. Likewise, mitochondrial membrane potential (MMP) was assessed by fluorescent MitoTracker Orange CMTMRos. Similarly, the mitochondria-localized superoxide anion radical in response to CDDP with and without PA was evaluated. The culture of primary DRG neurons with CDDP reduced axon length and overall neuronal survival. However, cotreatment with PA demonstrated that axons were completely protected and showed increased stability up to the 45-day test duration, which is comparable to samples treated with PA alone and control. Notably, PA treatment scavenged the mitochondria-specific superoxide radicals and overall intracellular ROS that were largely induced by CDDP and simultaneously restored MMP. These results are credited to the underlying neuroprotection of PA in a platinum-treated condition. The results also exhibited that PA had a synergistic anticancer effect with CDDP in ovarian cancer in vitro models. For the first time, PA's potency against CDDP-induced PN is demonstrated systematically. The overall findings of this study suggest the application of PA in CIPN prevention and therapeutic purposes.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Humanos , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Gânglios Espinais , Potencial da Membrana Mitocondrial , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , Ácido Fítico/uso terapêutico , Platina/farmacologia , Platina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Receptoras Sensoriais/metabolismo
7.
Biochem Pharmacol ; 222: 116118, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467376

RESUMO

Diabetes-related hyperglycemia inhibits bone marrow mesenchymal stem cell (BMSC) function, thereby disrupting osteoblast capacity and bone regeneration. Dietary supplementation with phytic acid (PA), a natural inositol phosphate, has shown promise in preventing osteoporosis and diabetes-related complications. Emerging evidence has suggested that circular (circ)RNAs implicate in the regulation of bone diseases, but their specific regulatory roles in BMSC osteogenesis in hyperglycemic environments remain elucidated. In this study, in virto experiments demonstrated that PA treatment effectively improved the osteogenic capability of high glucose-mediated BMSCs. Differentially expressed circRNAs in PA-induced BMSCs were identified using circRNA microarray analysis. Here, our findings highlight an upregulation of circEIF4B expression in BMSCs stimulated with PA under a high-glucose microenvironment. Further investigations demonstrated that circEIF4B overexpression promoted high glucose-mediated BMSC osteogenesis. In contrast, circEIF4B knockdown exerted the opposite effect. Mechanistically, circEIF4B sequestered microRNA miR-186-5p and triggered osteogenesis enhancement in BMSCs by targeting FOXO1 directly. Furthermore, circEIF4B inhibited the ubiquitin-mediated degradation of IGF2BP3, thereby stabilizing ITGA5 mRNA and promoting BMSC osteogenic differentiation. In vivo experiments, circEIF4B inhibition attenuated the effectiveness of PA treatment in diabetic rats with cranial defects. Collectively, our study identifies PA as a novel positive regulator of BMSC osteogenic differentiation through the circEIF4B/miR-186-5p/FOXO1 and circEIF4B/IGF2BP3/ITGA5 axes, which offers a new strategy for treating high glucose-mediatedBMSCosteogenic dysfunction and delayed bone regeneration in diabetes.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , MicroRNAs , Ratos , Animais , Osteogênese , MicroRNAs/metabolismo , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas
8.
Int J Biol Macromol ; 263(Pt 2): 130517, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423444

RESUMO

Orally targeted delivery systems have attracted ample interest in colorectal cancer management. In this investigation, we developed Inositol hexaphosphate (IHP) loaded Tripolyphosphate (Tr) crosslinked Pectin (Pe) Chitosan (Ch) nanoparticles (IHP@Tr*Pe-Ch-NPs) and modified them with l-Carnitine (CE) (CE-IHP@Tr*Pe-Ch-NPs) to improve uptake in colon cells. The formulated CE-IHP@Tr*Pe-Ch-NPs displayed a monodisperse distribution with 219.3 ± 5.5 nm diameter and 30.17 mV surface charge. Cell-line studies revealed that CE-IHP@Tr*Pe-Ch-NPs exhibited excellent biocompatibility in J774.2 and decreased cell viability in DLD-1, HT-29, and MCF7 cell lines. More cell internalization was seen in HT-29 and MCF7 due to overexpression of the OCTN2 and ATB0,+ transporter (CE transporters) compared to DLD-1. The cell cycle profile, reactive oxygen species, apoptosis, and mitochondrial membrane potential assays were performed to explore the chemo-preventive mechanism of CE-IHP@Tr*Pe-Ch-NPs. Moreover, the in-silico docking studies revealed enhanced interactive behavior of CE-IHP@Tr*Pe-Ch-NPs, thereby proving their targeting ability. All the findings suggested that CE-IHP@Tr*Pe-Ch-NPs could be a promising drug delivery approach for colon cancer targeting.


Assuntos
Quitosana , Nanopartículas , Humanos , Ácido Fítico , Pectinas/farmacologia , Carnitina , Células MCF-7 , Colo , Portadores de Fármacos
9.
Molecules ; 29(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398559

RESUMO

Popcorn is a specialty maize variety with popping abilities. Although considered a snack, popcorn flakes provide a variety of benefits for the human diet. To evaluate the change in content of bioactive compounds in response to microwave popping, the kernels and flakes of twelve popcorn hybrids were assayed. Accordingly, the content of phytic acid, glutathione, phenolic compounds, carotenoids, and tocopherols, as well as the antioxidant activity, were evaluated. In all evaluated popcorn hybrids, the most pronounced significant average decrease of 71.94% was observed for GSH content, followed by 57.72% and 16.12% decreases for lutein + zeaxanthin and phytic acid content, respectively. In response to popping, in the majority of the evaluated hybrids, the most pronounced significant average changes of a 63.42% increase and a 27.61% decrease were observed for DPPH, followed by a 51.52% increase and a 24.48% decrease for ß-carotene, as well as, a 48.62% increase and a 16.71% decrease for α-Tocopherol content, respectively. The applied principal component and hierarchical cluster analyses revealed the distinct separation of popcorn hybrids' kernels and flakes, indicating the existence of a unique linkage of changes in bioactive compound content in response to popping.


Assuntos
Carotenoides , Ácido Fítico , Humanos , Antioxidantes , beta Caroteno , Tocoferóis , Zea mays/química , Glutationa
10.
Lymphat Res Biol ; 22(2): 124-130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265788

RESUMO

Background: Breast cancer-related lymphedema (BCRL) remains a significant postcancer treatment challenge with no definitive cure. Recent supermicrosurgical treatments, such as lymphovenous anastomosis (LVA), have shown promise but lack established objective indicators for outcome evaluation. We investigated the utility of Technetium-99m (Tc-99m) lymphoscintigraphy, an imaging technique providing objective information on lymphatic fluid flow, for assessing LVA surgical outcomes. Methods and Results: A retrospective cohort analysis of patients undergoing LVA for BCRL was conducted. Lymphoscintigraphy images pre- and 1-year postsurgery were compared to determine changes in lymphatic fluid flow of 18 patients based on newly defined parameters "uptake ratio" and "washout rates." Statistically significant reduction in the uptake ratio was observed in the forearm at 30 and 60 minutes postinjection phases. In addition, the forearm showed higher washout rate, indicating an improved lymphatic function in the forearm. Conclusion: Tc-99m lymphoscintigraphy can provide valuable objective data for evaluating LVA surgical outcomes in BCRL patients. However, site-specific differences in outcomes highlight the need for individualized surgical planning. Further large-scale studies are necessary to validate these preliminary findings and develop a standardized approach for LVA assessment.


Assuntos
Linfedema Relacionado a Câncer de Mama , Neoplasias da Mama , Vasos Linfáticos , Linfedema , Compostos de Organotecnécio , Humanos , Feminino , Linfocintigrafia , Estudos Retrospectivos , Ácido Fítico , Anastomose Cirúrgica , Resultado do Tratamento
11.
Soft Matter ; 20(3): 640-650, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38164001

RESUMO

Conductive hydrogels have been widely researched for their potential applications in soft electronic devices. Creating environmentally friendly and multifunctional high-strength hydrogels for high-performance devices remains a significant challenge. This study employs the biodegradable material polyvinyl alcohol (PVA) as the primary component, with phytic acid (PA) and tannic acid (TA) as reinforcing phases, to create a multifunctional, high-strength "green" hydrogel. Through the multiple complexations of two bio-enhancing phases with the PVA main chain, this hydrogel attains ultra-high tensile strength (9.341 MPa), substantial toughness (4.262 MJ m-3), and extensive fracture strain (> 1000%), making it a representative with both mechanical performance and antibacterial capabilities. Additionally, it exhibits a low strain sensing limit (0.5%) and excellent durability (500 cycles under 50% strain). This work introduces a novel strategy of combining biodegradable materials with biomass to fabricate multifunctional hydrogels suitable for human motion monitoring and 2D pressure distribution.


Assuntos
Antibacterianos , Ácido Fítico , Polifenóis , Humanos , Condutividade Elétrica , Hidrogéis , Álcool de Polivinil
12.
J Mater Chem B ; 12(3): 762-771, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38167689

RESUMO

For hydrogel-based flexible sensors, it is a challenge to enhance the stability at sub-zero temperatures while maintaining good self-healing properties. Herein, an anti-freezing nanocomposite hydrogel with self-healing properties and conductivity was designed by introducing cellulose nanocrystals (CNCs) and phytic acid (PA). The CNCs were grafted with polypyrrole (PPy) by chemical oxidation, which were used as the nanoparticle reinforcement phase to reinforce the mechanical strength of hydrogels (851.8%). PA as a biomass material could form strong hydrogen bond interactions with H2O molecules, endowing hydrogels with prominent anti-freezing properties. Based on the non-covalent interactions, the self-healing rate of the hydrogels reached 92.9% at -15 °C as the content of PA was 40.0 wt%. Hydrogel-based strain sensors displayed high sensitivity (GF = 0.75), rapid response time (350 ms), good conductivity (3.1 S m-1) and stability at -15 °C. Various human movements could be detected by using them, including small (smile and frown) and large changes (elbow and knee bending). This work provides a promising method for the development of flexible wearable sensors that work stably in frigid environments.


Assuntos
Nanopartículas , Polímeros , Humanos , Nanogéis , Ácido Fítico , Celulose , Pirróis , Hidrogéis
13.
J Agric Food Chem ; 72(3): 1768-1778, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38217861

RESUMO

To reduce the health risks of exposure to Cd and Pb in wheat, a field experiment was conducted to investigate the differences in Cd and Pb bioaccessibility among the grains of 11 wheat cultivars and their relationships with the nutrient compositions of grains. The grain concentrations (Cd: 0.14-0.56 mg kg-1, Pb: 0.08-0.39 mg kg-1) and bioaccessibility (5.28-57.43% and 0.72-7.72% for Cd and Pb in the intestinal phase, respectively) of Cd and Pb differed significantly among the 11 cultivars. A safe wheat cultivar (Shannong16) with a relatively low health risk and the lowest grain Cd and Pb concentrations was selected. Ca, Mg, phytate, and methionine played key roles in affecting Cd and Pb bioaccessibility in wheat, with Ca and phytate significantly negatively correlated with Cd and Pb bioaccessibility. These findings can be used to optimize the selection strategy for safe wheat cultivars for healthy grain production in Cd-polluted farmland.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Triticum , Chumbo , Ácido Fítico , Poluentes do Solo/análise , Nutrientes , Grão Comestível/química , Solo
14.
Sci Total Environ ; 917: 170419, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38296091

RESUMO

The rare earth metal element lanthanum (La) possesses carcinogenic, genotoxic, and accumulative properties, necessitating urgent development of an efficient and cost-effective method to remove La. However, current sorbents still encounter challenges such as poor selectivity, low sorption capacity, and high production costs. This study therefore proposes a promising solution: the creation of phytic acid-assisted sludge hydrochars (P-SHCs) to eliminate La from water and soil environments. This method harnesses phytic acid's exceptional binding ability and the economical hydrothermal carbonization process. P-SHCs exhibit robust sorption affinity, fast sorption kinetics, and excellent sorption selectivity for La when compared with pristine hydrochars (SHCs). This advantage arises from the remarkable binding ability of phosphate functional groups (polyphosphates) on P-SHCs, forming P-O-La complexes. Moreover, P-SHCs demonstrate sustained sorption efficiency across at least five cycles, with a slight decrease attributed to the loss of phosphorus species and mass during recycling. Furthermore, P-SHCs demonstrated superior economic feasibility, with a higher estimated cost-benefit ratio than that of other sorbents. Our study further validates the exceptional passivation capability of P-SHCs, showcasing relative stabilization efficiency ranging from 37.6 % to 79.6 % for La contamination. Additionally, acting as soil passivation agents, P-SHCs foster the enrichment of specific soil microorganisms such as Actinobacteria and Proteobacteria, capable of solubilizing phosphorus and resisting heavy metals. These findings present novel ideas and technical support for employing P-SHCs in combatting environmental pollution stemming from rare earth metals.


Assuntos
Lantânio , Ácido Fítico , Lantânio/química , Fósforo , Solo , Polifosfatos , Adsorção
15.
Int J Biol Macromol ; 254(Pt 3): 128008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951068

RESUMO

In order to improve the removal rate of uranium and reduce the harm of radioactive pollution, a physically crosslinked polyvinyl alcohol/phosphorylated chitosan (PPP) hydrogel electrode was designed by freezing thawing method. The results show that PPP hydrogel has a good adsorption effect on uranium, and 200 mL of uranium tailings leachate is absorbed, and the treatment efficiency reaches 100 % within 15 min. PPP hydrogel can adapt to a wide range of pH conditions and exhibit excellent adsorption efficiency in the range of 3-9. At the same time, PPP hydrogel maintains an adsorption efficiency of over 85 % for 950 mg/L uranium solution. This lays the foundation for the practical application of PPP hydrogel. In addition, PPP hydrogel also exhibits good repeatability, after 7 cycles, the material still retains 95 % of its initial performance. The synergistic effect of various functional groups such as phosphate, hydroxyl, and ammonium in the material is the main mechanism of PPP's adsorption capacity for uranium. Furthermore, electrochemical adsorption method significantly enhances the adsorption performance of PPP hydrogel.


Assuntos
Quitosana , Urânio , Ácido Fítico , Álcool de Polivinil , Concentração de Íons de Hidrogênio , Hidrogéis , Adsorção
16.
Chem Biol Interact ; 387: 110818, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000455

RESUMO

Hyperglycaemia causes impairment of osteogenic differentiation and accelerates stem cell senescence, resulting in weakened osteogenesis and disordered bone metabolism. Phytic acid (PA) is an antioxidant that is reportedly beneficial to bone homeostasis. The present study aims to clarify how PA affects the osteogenic capacity and cellular senescence of bone marrow mesenchymal stem cells (BMSCs) exposed to high-glucose environments, as well as the potential molecular mechanisms. Our results indicate that osteogenic differentiation in BMSCs cultivated in high-glucose conditions is enhanced by PA, as evidenced by increased alkaline phosphatase activity and staining, Alizarin Red S staining, osteogenic marker in in vitro studies, and increased osteogenesis in animal experiments. PA also prevented high-glucose-induced senescence of BMSCs, as evidenced by the repression of reactive oxygen species production, senescence-associated ß-galactosidase staining, and P21 and P53 expression. Furthermore, it was found that PA rescued the high-glucose-inhibited expression of phosphorylated extracellular regulated protein kinases (p-ERK). The inhibition of ERK pathway by the specific inhibitor PD98059 blocked the PA-enhanced osteogenesis of BMSCs and promoted cell senescence. Our results revealed that PA enhances osteogenic differentiation and inhibits BMSC senescence in a high-glucose environment. In addition, the activation of the ERK pathway seems to mediate the beneficial effects of PA. The findings provide novel insights that could facilitate bone regeneration in patients with diabetes.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Humanos , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , Sistema de Sinalização das MAP Quinases , Diferenciação Celular , Glucose/metabolismo , Células Cultivadas , Células da Medula Óssea
17.
Cancer Lett ; 582: 216591, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097134

RESUMO

Oxaliplatin is an important initial chemotherapy benefiting advanced-stage colorectal cancer patients. Frustratingly, acquired oxaliplatin resistance always occurs after sequential chemotherapy with diverse antineoplastic drugs. Therefore, an exploration of the mechanism of oxaliplatin resistance formation in-depth is urgently needed. We generated oxaliplatin-resistant colorectal cancer models by four representative compounds, and RNA-seq revealed that oxaliplatin resistance was mainly the result of cells' response to stimulus. Moreover, we proved persistent stimulus-induced endoplasmic reticulum stress (ERs) and associated cellular senescence were the core causes of oxaliplatin resistance. In addition, we screened diverse phytochemicals for ER inhibitors in silico, identifying inositol hexaphosphate (IP6), whose strong binding was confirmed by surface plasmon resonance. Finally, we confirmed the ability of IP6 to reverse colorectal cancer chemoresistance and investigated the mechanism of IP6 in the inhibition of diphthamide modification of eukaryotic elongation factor 2 (eEF2) and PERK activation. Our study demonstrated that oxaliplatin resistance contributed to cell senescence induced by persistently activated PERK and diphthamide modification of eEF2 levels, which were specifically reversed by combination therapy with IP6.


Assuntos
Neoplasias Colorretais , Histidina/análogos & derivados , Ácido Fítico , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Ácido Fítico/farmacologia , Ácido Fítico/uso terapêutico , Fator 2 de Elongação de Peptídeos/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
18.
Braz J Med Biol Res ; 56: e12955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937602

RESUMO

Neuropathic pain is a condition with varying origins, including reduced dietary micronutrient intake. Phytate is a polyphosphate found in seeds and grains that can act as an antinutrient due to the ability of sequester essential divalent metals. Here we tested whether moderate dietary phytate intake could alter nociceptive pain. We subjected weaning mice to a chow supplemented with 1% phytate for eight weeks. Body weight gain, glycemic responses, food ingestion, water ingestion, and liver and adipose tissue weights were not altered compared to controls. We observed a decreased mechanical allodynia threshold in the intervention group, although there were no changes in heat- or cold-induced pain. Animals consuming phytate showed reduced spinal cord tumor necrosis factor (TNF), indicating altered inflammatory process. These data provide evidence for a subclinical induction of mechanical allodynia that is independent of phytate consumption in animals with otherwise normal phenotypic pattern.


Assuntos
Hiperalgesia , Neuralgia , Camundongos , Animais , Hiperalgesia/etiologia , Ácido Fítico , Medula Espinal , Fator de Necrose Tumoral alfa
19.
Vopr Pitan ; 92(4): 20-28, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37801451

RESUMO

Claims that consumption of phytate-rich grains, by definition, worsens mineral status needs to be clarified as new evidence emerges about the role of phytic acids (FA) from whole grains in improving population health outcomes. In this regard, it seems appropriate to draw the attention of practitioners to the need to correct patient's diet in order to prevent non-communicable diseases. The aim of this review was to generalize and analyze the modern data on the role of phytates in human nutrition. Material and methods. A search for domestic and foreign literature in the bibliographic databases of articles on medical sciences was carried out using the PubMed, MEDLINE and eLibrary search engines. Results. Deficit of minerals and trace elements in the diet, especially deficiency of iron, calcium, selenium, zinc, iodine, is an urgent public health problem in many countries. Calcium, magnesium, zinc, selenium, and iron deficiencies are associated with impaired immune function and an increased risk of both acute and chronic diseases. Vegan and vegetarian behavior styles with the restriction and exclusion of animal sources of bioavailable minerals and trace elements are gaining more and more popularity in our country. FA is the main storage form of phosphorus in nuts, grains, legumes, and seeds, which satisfies the biosynthesis needs of growing tissues during germination. FA is known as a dietary inhibitor that chelates minerals and trace elements, limiting their bioavailability and reducing their absorption. Pre-treatment methods to reduce phytate levels and increase the nutritional value of diets are fermentation, soaking, and sprouting. Reducing phytate content in plant foods by processing leads to a measurable improvement in mineral status, however, the chelating and antioxidant properties of phytates may be beneficial and their potential in the prevention of cancer, cardiovascular disease, diabetes mellitus and kidney stone formation is currently being studied. Conclusion. Essential components of a healthy diet are whole whole grains, legumes, vegetables, seeds and nuts, despite the fact that most of them are relatively high in FA. Despite some antinutrient properties, FAs have preventive effects on public health.


Assuntos
Selênio , Oligoelementos , Animais , Humanos , Ácido Fítico/análise , Cálcio , Zinco , Cálcio da Dieta , Verduras
20.
Cancer Sci ; 114(11): 4216-4224, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648257

RESUMO

Indocyanine green (ICG) with near-infrared (NIR) fluorescence imaging is used for lymphatic mapping. However, binding of ICG to blood proteins like serum albumin can shorten its retention time in sentinel lymph nodes (SLNs). Here, we investigated the efficacy and safety of a new fluorescence tracer comprising phytate and liposome (LP)-encapsulated ICG. Coadministration of phytate with LP containing phosphatidic acid promotes chelation mediated by Ca2+ in bodily fluids to enhance SLN retention. Uniformly sized LPs (100 nm) encapsulating ICG under conditions that minimized fluorescence self-quenching during storage were produced. We analyzed the behavior of the new tracer (ICG-phytate-LP) and control tracers (ICG and ICG-LP) in the lymphatic flow of mice in terms of lymph node retention time. We also tested lymphatic flow and safety in pigs that have a more human-like lymphatic system. LPs encapsulating stabilized ICG were successfully prepared. Mixing LP with phytate in the presence of Ca2+ increased both the particle size and negative surface charge. In mice, ICG-phytate-LP had the best lymph node retention, with a fluorescence intensity ratio that increased over 6 h and then decreased slowly over the next 24 h. In pigs, administration of ICG and ICG-phytate-LP resulted in no death or weight loss. There were no obvious differences between blood test results for the ICG and ICG-phytate-LP groups, and the overall safety was good. ICG-phytate-LP may be a useful new tracer for gynecological cancers that require time for lymph node identification due to a retroperitoneal approach.


Assuntos
Linfonodo Sentinela , Neoplasias do Colo do Útero , Feminino , Camundongos , Humanos , Suínos , Animais , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Biópsia de Linfonodo Sentinela/métodos , Neoplasias do Colo do Útero/patologia , Ácido Fítico , Lipopolissacarídeos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Verde de Indocianina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA